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Abstract—In this work, we solve the problem of mitigating
control authority degradation in real time. In particular, we
focus on controlled nonlinear affine-in-control evolution equa-
tions with finite control input and finite- or infinite-dimensional
state. We consider control input degradation parameterized
by Lipschitz continuous maps. These degradation modes are
encountered in practice due to actuator wear and tear, hard
locks on actuator ranges due to over-excitation, as well as
more general changes in the control allocation dynamics. In
previous work, we have derived sufficient conditions for real-
time identifiability of control authority degradation. In this
work, we build on these results by introducing the concept
of viabilizability, which deals with the existence of a viabilizing
map. Viabilizing maps remap commanded control signals to
viabilized signals that produce a minimally disturbed approxi-
mation of the commanded control signal after control authority
degradation. We develop sufficient conditions on viabilizability
for a class of control degradation modes, as well as error bounds
on approximate viabilizing maps and methods for viabilizing
fixed gain controllers.

I. INTRODUCTION

In control systems, fault detection and mitigation are
key in ensuring prolonged safe operation in safety-critical
environments [1]. Any physical system undergoes gradual
degradation during its operational life cycle, for instance
due to interactions with the environment or internally as
a result of actuator wear and tear. Gradual degradation
or impairment, as the name suggests, often degrades the
performance of a system in cases when potential degradation
modes were not taken into account during control synthesis.
Fault tolerance is a key property of systems that are capable
of mitigating or withstanding system faults, including gradual
degradation.

In this work, we consider a known nonlinear control-affine
system of the form of

ẋ(t) = f (x(t)) + g(x(t))u(t), (1)
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Fig. 1: Comparison between various classes of control au-
thority degradation maps.

where x ∈ X, u ∈ U ⊆ U , X and U are Hilbert spaces,
and f ∶ X → X and g ∶ X → (U , X). In this work, we
assume U = ℝm. In addition, we assume that U is a star-
shaped subset of ℝm such that span U = ℝm. Finally, we
assume that the full-state of the degraded system,

̇̄x(t) = f (x̄(t)) + Rg(x̄(t))Pu(t), (2)

is known without error.
In system (2), a control action degradation map R can

model changes in the control allocation function g, which
may include actuator reconfiguration, such as a change in
the trim angle on aircraft control surfaces or misalignment
of actuators due to manufacturing imperfections or wear and
tear. Since R acts after g, it does not directly remap the
control signal u(t), but it changes the action of a control input
on the system; we therefore talk about control effectiveness,
as opposed to control authority in the case of a control
authority degradation map (CDM) P , which acts before g.
Changes in the drift dynamics f (x(t)) will not be treated in
this work.
It bears mentioning that CDMs are capable of modeling

changes in the actuator’s interaction with the physical system.
This is particularly relevant to medical biophysics, where the
underlying partial differential equations may undergo slight
changes in the control input map as a result of changes in
the surgical probe contact [2]. In such cases, when a nominal
(optimal) control law is available, introducing a viabilizing
map obviates the need to synthesize a new controller from
scratch.
In addition to identifying or approximating CDM P , which

we have studied in past work [3], we are interested in ‘undo-
ing’ the effects of control authority degradation as much as
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possible. In particular, we are interested in the set of control
signals (1) that can still be replicated in (2) when the CDM is
acting; we call this the set of viable control inputs, Uv. With
knowledge of P , we develop here a method to obtain, for
ucmd ∈ Uv, uv such that Puv = ucmd; here, ucmd and uv are
called commanded and viabilized control inputs, respectively.
This approach is closely related to a technique known in
the literature as fault hiding [4]. Fault hiding is achieved
by introducing an output observer based on the output of the
degraded system, and augmenting the nominal system model
by introducing so-called virtual actuators, which requires a
nonlinear reconfiguration block that is strongly dependent
on the underlying problem structure and failure modes [4,
§3.6, p. 42]. In the setting considered in this work, we show
that we can adopt the fault hiding philosophy under much
less stringent constraints for a general class of systems and
degradation modes.

