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Abstract— In prioritized planning for vehicles, vehicles plan
trajectories in parallel or in sequence. In parallel prioritized
planning, the computation time remains approximately constant
with an increasing number of vehicles, but it is difficult
to guarantee collision-free trajectories. Although sequential
prioritized planning can guarantee collision-free trajectories,
the computation time increases with the number of sequentially
computing vehicles, which we call computation levels. This
number is determined by the directed coupling graph which
results from the coupling and prioritization of vehicles. This
work’s contribution is twofold. First, we guarantee safe trajecto-
ries in parallel planning through reachability analysis. Although
these trajectories are collision-free, they tend to be conservative.
Second, we address this conservativeness by planning with a
subset of vehicles in sequence. We formulate the problem of
selecting this subset as a graph partitioning problem, in which
we limit the size of the resulting subgraphs. Consequently, we
can choose the number of computation levels independently
from the directed coupling graph, and thus are able to limit the
computation time in prioritized planning. In our simulations, we
reduce the number of computation levels to approximately 64%
compared to sequential prioritized planning while maintaining
the solution quality.

Video youtu.be/di6X6XTGt88

Code github.com/embedded-software-laboratory/p-dmpc

I. INTRODUCTION

A. Motivation

Networked control systems (NCSs) are spatially dis-
tributed systems within which controllers communicate with
each other [1]. When each controller uses model predic-
tive control (MPC), in which an optimal control problem
(OCP) is solved, we speak of networked MPC. Networked
MPC strategies include centralized model predictive control
(CMPC) and distributed model predictive control (DMPC)
[2].

CMPC is characterized by its global system knowledge,
thus being able to find the optimum to its OCP, if it
exists [3]. However, its time complexity may be exponential
in the number of agents [4]. Unlike CMPC, DMPC is
characterized by a local controller for each agent, which
both solves an OCP with only the decision variables of the
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agent and communicates with other local controllers. Since
the OCPs in DMPC are smaller than the centralized OCP,
the computation time of the NCS is shorter. However, due to
the local system knowledge, the control quality is typically
worse than in CMPC.

This work focuses on trajectory planning with prioritized
distributed model predictive control (P-DMPC), in which
lower-priority vehicles avoid collisions with neighboring,
higher-priority vehicles. In P-DMPC, vehicles plan sequen-
tially or in parallel. When planning sequentially, the num-
ber of computation levels, i.e., the number of sequentially
computing vehicles, increases approximately linearly in the
number of vehicles. In large-scale NCS, this can result
in long computation times. When planning in parallel, the
computation time remains approximately constant with an
increasing number of vehicles, as the number of computation
levels always equals one. However, this typically comes at
the cost of worse solution quality or even unsafe solutions.
The goal of this work is to guarantee a limit of the number of
computation levels during trajectory planning with sequential
P-DMPC, while also guaranteeing the safety of the planned
trajectories. This achieves a scalability of the approach in the
number of vehicles.

B. Related Work

1) Sequential Planning: In sequential planning, a higher-
priority vehicle plans before its neighboring, lower-priority
vehicles and then communicates its prediction to those
vehicles. Using this prediction, the lower-priority vehicles
can guarantee collision avoidance.

To reduce the computation time of sequential planning,
extensive research has been conducted in the literature. One
strategy is to reduce the number of computation levels.
In our previous work [5], we proposed an algorithm that
finds parallelizable computations. However, the number of
parallelizable computations depends on the coupling and
prioritization of vehicles. In [6], the number of parallelizable
computations is maximized by determining the prioritization
through a centralized graph coloring problem. In our previous
work [7], we proposed a decentralized coloring algorithm
which maximizes the number of parallelizable computations
and additionally reduces the number of constraints in the
OCP, thus further reducing computation time. In [8], the
authors split agents into fixed-sized groups, each comprising
three agents. These groups are prioritized and formulate
their own centralized OCPs, which are solved sequentially.
This effectively cuts the number of computation levels in
third. However, the computations are more involving. In
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[9], all vehicles compute in parallel. Lower-priority vehicles
recompute in the event of a conflict, i.e., when their trajectory
collides with a trajectory of a higher-priority vehicle. At
best, all vehicles can compute in parallel; yet at worst, they
compute sequentially. In the majority of the above works, the
coupling graph and prioritization determine a computation
order which ensures all constraints are considered.

