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Abstract— Autonomous Mobility-on-Demand (AMoD) systems are
an evolving mode of transportation in which a centrally coordinated
fleet of self-driving vehicles dynamically serves travel requests. The
control of these systems is typically formulated as a large network
optimization problem, and reinforcement learning (RL) has recently
emerged as a promising approach to solve the open challenges in
this space. Recent centralized RL approaches focus on learning
from online data, ignoring the per-sample-cost of interactions within
real-world transportation systems. To address these limitations, we
propose to formalize the control of AMoD systems through the lens
of offline reinforcement learning and learn effective control strategies
using solely offline data, which is readily available to current mobility
operators. We further investigate design decisions and provide empir-
ical evidence based on data from real-world mobility systems showing
how offline learning allows to recover AMoD control policies that (i)
exhibit performance on par with online methods, (ii) allow for sample-
efficient online fine-tuning and (iii) eliminate the need for complex
simulation environments. Crucially, this paper demonstrates that
offline RL is a promising paradigm for the application of RL-based so-
lutions within economically-critical systems, such as mobility systems.

I. INTRODUCTION
As the world’s population continues to urbanize, with

projections indicating that over 60% of the population will
reside in urban environments by 2050, there is an urgent need
for innovative mobility solutions [1]. The traditional model
of urban transportation, heavily reliant on private cars, is no
longer sustainable and is widely recognized as the main cause of
increasingly congested transportation systems. Within this context,
Autonomous Mobility-on-Demand (AMoD) systems have the
potential to transform urban transportation by providing cheap and
efficient point-to-point trips while reducing the need for private car
ownership. In an AMoD system, the customer requests a one-way
ride from their origin to a destination and is matched with an
autonomous vehicle belonging to a larger fleet. In real-world
systems, the effectiveness of rebalancing strategies is central
to the overall system performance, with sub-optimal strategies
potentially exacerbating congestion through unnecessary trips or
increased passenger waiting times. In practice, AMoD systems
enable the centralized control of the fleet, thus potentially allowing
for extremely efficient transportation systems. However, the task of
managing and routing a large number of vehicles within real-world
transportation systems is typically formulated as a large network
optimization problem, which may be prohibitively expensive in
practice, and its solution is considered an open problem.
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Recently, reinforcement learning (RL) has emerged as a promis-
ing approach to solving the AMoD control problem while avoiding
expensive optimization routines [2], [3], [4], [5]. A traditional ap-
proach to RL typically entails the definition of an agent that gradu-
ally improves its performance by repeatedly interacting with an en-
vironment. However, the necessity to learn from online data is also
one of the major constraints to its real-world adoption, especially
within safety or economically-critical systems [6] (e.g., healthcare,
autonomous driving, etc.). An alternative approach is to train via
simulation, which can be summarized as (i) building a complex
simulator of urban mobility, (ii) training AMoD controllers in
simulation, and (iii) deploying the agent in the real world [7].
However, these approaches require access to reliable simulators –
in itself a challenging task – and are potentially exposed to sim-to-
real distribution shifts [8]. In this work, we argue that offline RL
represents a promising direction to overcome these challenges by
learning from real, pre-collected data. Crucially, online interaction
within real-world AMoD systems is either extremely expensive
or infeasible, while historical data from service operators is likely
to be abundant and readily available. Thus, we propose offline RL
as a framework to enable service operators to completely avoid
expensive fleet management decisions until a sufficient level of
performance is guaranteed, allowing for further online fine-tuning
once the policy is safer and cheaper to deploy and taking a step
toward the deployment of learning-based solutions for the system-
level control of real-world transportation systems.

The contributions of this paper are threefold:
• We formulate the AMoD control problem through the lens of

offline RL and propose an approach that enables RL agents
to centrally control AMoD systems from solely offline data.

• We investigate design decisions within our framework,
such as the relation between dataset quality and coverage,
and quantify their impact on model performance and
transferability.

• We show that our approach learns policy initializations
that enable sample-efficient online fine-tuning, providing a
practically feasible strategy to deploy RL algorithms within
real-world mobility systems.