In this work, we are interested in modeling unknown
degraded system dynamics (2) for a time-invariant control
authority degradation map (CDM) P ∶ U → Ū , and no
control effectiveness degradation (i.e., R = I). This problem
amounts to reconstructing, or identifying, P :

Problem 1 (Identifiability of Control Authority Degradation
Maps). For a class of time-invariant CDMs P ∈  , for 
known, if possible, identify P based on a finite number of
full state, velocity, and control input observations (x̄(t), ̇̄x(t),
u(t)) of the degraded system.

Ideally, we would like to identify general nonlinear CDMs
with known bounds on the approximation error. In this work,
we deal with the CDMs shown in Fig. 1.

We have addressed this problem in our previous work
[3], where we presented a method for approximating CDMs
online based on a finite number of full state, velocity, and
control input observations (x̄(t), ̇̄x(t), u(t)) of the degraded
system. In this work, we are interested in exploring viability
under CDM P , i.e., determining whether it is possible to
maintain known system properties under control authority
degradation mode P . In particular, we are interested in
finding a viabilizing map sv that takes a commanded input
ucmd, and maps it to a value uv ∈ Ū , such that Puv = ucmd,
if such a value uv exists. If such a value uv does not exist,
we consider the projection of ucmd onto the set of viable
control inputs Uv ∶= range sv, and produce bounds on the
error ‖ucmd − projUvucmd‖. This latter error can be thought
of as an input disturbance, which could be accounted for in
robust controller synthesis. We refer to this remapping of
ucmd given P under sv as a viabilizing control remapping,
where the goal is to mitigate as best as possible the effects
of control authority degradation. We formalize this problem
as follows:

Problem 2 (Viabilizability of Control Authority Degradation
Maps). For a class of (partially) identified time-invariant
CDMs  ∈ P , determine if it is possible to construct a
viabilizing map sv such that Psv(u) = u for all u ∈ U .
If not, is it possible to obtain an approximately viabilizing

map sv ∶ U → Ū such that Psv(u) ∈ u+� for some known
radius � > 0?

We have omitted proofs in this work in light of space
constraints; many proofs are self-evident, and those that are
not will be published in future work.

II. PRELIMINARIES

We use ‖ ⋅ ‖ to denote the Euclidean norm. Given two
sets A,B ⊆ ℝn, we denote by A + B their Minkowski sum
{a+ b ∶ a ∈ A, b ∈ B}; the Minkowski difference is defined
as A − B = {a − b ∶ a ∈ A, b ∈ B}. By 2A we refer
to the power set of A, i.e., the family of all subsets of A;
C (A) denotes the family of all compact convex subsets of
A. We denote a closed ball centered around the origin with
radius r > 0 as r. By (x, r) we denote {x} + r. We
denote by (A,B) the set of bounded linear operators, and
by (A,B) the set of closed linear operators between A and
B. We define ℝ+ ∶= [0,∞). For two points in a Banach
space ℬ ∋ a, b, let [a, b] denote the convex hull of a and
b, i.e., [a, b] ∶= conv{a, b}. Given a point x ∈ S and a set
A ⊆ S, we denote d(x,A) ∶= infy∈A d(x, y). We define the
distance between two sets A,B ⊆ ℝn to be

d(A,B) ∶= sup
a∈A

inf
b∈B

‖a − b‖. (3)

We denote the Hausdorff distance as

dH(A,B) ∶= max{d(A,B), d(B,A)}, (4)