The computation time of sequential planning can also
be decreased by decreasing the computation time for each
individual agent. This is often achieved through the use
of linearized dynamics [10]–[13] or sophisticated numerical
solvers [14]–[16].

We conclude that in state-of-the-art sequential planning
approaches, the number of computation levels increases
approximately linearly with the number of vehicles. There
exists no work that guarantees a limited number of compu-
tation levels in sequential planning.

2) Parallel Planning: In parallel planning, all vehicles
plan at the same time. Consequently, a lower-priority vehicle
cannot wait for a communicated trajectory prediction of
a higher-priority vehicle, but still must avoid a collision.
Therefore, it needs to predict the trajectory of a higher-
priority vehicle.

Predicting other vehicles’ trajectories is one of the major
challenges in autonomous driving [17]. If vehicles commu-
nicate, a previously communicated trajectory prediction can
be shifted to the current time and further predicted to the
required duration [6], [18]. If vehicles do not communicate,
the trajectory can be predicted with physics-based [19],
[20] or learning-based methods [21], [22]. However, it is
impossible to guarantee that a trajectory prediction is correct.
If the prediction is incorrect, i.e., it does not coincide with
the actual prediction, the NCS is not prediction consistent.
The loss of prediction consistency can lead to undesired
behavior. This is illustrated for two vehicles in Fig. 1, in
which vehicle 2 has lower priority than vehicle 1. Figure 1a
shows the actual predictions. In the following time step,
vehicle 2 needs to estimate the trajectory of vehicle 1, since
they plan in parallel. A reasonable assumption is that vehicle
1 stays on its predicted trajectory [6], [18]. However, due to
an obstacle emerging (Fig. 1b), the prediction of vehicle 1
changes (Fig. 1c), which consequently leads to a collision in
the prediction horizon.

There are mainly two strategies in the literature dealing
with the prediction inconsistency problem in parallel plan-
ning. One strategy is to prevent it from occurrence. This
can be achieved by consensus-based approaches, which syn-
chronize the predictions among vehicles [23], [24]. However,
consensus-based approaches rely on iterations of synchro-
nization among vehicles. The number of iterations required
to reach a consensus depends on many factors and may be
unbounded. Because of the resulting unbounded computation
time, these approaches may be impractical for real-time
applications. Although centralized controllers are always
prediction consistent [25]–[28], their computation time may
increase exponentially with the number of vehicles, making
them unsuitable for NCSs with many vehicles.
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(a) Actual predictions of two
vehicles in a time step.

1

2

(b) Obstacle emerges in follow-
ing time step.

1

2

Prediction of 1 assumed by 2

Actual prediction of 1

(c) Collision in the prediction
horizon due to prediction incon-
sistency.

1

2

Reachable set

(d) Safe trajectory through
reachability analysis.

Fig. 1: Example of prioritized trajectory planning with pre-
diction inconsistency in a dynamic environment. Vehicle 2
has lower priority. Arrows indicate predictions, gradient fills
indicate predicted occupied areas.

Another strategy is to find solutions that are feasible even
with prediction inconsistency. In [29]–[32], the change of
system states or control inputs between consecutive time
steps is constrained. Lower-priority vehicles can incorporate
the bounded uncertainty when considering the prediction
of the previous time step of higher-priority vehicles. Al-
though lower-priority vehicles benefit, the maneuverability of
higher-priority vehicles is impaired and thus their responsive-
ness to dynamic environments is reduced. In general, reduc-
ing the maneuverability will decrease the solution quality. In
dynamic environments, it might even lead to unsafe behavior.