II. RELATED WORK

Existing literature on the AMoD control problem can be
broadly classified into rule-based heuristics [9], model predictive
control (MPC) methods [10], and RL approaches. Readers
interested in a recent survey about centralized and decentralized
RL approaches for vehicle relocation can refer to [11].

As AMoD systems enable the centralized control of the fleet, we
focus on reviewing system-level vehicle rebalancing with central
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decision-making. Such methods aim to explicitly modify the
current distribution of idle vehicles to collectively improve system
performance and serve more requests. Due to the intractability of
the joint action space for all vehicles, centralized RL approaches
for the control of ride-hailing systems have only been studied
recently. To tackle this challenge of scalability, [2] devise a system
policy that specifies the aggregated number of vehicles to be
rebalanced between zones, [3] formulate a policy that determines a
sequence of atomic actions, and [12] deploy a cascaded multi-level
Q-learning approach. [13] train a policy that specifies a probability
distribution for rebalancing idle vehicles to their k-nearest neigh-
bors. [4] propose a graph neural network-based Dirichlet policy
that determines the desired idle vehicle distribution in the network.

Overall, approaches based on RL demonstrate computational
tractability without significantly sacrificing optimality. However,
despite their effectiveness, the aforementioned studies do not con-
sider the cost of training an RL agent from scratch, which can be ex-
tremely high within real-world systems (i.e., consider the monetary
cost of trying different fleet rebalancing strategies for the purpose
of RL exploration). No publicly known simulation environment
for ride-hailing services has demonstrated sufficient fidelity to the
real world for direct sim-to-real transfer [11]. Thus, deployed work
has either adopted offline [14], [15] or fully online learning of
value functions [16], [17]. To address the challenges of the high-
dimensionality state space, these studies assume that the global
value function can be decomposed into the individual drivers’ value
functions. Such an assumption is valid where individual goals align
with the global system’s objective, e.g., in vehicle dispatching.
However, for vehicle rebalancing, this assumption does not hold
and would lead to idle drivers clustering at a single high-value lo-
cation. To mitigate this undesirable behavior, [14] and [15] sample
a destination for each driver from a Boltzmann distribution. [16],
[17] only consider vehicle dispatching, but their approach could be
extended accordingly. This method avoids the need for an explicit
policy but may compromise system performance due to limited
coordination. From the AMoD service provider’s perspective, the
elimination of drivers renders individual objectives obsolete, plac-
ing the focus on system-wide objectives for successful operations.
A solution lies in a centralized parametric policy, which aligns
vehicle actions with system goals by explicitly optimizing for
system performance as in [2], [3], [12], [4], [13]. However, if
aiming at deploying a parametric policy, fully online approaches
[16], [17] could not be deployed, as an untrained policy could
incur significant real-world costs when interacting with the AMoD
system. In light of this, learning a policy from an offline dataset
requires explicit offline RL methods [6], while previous offline
approaches [14], [15] focus solely on deriving value estimates from
the dataset. In this work, we aim to address these challenges by
proposing offline RL to learn a policy for system-level rebalancing
as a mathematical framework to eliminate the need for online
learning from scratch and learning in simulation environments.

III. BACKGROUND

In this section, we introduce the notation and theoretical
background underlying our work in the context of RL, offline RL,
conservative Q-learning, and online fine-tuning.

A. The Reinforcement Learning Problem

In reinforcement learning, we aim to learn to control a dy-
namic system from experience. Specifically, we consider a (fully-
observable) infinite-horizon Markov decision process (MDP)
M=(S,A,P,d0,r,γ), where S is a set of possible states s∈S, A is a
set of possible actions a∈A, P defines the conditional probability
distribution P(st+1|st,at) that specifies the dynamics of the system,
d0 defines the initial state distribution d0(s0), r : S × A → R
describes a reward function and γ∈(0,1] is a scalar discount factor.
The goal of an RL agent is to learn a policy, which defines a
distribution over possible actions conditioned on the state π(at|st)
by interacting with the MDP M (i.e., the environment) under
the objective of maximizing the expected sum of cumulative
rewards. An approach of particular interest for this work is the Soft
Actor-Critic (SAC) [18] algorithm, which combines an actor-critic
formulation with maximum entropy reinforcement learning. We
consider a parametric policy πφ(at|st), i.e., the “actor”, that maps
states to actions, and a Q-function Qθ(st,at), i.e., the “critic”, that
estimates the expected return when starting from state s, taking an
arbitrary action a, and then continuing acting according to policy π.
The Q-value is optimized to approximate the expected return under
the current policy π. Specifically, the Q-values are updated by
iteratively applying the soft Bellman backup operator Bπ given by:

BπQ(st,at)=r(st,at)+γEst+1∼P[Eat+1∼π

[Q(st+1,at+1)−αlog(πφ(at+1 |st+1))]],

where (st,at) is sampled from a collection of past transitions
D = {(st,at,st+1,rt)}, often referred to as a replay buffer. The
policy is updated to maximize the expected return, represented
by the Q-values, alongside the entropy of the policy:

Jπ(φ)=Est∼D

[
Eat∼πφ

[
αlog

(
πφ(at |st)

)
−Qθ(st,at)

]]
.

B. Offline Reinforcement Learning

Offline RL is a learning paradigm that involves learning on a
static dataset of transitions i D ={(si

t,a
i
t,s

i
t+1,r

i
t)} collected by a

potentially sub-optimal policy πβ . The fundamental challenge of
offline RL is to find a strategy that is different from the behavior
policy πβ and, at the same time, avoids erroneous behavior outside
the data distribution. For a comprehensive review of offline RL
approaches, interested readers can refer to [6], [19].

In this work, we exploit ideas from the conservative Q-learning
algorithm (CQL) [20]. In Q-learning, querying the value function
on out-of-distribution actions that are not forced to obey the
Bellman residual typically leads to an overestimation of Q-values.
As introduced in the CQL algorithm, this overestimation can
be solved via regularization of the Q-function, concretely
incentivizing a conservative estimate of the true Q-function
by minimizing Q-values in addition to the standard Bellman
error. Formally, the training objective of CQL, in addition to the
standard bellman residual, is given by:

min
Q

ηEs∼D,a∼π [Q(s,a)]−Es,a∼D [Q(s,a)],

where η is the regularizer weight that controls the trade-off
between the Bellman residual and the CQL regularization term.
This formulation has proven to be an effective and competitive
way of training an agent offline [20], [21].
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With offline RL, we obtain a policy initialization, which
is intended for sample-efficient online fine-tuning. However,
conservative methods tend to learn smaller Q-values than their true
values. Consequently, initial interactions during online fine-tuning
are spent adjusting the Q-function, leading to unintentional
unlearning of the initial policy. To address this, [22] propose
calibrating the Q-function during offline learning to match the
range of the ground-truth Q-values. Their approach Cal-CQL
ensures the learned, conservative Q-values are lower-bounded
by the ground-truth Q-values of a sub-optimal reference policy,
denoted as µ, for which we can choose the behavior policy of the
dataset. Practically, this is achieved by masking out the push-down
on the Q-value for out-of-distribution (OOD) actions if they are
not calibrated. This modifies the CQL regularizer to:

min
Q

ηEs∼D,a∼π [max(Q(s,a),V µ(s))]−Es,a∼D [Q(s,a)].

IV. THE AMOD PROBLEM

We now define the terminology associated with the AMoD con-
trol problem. An on-demand service provider coordinates M single-
occupancy autonomous vehicles on a transportation network rep-
resented by a complete graph G =(V ,E ) where V ={vi}{i=1:Nv}
and E ={e j}{ j=1:Ne} represent the set of vertices and edges of G .
Specifically, V defines the set of stations (e.g., pick-up or drop-off
locations), and E defines the shortest paths between stations. The
time horizon is discretized into a set of time steps I =1,2,...,T of
length T . At any time step t, vehicles are controlled to travel along
the shortest path between station i and j≠ i∈V with a travel time
of τt