An alternative characterization of the Hausdorff distance
reads [5, pp. 280–281]:

dH(A,B) = inf{� ≥ 0 ∶ A ⊆ B+�, B ⊆ A+�}, (5)

where X+� denotes the �-fattening of X, i.e., X+� ∶=
⋃

x∈X{y ∈ ℝn ∶ ‖x − y‖ ≤ �}.
We denote by )A the boundary of A in the topology

induced by the Euclidean norm. For a function g ∶ A → B,
we denote by g−1 the inverse of this function if an inverse
exists and otherwise denoting the preimage. By dom(g) we
refer to the domain of the function (in this case A). We
denote by g† the Moore–Penrose pseudo-inverse of a linear
function g. We use the Iverson bracket notation J⋅K, where
the value is 1 if the expression between the brackets is true,
and 0 otherwise.
In this work, we shall consider star-shaped sets, which are

defined as follows:

Definition II.1 (Star-shaped Set and MGFs [6, §15, p. 128]).
We call a closed compact set K ⊆ ℬ star-shaped if there
exist (i) & ∈ K , and (ii) a unique function % ∶ 1 → ℝ+,
such that

K =
⋃

l∈1

[&, & + %(l)l],

where 1 denotes the unit ball in ℬ. We call % a Minkowski
gauge function (MGF), and & the star center.

We now proceed by solving Problem 1 for an unknown
multi-mode affine CDMs, which allows for approximating
Lipschitz continuous nonlinear CDMs with bounded error.
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III. IDENTIFIABILITY OF CONTROL AUTHORITY
DEGRADATION MAPS

We now consider Problem 1. Let us assume that for U , the
Minkowski gauge function % is known. Let P ∶ U → Ū be
an unknown control authority degradation map (CDM). We
assume that Ū is also a star-shaped set, providing conditions
on P and U under which this holds. It bears mentioning
that star-shaped sets are more general than convex sets;
most results presented in this work will apply to star-shaped
sets, which include polytopes, polynomial zonotopes, and
ellipsoids.

Before we provide any results on the identifiability of
control authority degradation modes, we pose the following
key assumption on the nominal system dynamics (1). We
allow for an infinite-dimensional state-space X, that is to
say, X is a set of functions, but X = ℝn is also captured:

Assumption 1. For system (1), assume that
i. g(x) ∈ ℝn×m has closed range for all x ∈ X;
ii. g(x) is injective for all x ∈ X, i.e., ker(g(x)) = {0};
iii. f (x) is known at least one x ∈ X.

Remark 1. In the case of finite-dimensional systems, i.e.,
X ⊆ ℝn, the first two conditions of Assumption 1 can be
stated as:
i. The system is not overactuated, i.e., m ≤ n;
ii. g(x) is of full-column rank for all x ∈ X.
We shall consider the case of multiple control degradation

modes acting throughout the space U . The simplest of the so-
called conditional control authority degradation modes (c-
CDMs) acts only on a compact subset of U ; we refer to these
c-CDMs as partial control authority degradation modes (p-
CDMs). Consider two compact star-shaped sets Ǔ , Û ⊆ U ,
and two p-CDMs

PǓ (u) ∶= u + Ju ∈ ǓK(P − I)u, (6)

PÛ (u) ∶= u + Ju ∉ ÛK(P − I)u, (7)

for some control degradation map P . Here, PǓ is an in-
ternally acting partial CDM (i.e., acting inside Ǔ ), whereas
PÛ is an externally acting partial CDM (acting outside Û );
when this distinction is immaterial, we use a combined hat
and check symbol (e.g., Û̌ ), where Û̌ is simply called the
affected set of control inputs.

In reconstructing an N-mode CDM, we face the problem
of discerning which control inputs belong to which condi-
tional degradation mode. To make this problem tractable, we
pose the following assumption:

Assumption 2. Let the internally acting N-mode CDM
satisfy the following properties:
i. The number of modes N is known;
ii. ̌ is a family of convex sets;
iii. ̌ is a family of affine maps denoted by Qi = pi + Pi.
iv. There exists a known � > 0 such that for all i ≠ j,

dH
(

(Ǔi, P̌iǓi), (Ǔj , P̌jǓj)
)

≥ �.