C. Contribution of this Paper

This paper’s main contribution is a method to limit the
number of sequentially computing vehicles in prioritized
planning. We first propose a method for planning guaranteed
safe trajectories through reachability analysis despite incon-
sistent predictions among vehicles. As Fig. 1d illustrates,
avoiding the reachable set of a vehicle guarantees safe
trajectories. Consequently, all vehicles can compute solutions
to their OCP in parallel. Parallel computation reduces the
computation time, but also reduces the solution quality.
To address this shortcoming, we propose an approach that
involves sequentializing a subset of the computations. This
way, we are able to limit the computation time of the NCS
while enhancing the solution quality.

D. Notation

In this paper, we speak of agents whenever concepts are
generally applicable to P-DMPC. A variable x is marked
with a superscript x(i) if it belongs to agent i. The actual
value of a variable x at time k is written as xk, while values
predicted for time k + l at time k are written as xk+l|k. A
trajectory is denoted by replacing the time argument with (·)
as in x·|k. For any set S, the cardinality of the set is denoted
by |S|.

298



E. Further Structure of this Paper

In Section II, we describe how we guarantee safe trajec-
tories despite inconsistent predictions through reachability
analysis. In Section III, we present an algorithm that im-
proves solution quality by sequential computation of a subset
of vehicles through graph partitioning. In Section IV, we
evaluate the proposed framework in simulation.

II. SAFE PLANS DESPITE PREDICTION INCONSISTENCY

This paper presents a distributed framework for prioritized
planning as shown in Fig. 2 for a vehicle i ∈ {1, . . . , NA},
where NA denotes the number of vehicles. The commu-
nication with other vehicles is indicated by arrows to the
communication network.

This section elaborates on how we generate guaranteed
safe trajectories through reachability analysis in parallel
P-DMPC. We delineate how to compute reachable sets in
Section II-A, how to couple vehicles in Section II-B, and how
to plan trajectories with MPC in Section II-C. Vehicles can
determine priorities with any prioritization algorithm, as long
as each vehicle obtains a unique priority. The corresponding
block is therefore not the subject of the present work but can
be designed according to [7], [33]. Furthermore, Section III
details how to group vehicles.

A. Computing Reachable Sets

We compute the reachable sets of the states of vehicles to
determine the possibly occupied areas over a time horizon
Np ∈ N. These reachable sets provide a basis for determining
the coupling between vehicles (Section II-B) and planning
safe trajectories (Section II-C).

To define a vehicle’s reachable set, we introduce the
number of system states n ∈ N, the number of control inputs
m ∈ N, the set of admissible system states X ⊆ Rn, the
set of admissible control inputs U ⊆ Rm, the system states
x(t) ∈ X , the control inputs u(t) ∈ U , and the system
model ẋ(t) = f(x(t),u(t)). For brevity, we omit the time
argument if it is clear from the context.

Definition 1 (Reachable set of a time interval, adapted from
Def. 4 in [34]). The reachable set R(i)

[t0,t1]|t0 of the states of
vehicle i from time t0 to time t1 is

R(i)
[t0,t1]|t0 =

{ ⋃
t′∈[t0,t1]

∫ t′

t0

f(x,u)dt

∣∣∣∣
x(t0) ∈ X (t0),u ∈ U

}
. (1)

In discrete time, we denote a reachable set of a time step
k+h with a duration of a sample time Ts as R(i)

[k+h,k+h+1]|k,
termed a one-step reachable set. The time is given as t =
k·Ts. In the remainder of this work,R denotes the occupancy
of a vehicle in its reachable set of states, referring to the area
in x- and y-coordinates that is occupied by the vehicle.

Given the complexity of computing reachable sets, we
compute one-step reachable sets offline using a motion
primitive automaton (MPA) from our previous work [35].
The MPA forms the system model with a set of states and

a set of motion primitives. For each state of the MPA, we
compute and unite the occupancies of all available motion
primitives at each time step within the horizon Np, yielding
Np one-step reachable setsR(i)

[0,1]|off., . . . ,R
(i)
[Np−1,Np]|off.. For

offline computation, we assume the vehicle is at the origin
with a yaw angle of zero. For online trajectory planning, we
shift the corresponding precomputed reachable sets to the
vehicle’s current position and rotate them counterclockwise
by the vehicle’s current yaw angle. Figure 3 exemplifies this
concept for a horizon of Np = 3.

B. Coupling Vehicles

We use the concept of couplings to determine which
vehicles should interact with each other and represent them
with a coupling graph.

Definition 2 (Coupling graph). A coupling graph G = (V, E)
is a pair of two sets, the set of vertices V = {1, . . . , NA}
which represents agents and the set of edges E ⊆ V ×V that
represents the interaction between them.

Although coupling all vehicles would guarantee that cou-
pling constraints for all vehicles will be considered, it would
result in NA computation levels and thus a long computation
time. Therefore, we only couple vehicles that can potentially
collide within the horizon Np. This results in a time-variant
coupling graph G(k) = (V, E(k)). Formally, we couple two
vehicles at a time step k if at least one of their one-step
reachable sets intersect within the horizon Np, resulting in
the set of edges

E(k) =
{
(i→ j) ∈ V × V

∣∣∣ ∃h ∈ {0, . . . , Np − 1} :

R(i)
[k+h,k+h+1]|k ∩R

(j)
[k+h,k+h+1]|k ̸= ∅

}
, (2)

with (i→ j) denoting the edge from vehicle i to vehicle j.
In the case of P-DMPC, the coupling graph is directed, and

prioritization determines the directions of edges. We denote
by G⃗ = (V, E⃗) a directed coupling graph, where E⃗ ∈ E
is the set of directed edges. Each directed edge denotes a
coupling objective or constraint in the OCP associated with
and only with the ending vertex. If an edge between two
vertices exists, it points from the higher-priority vertex to
the lower-priority vertex. The uniqueness of priorities ensures
that the orientation of each edge is unambiguous. We denote
the set of all parallelly planning, higher-priority neighbors of
vehicle i with

V(i←)
par. (k) =

{
j ∈ V

∣∣∣ ∃ (j → i) ∈ E⃗par.(k)
}
, (3)

with E⃗par. ⊆ E⃗ denoting the set of edges between parallelly
computing neighbors. Note that in this section E⃗par. = E⃗ ,
since we let all vehicles compute parallelly.

C. Planning Trajectories

Our objective is to enable parallel trajectory planning
with guaranteed collision avoidance. We achieve this by
having lower-priority vehicles avoid the reachable set of
higher-priority vehicles, thus eliminating the possibility of
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Fig. 2: Distributed planning framework overview, illustrated for vehicle i. x(i): measured states; R: reachable sets; G:
undirected coupling graph; G⃗: directed coupling graph; Γ : graph partition; x̃(i): predicted trajectory. Time argument omitted.

Fig. 3: Example of transforming precomputed offline one-
step reachable sets (depicted in grey). Actual reachable sets
in blue. x(i)k , y

(i)
k and ψ(i)

k : current x-, y-coordinate, and yaw
angle.

a collision. Figure 1d illustrates our approach, which is
inspired from [36]. While [36] simplifies the prediction of
other vehicles’ reachable sets using a point mass model for
computational efficiency, our method achieves computational
efficiency by computing reachable sets offline. We use the
nonlinear kinematic single-track model [37, section 2.2] in
this work, which assumes no slip on the front and rear
wheels, and no forces acting on the vehicle. The model
equations are

f(x,u) =



ẋ(t) = v(t) · cos(ψ(t) + β(t)),

ẏ(t) = v(t) · sin(ψ(t) + β(t)),

ψ̇(t) = v(t) · 1
L
· tan(δ(t)) cos(β(t)),

v̇(t) = uv(t),

δ̇(t) = uδ(t),

(4)

with

β(t) = tan−1
(
ℓr
L

tan(δ(t))

)
, (5)

where the vector field f : Rn×Rm → Rn is the continuous-
time nonlinear system model, x ∈ R and y ∈ R describe
the position of the center of gravity (CG), ψ ∈ [0, 2π)
is the orientation, β ∈ [−π, π) is the side slip angle,
δ ∈ [−π, π) and uδ ∈ R are the steering angle and its
derivative respectively, v ∈ R and uv ∈ R are the speed
and acceleration of the CG respectively, L is the wheelbase
length and ℓr is the length from the rear axle to the CG.