Fig. 2: Comparison between inner- and outer-approximations
of Û and Ǔ respectively, for a 1-mode c-CDM. The region
with top-right-pointing hatching indicates the set in which the
control input is unaffected; the red-colored region indicates
the affected set. The respective approximations of Û̌ allow
one to find regions in which control inputs are guaranteed
to be unaffected. In the left image, the set indicated by top-
left-pointing hatching is an inner-approximation of Û , and
in the right image this set is an outer-approximation of Ǔ .

We are also interested in obtaining outer-approximations
of Ǔ and inner-approximations of Û for each degradation
mode, as illustrated in Fig. 2, so that we can restrict control
inputs to regions that are guaranteed to be unaffected. Since
we only have access to a finite number of control input
samples, we pose the following assumption regarding the
regularity of the MGF associated with P Û̌ .

Assumption 3. Assume that Û̌ has star center &̂̌ = 0,
and assume that the MGF %̂̌ associated with Û̌ is Lipschitz
continuous, i.e., there exists a known L̂̌ such that

|%̂̌(l) − %̂̌(l′)| ≤ L̂̌‖l − l′‖, (8)

for all l, l′ ∈ 1.

We can now pose a key result on the guaranteed approx-
imation of Lipschitz MGFs from a finite set of samples.

Proposition 1. [[3, Prop. 1]] Assume that Assumption 3
holds for the unknown MGFs %̌ and %̂. Then, for some given
ǔ, ǔ′ ∈ Ǔ and û, û′ ∉ Û , we have for all � ∈ [0, 1]:

%̌
(

�ľ + (1 − �)ľ′

‖�ľ + (1 − �)ľ′‖

)

≤

min
{

‖ǔ‖ + (1 − �)Ľ‖l − l′‖, ‖ǔ′‖ + �Ľ‖ľ − ľ′‖
}

,
(9)

and

%̂
(

�l̂ + (1 − �)l̂′

‖�l̂ + (1 − �)l̂′‖

)

≥

max
{

0, ‖û‖ − (1 − �)L̂‖l̂ − l̂′‖, ‖û′‖ − �L̂‖l̂ − l̂′‖
}

,
(10)

where l̂̌ ∶= û̌∕‖û̌‖ and l̂̌′ ∶= û̌′∕‖û̌′‖.

We now reiterate a theorem on the identifiability of N-
mode conditional control authority degradation modes (c-
CDMs), where multiple affine CDMs act on disjoint subsets
of U .

Theorem 1 (Reconstructing N-mode Affine c-CDMs [3,
Thm. 1]). Consider system (2) and Assumptions 1–2. Assume
that the c-CDM is represented by N unknown internally
acting affine maps Qi, each acting on mutually disjoint
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unknown star-shaped sets Ǔi ⊆ U , giving Q̌ as the p-
CDM. Let there be a given array of distinct state–input
pairs [(x̄[i], u[i])]Ni=1, and a corresponding array of degraded
velocities [ ̇̄x[i]]N ′

i=1 obtained from system (2), with N ′ ≥
N(m + 1). Let there also be a given array of undegraded
state–input pairs [(x∗[i], u∗[i])]Mi=1, with M ≥ m. Assume
that there exist m state–input pairs indexed by | and |∗, such
that the arrays of input vectors {u[|j]}mj=1 and [u∗[|∗,j]]mj=1
are linearly independent.

Cluster the array [(u[i], û̌[i])]N ′

i=1 into N clusters with a
Hausdorff distance of at least � between each pair of clusters.
If each cluster i contains at least m vectors u[i] that are
linearly independent, then Q̌ can then be approximated as
follows:

Q̃̌ u =

⎧

⎪

⎨

⎪

⎩

u u ∉ Ǔouter ,
∑N
i=1Ju ∈ Ǔi,innerKQiu u ∈ Ǔinner ,

inconclusive u ∈ Ǔouter ⧵ Ǔinner ,
(11)

where Ǔinner ∶=
⋃N
i=1 Ǔi,inner and Ǔouter ∶=

⋃N
i=1 Ǔi,outer .