Formally, we guarantee collision avoidance with the fol-
lowing OCP, which is solved inside the P-DMPC of the
planner of each vehicle i ∈ {1, . . . , NA} at each time step

k.

minimize
u

(i)

·|k

Np∑
h=1

l(i)x

(
x
(i)
k+h|k, r

(i)
k+h|k

)
(6a)

subject to

x
(i)
k+h+1|k = f

(i)
d

(
x
(i)
k+h|k,u

(i)
k+h|k

)
,

h = 0, . . . , Np − 1,
(6b)

x
(i)
k+h|k ∈ X

(i), h = 1, . . . , Np − 1, (6c)

x
(i)
k+Np

∈ X (i)
Np
, (6d)

u
(i)
k+h|k ∈ U

(i), h = 0, . . . , Np − 1, (6e)

O
(
x̃
(i)
[k+h,k+h+1]|k

)
∩R(j)

[k+h,k+h+1]|k = ∅,

∀ j ∈ V(i←)
par. (k), h = 0, . . . , Np − 1.

(6f)

The function l(i)x : Rn×Rn → R penalizes a deviation to the
reference trajectory r

(i)
·|k of vehicle i and composes the ob-

jective function (6a). The vector field f (i)d : Rn×Rm → Rn

in (6b) resembles the discrete-time nonlinear system model
obtained from (4). O(x̃(i)

[k1,k2]
) denotes vehicle i’s occupancy

between the time steps k1 and k2. We guarantee safe trajec-
tories despite prediction inconsistency by constraining the
occupancy O

(
x̃
(i)
[k+h,k+h+1]|k

)
of each one-step trajectory

x̃
(i)
[k+h,k+h+1]|k of vehicle i within the prediction horizon

to the area outside the corresponding one-step reachable
set R(j)

[k+h,k+h+1]|k of all parallelly planning, higher-priority

neighbors j ∈ V(i←)
par. (k) in (6f). It is computationally hard to

find the global optimum to OCP (6) due to its nonlinearity
and nonconvexity. We approximate (6) with a receding
horizon graph search which can be solved online from our
previous work [35].

III. INCREASING SOLUTION QUALITY THROUGH
GROUPING

In P-DMPC, reachability analysis-based parallel planning
guarantees safety but may sacrifice solution quality. Contrar-
ily, sequential planning achieves consistent predictions and
leads to less conservative trajectories because each vehicle i
must avoid only the predicted occupancy O(x̃(j)) ⊆ R(j) of
all vehicles j ∈ V(i←)

seq. , where V(i←)
seq. denotes the set of all

sequentially planning, higher-priority neighbors of vehicle i:

V(i←)
seq. (k) =

{
j ∈ V

∣∣∣ ∃ (j → i) ∈ E⃗ seq.(k)
}
. (7)
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Note that we split the set of couplings in sequential couplings
E⃗ seq. and parallel couplings E⃗par. with

E⃗ = E⃗ seq. ∪ E⃗par., E⃗ seq. ∩ E⃗par. = ∅, (8)

where E⃗ seq. denotes edges that indicate sequential computa-
tion of the neighbors.

A sequentially planning, lower-priority vehicle i avoids
collisions by avoiding an intersection of the occupancies as

O
(
x̃
(i)
[k+h,k+h+1]|k

)
∩ O

(
x̃
(j)
[k+h,k+h+1]|k

)
= ∅,

∀ j ∈ V(i←)
seq. (k), h = 0, . . . , Np − 1. (9)

Given the existing constraint (6f) in the OCP (6) and by
adding (9) as an additional constraint, we guarantee collision-
freeness between both parallelly and sequentially planning
vehicles.

Prioritized planning is computationally efficient, since the
OCPs have few decision variables. We can therefore increase
the solution quality of parallel planning by sequentializing
a subset of computations. We call the number of sequential
computations the number of computation levels NCL. Let
Tsol.,max denote the maximum time that any vehicle needs to
solve its OCP.

Assumption 1. The computation time T for any vehicle to
solve its OCP is bounded by Tsol.,max, i.e., T ≤ Tsol.,max.

Remark 1. Assumption 1 is mild if an anytime trajectory
planner such as [38] is employed.

Definition 3 (Anytime trajectory planner). An anytime tra-
jectory planner is a trajectory planner that quickly identifies
a feasible trajectory and incrementally improves it over time.

Given a sample time Ts, we introduce the maximum
allowed number of computation levels

NCL,al. =

⌊
Ts

Tsol.,max

⌋
. (10)

Remark 2. We guarantee real-time planning if the actual
number of computation levels is less than or equal to the
maximum allowed number of computation levels.

Assumption 2. The sample time Ts is chosen such that is
larger or equal to the maximum computation time Tsol.,max,
i.e., Tsol.,max ≤ Ts.

Remark 3. Assumption 2 guarantees the maximum allowed
number of computation levels in (10) being at least 1.

Given a coupling graph, a prioritization, and the maximum
allowed number of computation levels, we sequentialize
computations by weighing edges in the coupling graph and
grouping vehicles that should plan sequentially.

A. Weighing Couplings

The effect on the solution quality of a sequential or parallel
coupling depends on the traffic situation. Quantifying this
effect exactly would require us to solve the networked OCP
for all combinations of couplings, i.e., 2|E⃗| times.

Since this is computationally intractable, we propose to
heuristically weigh the edges in the coupling graph to de-
termine how much the NCS might benefit from a sequential
coupling. A high expected benefit results in a high weight.
When two vehicles are far from each other, the intersection
of their reachable sets is small. Even though the lower-
priority vehicle must avoid the other vehicle’s reachable
set, it maintains a high maneuverability. We express this
relation with a heuristic based on the shortest time to a
collision (STC) tSTC : E⃗ → R. We compute this time based
on the states and acceleration capabilities of the vehicles.
The concept of STC has been used in the literature, for
example, to measure the criticality of traffic situations [39].
We propose an edge-weighing function w : E⃗ → R to weigh
a coupling higher if vehicles have a lower STC:

w ((i→ j)) = e−tSTC((i→j)). (11)

The resulting graph is called an edge-weighted directed
coupling graph

G⃗w =
(
V, E⃗ , w

)
. (12)

B. Grouping Vehicles

Identifying which computations to sequentialize corre-
sponds to partitioning the coupling graph into subgraphs
of sequentially computing vehicles. To achieve the highest
benefit, we must partition the graph with a minimal sum
of cut weight, i.e., the sum of the weights of the edges
that connect subgraphs, and a number of computation levels
N

(p)
CL of each subgraph p which is less than the allowed

number of computation levels NCL,al.. Without constraining
each subgraph’s depth1 , this corresponds to the well-known
min-cut clustering problem in graph theory, as formulated in
Problem 1.

Denoting by Vp the set of vertices belonging to subgraph
G⃗p, E⃗pq the set of edges connecting subgraphs p and q

E⃗pq =
{
(i→ j) ∈ E⃗

∣∣∣ i ∈ Vp, j ∈ Vq, p ̸= q
}
, (13)

d : G → N a function returning the depth1 of a graph, and Ng

the number of subgraphs, we formulate an adapted min-cut
clustering problem as follows:

Problem 1 (Min-cut clustering with limited depth). Given an
edge-weighted directed coupling graph G⃗w, find a partition
Γ = {G⃗1, . . . , G⃗Ng} such that

Γ = argmin
Γ

Ng−1∑
p=1

Ng∑
q=p+1

∑
(i→j)∈Epq

w((i→ j)) (14a)

subject to
Ng⋃
p=1

Vp = V, (14b)

Vp ∩ Vq = ∅, ∀ p, q ∈ {1, . . . , Ng}, p ̸= q, (14c)
d(Gp) < NCL,al., ∀ p ∈ {1, . . . , Ng}, (14d)

1The depth of a graph is the length of the longest path between any two
of its vertices.
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The classical min-cut clustering problem consists of (14a)
to (14c) and is NP-hard [40]. We additionally limit each
subgraph’s depth with (14d).