Each Qi are obtained as by considering for each cluster
vi ∶= g†(x̄[j])( ̇̄x[j] − f (x̄[j])) where index j is not part of
the array of linearly independent inputs indexed by |, u ∶=
[ u[|1]−vi ⋯ u[|m]−vi ] and

Δu ∶=
[

g†(x̄[|j])( ̇̄x[|j] − f (x̄[|j])) − u[|j] − vi
]m
j=1 .

Linear operator Pi is obtained as

Pi = (u + Δu)uT(uuT)−1. (12)

The translation pi is obtained as pi = vj − Piu[j], which
yields the i’th mode affine CDM Qi:

Qiu ∶= pi + Piu. (13)

Remark 2. This result incorporates p-CDMs that map a set
Ǔ to a constant, e.g., Q̌ Ǔ = p. To highlight the utility of
this result, it should be noted that the hypotheses given here
allow for commonly encountered degradation modes such
as deadzones and saturation to be modeled (see Fig. 1(4)).
Additionally, Theorem 1 allows for discontinuous control
authority degradation modes, a property that is often not
present in prior work.

We can now consider the case in which P is a Lipschitz
continuous CDM. We consider an approximation of P by an
N-mode affine c-CDM P̃ , for which we derive an explicit
error bound given that the Lipschitz constant of P , LP , is
known.

Theorem 2 (Approximating Lipschitz continuous CDMs by
N-mode Affine c-CDMs [3, Thm. 2]). Let the hypotheses
of Theorem 1 hold, with the exception that P ∶= Q̌ is
now a Lipschitz continuous CDM with Lipschitz constant
LP and Assumption 2 is now dropped. If N clusters that
satisfy the linear independence requirements of Theorem 1
are identified, then the resulting N-mode affine c-CDM
approximation P̃ has the following error:

Fig. 3: Comparison between inner- and outer-approximations
of Û and Ǔ respectively, based on Proposition 1 and The-
orem 1 for an increasing number of samples for a 1-mode
c-CDM. Clearly, for a larger number of points of sufficiently
dispersed points, increasingly tight approximations are ob-
tained as formalized in Lemma 1.

For all u ∈ Ǔi,inner and all i = 1,… , N ,

‖Pu − P̃ u‖ ≤ ‖ min
j=1,…,m

"i,j + LP ‖u[i, j] − u‖, (14)

where "i,j ∶= ‖Pui[j]− P̌iui[j]‖, and u[i, j] ∶= ui[j], where
ui is an array composed of all control inputs in the i’th
cluster.

We can now pose a convergence result on the N-mode
affine c-CDM approximation P̃ of a Lipschitz continuous
CDM P .
Corollary 1. Error bound (14) is monotonically decreasing
in the the number of samples N ′ and the number of c-CDM
modes N . In the limit of the N ′, N → ∞, error bound (14)
converges to zero.

It is in general impossible to uniquely determine each
Û̌ from finitely many samples. Intuitively, given a greater
number of distinct samples inside Û̌ and U ⧵ Û̌ , it should be
possible to more tightly approximate Û̌ . This idea is illus-
trated in Fig. 3. We now state a lemma on the convergence
of inner- and outer-approximations of the affected set Û̌ .

Lemma 1. Consider � > 0, such that a given set of
N� ≥ m distinct pairs (u, PÛ̌u) denoted by UN,� , satisfies
Assumptions 1–3, where PÛ̌ is (i) an N-mode affine c-
CDM, or (ii) a Lipschitz continuous CDM. Let UN be
such that for each ui in UN,� ,

⋃N�
i=1�(ui) ⊇ Û̌ ; i.e., �-

balls centered at each sampled control input form a cover
of Û̌ . Let Û̌N�

inner and Û̌
N�
outer denote the corresponding inner-

and outer-approximations of Û̌ using the procedure given in
Theorem 1 from UN,� . Then, we have Û̌N�

inner ⊆ Û̌
N�′
inner ⊆ Û̌

and Û̌ ⊆ Û̌N�′
outer ⊆ Û̌

N�
outer for all �

′ < �. In addition, we have

lim
�→0

Û̌N�
inner = lim�→0

Û̌N�
outer = Û̌ .

Remark 3. In Lemma 1, note that the �-covering argument
is required to ensure that the distinct samples are sufficiently
dispersed; simply considering N → ∞ does not ensure
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convergence of the Hausdorff distance between the inner- and
outer-approximation to zero. This fact can also be observed
when looking at Fig. 3.

Having obtained a generator of the N-mode affine c-
CDM approximations to Lipschitz continuous CDMs along
with key approximation error convergence results, we can
proceed by trying to ‘invert’ P so as to remap commanded
control signals ucmd to viabilizing signals uv such that Puv =
ucmd, if possible. Instead of restricting the control inputs to
regions that are guaranteed to be unaffected, we consider the
problem of remapping commanded control signals to their
closest viable counterpart so as to achieve approximate fault
masking.

IV. VIABILIZABILITY UNDER CONTROL AUTHORITY
DEGRADATION

From Theorem 1 we can define the following set of
remapped control inputs that can effectively be applied to
system (2), which we refer to as viable control inputs:

Uv ∶=
(

Q̃̌ Ǔinner
)

∪
(

U ⧵ Ǔouter
)

. (15)

We are interested in taking a commanded control input
ucmd ∈ Uv and computing u ∈ U such that QǓu = ucmd,
where this u is referred to as a viabilizing control input; we
shall treat the implications of inviable ucmd ∈ U ⧵ Uv later.
To simplify notation, we shall refer to Q̃−1

̌
as F̃ ∶ Ṽ → 2Ṽ ,

where Ṽ ∶= conv(Ũv ∪ U ), i.e., the convex hull of Ũv ∪ U .
It is guaranteed that commands in Uv are viable by (11)

in Theorem 1. Since in general, there exist more than one
u ∈ U such that QǓu = ucmd for ucmd ∈ Uv, we are
interested in finding a continuous selector sv that maps ucmd
to a viabilizing input. This is of particular importance if the
actuator does not admit discontinuous control signals, or if
there are actuation rate constraints. In the remainder of this
work, we assume a (potentially discontinuous) viabilizing
map sv is available.

Since Uv need not be a connected set, and Uv⧵U need not
be empty, the problem of finding u ∈ U such that QǓu =
ucmd is nontrivial.
Before we pose results on the existence of such a Lipschitz

selection, it bears mentioning that such Lipschitz selectors do
not exist if U is infinite-dimensional [7, p. 569]; we hence
limit our discussion to finite-dimensional U ⊆ ℝm as before.
Before we consider the approximation of Q̌ given in

Theorem 1, we shall consider the true sets and functions,
which are indicated by symbols that lack a tilde.

A. Lipschitz Selection of Q−1
̌

Our goal is to find a selector s ∶ 2V → V that enjoys
certain regularity properties, so as to ensure regularity of the
resulting remapped control signal. The results that we shall
leverage specify that the range of F be on C (V ), the family
of closed convex nonempty sets in V . Our main result will
provide an explicit construction of a Lipschitz continuous
selector sv that can be evaluated efficiently. We shall now

pose conditions on Q̌ that ensure that its preimage lying
in C (V ).