We propose to solve (14) with our greedy Algorithm 1.
We iterate until the depth of all subgraphs in the partition
is lower than the desired allowed number of computation
levels (Line 3). In each iteration, we min-cut [41] the deepest
subgraph (Line 4), which splits an edge-weighted graph into
two subgraphs such that the sum of cut weight is minimal.
Our algorithm returns a partition Γ composed of subgraphs
with a guaranteed maximum depth, resulting in a limit on
the computation levels NCL,al..

Proposition 1. Algorithm 1 terminates at worst in |V| − 1
iterations.

Proof. Since Algorithm 1 separates two vertices in each
iteration, all vertices are in separate subgraphs after |V| − 1
iterations.

Proposition 2. The computational complexity of Algo-
rithm 1 is O(|V|2|E⃗ |+ |V|3 log |V|).

Proof. Given Proposition 1, the complexity follows directly
from the analysis in [41].

Algorithm 1 Greedy min-cut for partition with limited depth

Input: edge-weighted graph G⃗w, maximum levels NCL,al.
Output: Partition Γ (depth of subgraphs limited to NCL,al.)

1: G⃗w,max ← G⃗w ▷ initialize deepest subgraph
2: Γ ← {G⃗w,max} ▷ initialize partition
3: while d(G⃗w,max) ≥ NCL,al. do
4: {G⃗w,a, G⃗w,b} ← min-cut G⃗w,max

5: Γ ← (Γ \ G⃗w,max) ∪ {G⃗w,a, G⃗w,b} ▷ replace sub-
graph

6: G⃗w,max ← deepest subgraph in Γ
7: return Γ

C. Example of Limiting Computation Time by Grouping

Figure 4 exemplifies the steps in our framework for four
vehicles and a computation level limit of two. First, we
couple vehicles if their reachable sets intersect (Fig. 4a).
Second, we prioritize vehicles. In this example, priorities are
equal to the vertex number (Fig. 4b). Note that sequential
P-DMPC would result in four computation levels in this
case. Third, we weigh couplings using the STC (Fig. 4c).
Fourth, we apply Algorithm 1 to partition the graph (Fig. 4d).
Two cuts are required in this example. The first cut separates
vehicle 1 with a cut weight of 0.3, the second cut separates
vehicle 3 with a cut weight of 0.6. This results in the desired
computation level limit of two.

IV. EVALUATION

We evaluate our framework numerically in MATLAB. The
simulation setup replicates the Cyber-Physical Mobility Lab
[42], an open-source, small-scale testbed for connected and
automated vehicles (CAVs). Its road network consists of an
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Fig. 4: Example of four vehicles in our distributed planning
framework illustrated in Fig. 2: (a) couple vehicles (G),
(b) prioritize vehicles (G⃗), (c) weigh couplings (G⃗w), (d)
group vehicles (Γ ). Solid lines indicate sequential couplings,
dashed lines indicate parallel couplings.

urban intersection, a highway, and highway on- and off-
ramps. We use a horizon of Np = 7 and a sample time for
the NCS of Ts = 0.2 s. The code2 to reproduce the results
and a video3 are available online.

A. Evaluation of Safe Planning Despite Prediction Inconsis-
tency

Figure 5 visualizes a simulation to compare our method,
which considers reachable sets (right), with state-of-the-art
methods that consider trajectories of the previous time step
(left) [6], [18]. In this simulation, three vehicles cross an
intersection, all vehicles compute in parallel, all vehicles are
coupled, and priorities are equal to the vehicle numbers.

Figure 5a shows the footprints of all vehicles in the
simulation. On the left side, two vehicles collide at time step
k = 8. The occupancies of the vehicles at this time step are
depicted in red. On the right side, all trajectories are safe due
to our trajectory planning method using reachability analysis.

Figure 5b visualizes vehicle 3’s parallel coupling con-
straints at a critical time step k = 5 over the horizon and its
resulting trajectory prediction. On the left, the constraints are
the time-shifted occupancies from the previous time step. On
the right, the constraints are the reachable sets. The vehicle
enters the intersection further on the left than on the right.
In both cases, there is no collision in vehicle 3’s OCP.

Figure 5c depicts the actual trajectory predictions of all
vehicles. On the left, the trajectory predictions of vehicles 2
and 3 actually intersect due to the prediction inconsistency.
After executing the first step of its trajectory prediction,
vehicle 3 will fail to find feasible solutions to its OCP in
the following time steps, leading to a collision. On the right,
the trajectory predictions do not intersect. Besides showing
the safety of our approach, this example also illustrates its
conservativeness, as vehicle 3 completely stops in front of
the intersection to avoid vehicle 1’s reachable set.

B. Evaluation of Grouping Effect on Solution Quality

In order to evaluate the effect of grouping vehicles on
the solution quality, we simulated 20 vehicles on the road

2github.com/embedded-software-laboratory/p-dmpc
3youtu.be/di6X6XTGt88
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(a) Footprint of even time steps. Timestep k = 8 in red, left
colliding, right safe.
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(b) Parallel coupling constraints and trajectory prediction of vehicle
3 at a critical time step k = 5. Left: assumed predictions, right:
reachable sets.
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(c) Actual predictions of the scene in Fig. 5b.

Fig. 5: Parallel trajectory planning with P-DMPC. Parallel
coupling constraints are on the left time-shifted previous tra-
jectories [6], [18], on the right reachable sets (our approach).
Occupancies are inflated to account for uncertainty.
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Fig. 6: Effect of computation level limit on solution quality.
v̄: normalized average speed. Computation level limit of 1:
purely parallel computation, computation level limit of ∞:
purely sequential computation [5].

network. In each of the ten simulations, we change the
reference paths of the vehicles. Their goals are to stay close
to their reference paths with desired speeds.

We define the solution quality in these simulations as the
normalized average speed v̄, which is the relation of the
average speed over all vehicles and time steps to the free-
flow speed. We compute the free-flow speed as the average
speed over all vehicles and time steps by ignoring collisions.
A lower normalized average speed indicates a lower solution
quality.

Figure 6 shows the normalized average speeds over differ-
ent allowed numbers of computation levels NCL,al.. A limit of
NCL,al. = 1 corresponds to purely parallel computation, and
an infinite limit corresponds to purely sequential computation
[5]. The median of the normalized average speed and thus
the solution quality increases with the computation level
limit in our simulations. From NCL,al. = 1 to NCL,al. = 4
and above, the median speed increases by a total of 10%.
The median speed does not increase after NCL,al. = 4, indi-
cating that in our simulations, a computation level limit of
NCL,al. = 4 has no significant negative effect on the solution
quality. In purely sequential computation [5], the maximum
number of computation levels in our simulations is eleven.
Consequently, by setting the allowed number of computation
levels to four, our method reduces the actual number of
computation levels by about 64% compared to sequential
computation, while still guaranteeing collision avoidance
among vehicles and maintaining the solution quality.

V. CONCLUSION

With our distributed planning framework, it is possible
to parallelize all computations in P-DMPC through reacha-
bility analysis without jeopardizing safety. However, if all
computations are parallelized, our approach to guarantee
safety leads to conservative solutions. Therefore, we improve
the solution quality by sequentializing a subset of computa-
tions, while maintaining the ability to limit the number of
computation levels. Our approach of guaranteeing a limit
on computation levels can be beneficial in P-DMPC for
NCSs when the maximum number of computation levels is
unknown or very high, such as in trajectory planning for
CAVs. Without our method, the sample time must then be
chosen such that the worst case of NCL = NA = 20 compu-
tation levels is allowed. In our simulations, we could reduce
the maximum number of computation levels compared to
sequential planning by about 64%, while guaranteeing safety,
and without a significant negative effect on the solution
quality.

If the computation time of each agent is bounded, we
can determine the allowed number of computation levels
for real-time trajectory planning. Therefore, we are working
on an anytime trajectory planning algorithm for NCSs,
which correlates the overall trajectory planning time with
the number of computation levels.
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