Lemma 2 (C (ℝm)-valued Preimage of Q̌ ). For an inter-
nally acting N-mode affine c-CDM satisfying the hypotheses
of Theorem 1, ČDMN , suppose that for all i = 1,… , N , the
following properties hold:
(a) (P̌iǓi) ∩

(

U ⧵
⋃N
j=1 Ǔj

)

= ∅; and
(b) (P̌iǓi) ∩ (P̌jǓj) = ∅ for all j ≠ i.
(c) (P̌iǓi) ⊇

(

U ⧵
⋃N
j=1 Ǔj

)

; or
(d) (P̌iǓi) ⊆ (P̌jǓj) or (P̌iǓi) ⊇ (P̌jǓj) for some j ≠ i.
(e) P̌iǓi = P̌jǓj and Ǔi ∪ Ǔj is convex for some j ≠ i.
Then, we have range Q−1

̌
⊆ C (ℝm).

Remark 4. The lemma above covers CDMs that map a set
Ǔ to a constant, e.g., Q̌ Ǔ = p. To highlight the utility of
this result, it should be noted that the hypotheses given here
allow for commonly encountered degradation modes such as
deadzones and saturation to be modeled (see Fig. 1(4)).

We can formulate the following corollary on left-
invertibility of Q̌ , i.e., its preimage lies in V :
Corollary 2. In addition to the hypotheses of Lemma 2, if
for all i = 1,… , N we have that P̌i is injective, then Q−1̌ is
single-valued, i.e., range Q−1

̌
⊆ ℝm.

Having established conditions for F to have values in
C (V ), we would now like for F to be Lipschitz continuous.
We show that if Q̌ is piecewise linear, such a property
indeed holds.

Proposition 2. Given an internally acting N-mode affine c-
CDM satisfying the hypotheses of Theorem 1, ČDMN , if Q̌
is a piecewise linear map, then F = Q−1

̌
is Lipschitz with

Lipschitz constant LF ≤ max
{

1,maxi
‖

‖

‖

P̌ †i
‖

‖

‖

}

.

Proof. It is clear that F−1 = Q̌ is Lipschitz by
piecewise linearity; its Lipschitz constant is LF−1 ≤
max

{

1,maxi
‖

‖

‖

P̌i
‖

‖

‖

}

, which follows by considering the con-
stituent affine maps, as well as the identity map on the
unaffected part of the domain. Then, the inverse of F−1,
i.e. F , will consist of the inverse of each of the constituent
affine maps acting on convex domains by Lemma 2, giving
LF ≤ max

{

1,maxi
‖

‖

‖

P̌ †i
‖

‖

‖

}

. □

We can now proceed by constructing a unique Lipschitz
continuous selector of F .

Theorem 3. Let the assumptions of Proposition 2 hold.
There exists a continuous mapping s ∶ C (V ) → V defined
as

s(A) = m∫)1
ℎA(l)l d�(l), (16)

for A ∈ C (V ), where ℎA(l) ∶= supa∈A⟨a, l⟩ is the support
function of A, and � is the Lebesgue measure. Furthermore, a
unique Lipschitz selector of F , known as the Steiner selector,
is given by sv ∶ V → V :

sv(u) ∶= s◦F (u), (17)
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which has Lipschitz constant

Ls,v ≤ 3m + 4
√

mLF ≤ 3m + 4
√

mmax
{

1,max
i

‖

‖

‖

P̌ †i
‖

‖

‖

}

.
(18)

We can now determine bounds for the error introduced by
viabilizing maps in case of ucmd ∉ Uv when projecting to
the closest value in Uv.

B. Approximate Viabilizing Remapping of Affected Control
Signals

We proceed by considering the remapping of commanded
control signals ucmd ∈ U to viable control signals uv,cmd ∈
Uv such that ucmd = Q−1

̌
uv,cmd. In particular, we are

interested in the case where we only have access to F̃ = Q̃−1
̌
.

In light of this necessity, we consider the effect of remapping
inviable control inputs in U ⧵ Uv to their closest viable
counterpart.

Proposition 3. Consider (i) an N-mode affine c-CDM Q
satisfying the hypotheses of Theorem 1, or (ii) a Lipschitz
continuous CDM P with Lipschitz constant LP satisfying the
hypotheses of Theorem 2. Let ucmd ∉ Ũv and define viable
set of control inputs Ũv ∶= QǓinner ∪

(

U ⧵ Ǔouter
)

. Then, for
(i) the following projection error bound holds:

‖

‖

‖

ucmd − projŨvucmd
‖

‖

‖

≤ dH
(

Ǔouter , QǓinner
)

≤ max
j=1,…,N
l∈)1

‖pj + (%̌j(l)Pj − %̂(l))l‖

≤ max
i

‖pi‖ + ‖Pi − I‖‖%̂i‖∞ + ‖%̂i − %̌i‖∞
≤ �N + �N,N ′K + �N ′

(19)

where �N ′ = maxi ‖%̂i − %̌i‖∞, �N,N ′ = maxi ‖%̂i‖∞, �N =
maxi ‖pi‖, and KN = maxi ‖Pi − I‖. For (ii) the following
project error bound holds:

‖

‖

‖

ucmd − projŨvucmd
‖

‖

‖

≤ dH
(

Ǔouter , P Ǔinner
)

≤ "N + �N + �N,N ′KN + (1 + LP )�N ′

(20)

where "N = maxi,j "i,j , for "i,j ∶= ‖Pui[j] − P̌iui[j]‖, and
u[i, j] ∶= ui[j], where ui is an array composed of all control
inputs in the i’th cluster.

Proposition 3 provides explicit bounds on the input error
between the commanded input and the nearest viable input
for N-mode affine c-CDMs and Lipschitz continuous CDMs.
These errors bounds can be regarded as input disturbance
specifications, given which robust controllers can be synthe-
sized. We call a feedback controller viable under CDM P
if it is robust to input disturbances produced by the error
bounds given above.

We proceed by considering a particular case in which the
commanded control signal reads u = Kx, for some fixed
matrix K ∈ ℝm×n. We show how the theory developed in
this work reduces to a tractably implementable vialibizing
Steiner selector in the case of fixed gain control laws. In
particular, we wish to find a viabilizing transformation that
takes CDM Q = (p, P ) and matrix K , and produces a viable

gain matrix K̂ and transformation x′ ∶ X → ℝn, such that
Kx = QiK̂x′(x) for all x.

V. EXAMPLE

The following examples considers the viabilizibility of a
fixed gain full-state control law. We assume the full-state is
available with no error, and the CDM has been identified
as an affine map Qu = p + Pu. This example covers a
wide range of control laws, showing how viabilization can
safeguard additional system properties such as robustness,
without introducing additional components to the control
design. The example given is a specialization of Theorem 3.

We state the following constructive theorem on producing
a viable control law from a nominal fixed gain full-state
control law u = Kx and an affine CDM (p, P ).

Theorem 4 (Viabilizing Transformation for Fixed Gain
Control Laws). For a gain matrix K ∈ ℝm×n and an affine
CDM Qu = p+Pu parameterized by p ∈ ℝm and P ∈ ℝm×m,
where P has full row rank, if p ∈ range(K), the following
controller incorporates a viabilizing transformation:

uv(x) = K̂(x − q), (21)
such that Quv(x) = Kx, where q ∈ K−1p, and

K̂ ∶= (PP T)−1P TK. (22)
We will present further applications to medical and

aerospace systems in a future publication.
VI. CONCLUSION

This work introduces the notion of control authority
degradation maps (CDMs) for affine-in-control nonlinear
systems, proving identifiability conditions for various CDMs
and developing a real-time reconstruction method with error
bounds. After obtaining an approximation to the CDM,
viabilizing maps which map commanded control signals
to viabilizing control inputs, which in turn approximate
the command control signal after degradation. Conditions
and an efficient method for obtaining Lipschitz continuous
viabilizing maps are provided, and the methods are demon-
strated to improve CDM reconstruction quality over time in
a controlled partial differential equation application.
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