i, j∈Z+ and travel cost ci j, as a function of travel time. At each
time step t, passengers submit trip requests for a desired origin-
destination pair (i, j)∈V ×V , which is characterized by demand
dt

i, j and price pt
i, j. The operator matches passengers to vehicles,

and the vehicles will transport the passengers to their destinations.
For idle vehicles that are not matched with any passengers, the
operator controls them to stay at the same station or rebalance to
other stations. We denote xt

i, j∈N,xt
i, j≤dt

i, j as the passenger flow,
i.e., the number of passengers traveling from station i to station j
at time t and yt

i, j ∈N as the rebalancing flow, i.e., the number of
vehicles rebalancing from station i to station j at time t.

V. OFFLINE REINFORCEMENT LEARNING FOR AMOD

In this section, we introduce a three-step optimization
framework for effective AMOD fleet management before
we formulate the AMoD rebalancing MDP and formalize
Conservative Q-learning for AMoD systems.

A. The Three-step Framework

As in [4], [5], [23], this paper adopts a three-step decision-
making framework to tackle the AMoD control problem. This
framework comprises three stages: (1) solving a matching
problem to derive the passenger flow, (2) determining the desired
distribution of idle vehicles through the use of the learned policy
πφ(at|st), (3) converting this distribution to a rebalancing flow
by solving a minimal rebalancing-cost problem. The advantage
of this procedure is the reduction of the action space from |V |2
to |V |, as the policy defines the action at each node as opposed
to along each edge (i.e., each origin-destination pair).

In the first step, vehicles are assigned to customers by solving
the following assignment problem to derive passenger flows
{xt

i, j}i, j∈V :

max
{xt

i j}i, j∈V
∑

i, j∈V

xt
i j(pt

i j−ct
i j) (1a)

s.t. 0≤xt
i j≤dt

i j, i, j∈V , (1b)

∑
j∈V

xt
i j≤Mt

i , i∈V , (1c)

where objective function (1a) maximizes the total profit, which
is computed as the difference between revenue and the cost of the
matched trips. Constraint (1b) ensures that the resulting passenger
flow is non-negative and upper-bounded by the demand, while
constraint (1c) guarantees that the assigned passenger flow does
not exceed the number of available vehicles Mt

i at station i at time
step t. Note that since the constraint matrix is totally unimodular,
the resulting passenger flows are integers as long as the demand
is integral.

Within the second step, the learned policy πφ(at|st) determines
the desired idle vehicle distribution at

reb = {at
reb,i}i∈V , where

at
reb,i ∈ [0,1] defines the percentage of currently idle vehicles to

be rebalanced towards station i in time step t, and ∑i∈V at
reb,i=1.

Given the desired vehicle distribution, we denote the number of
desired vehicles as m̂t

i =⌊at
reb,i∑i∈V mt

i⌋, where mt
i represents the

actual number of idle vehicles in region i at time step t.
The third step converts the desired distribution into rebalancing

flows {yt
i, j}i, j∈E by solving a minimal rebalancing cost problem:

min
{yt

i j}i̸= j∈V ∈N|V |×(|V |−1)
∑

i̸= j∈V

ct
i jy

t
i j (2a)

s.t. ∑
j̸=i
(yt

ji−yt
i j)+mt

i≥m̂t
i, i∈V , (2b)

∑
j̸=i

yt
i j≤mt

i, i∈V , (2c)

where objective function (2a) minimizes the rebalancing cost,
constraint (2b) ensures that the resulting number of vehicles is
close to the desired number of vehicles, and constraint (2c) limits
total rebalancing flow from a region to the number of idle vehicles
in that region.

B. The AMoD Rebalancing MDP

Our goal is to learn a policy to compute the desired distribution
of idle vehicles (Step 2) via offline data. However, we want to
emphasize that our approach is agnostic to the framework and can
be seen as an indication for other approaches that learn rebalancing
policies. We define the AMoD rebalancing problem as an MDP
Mreb=(Sreb,Areb,Preb,dreb

0 ,rreb,γ) characterized as following:

Reward (rreb): we choose the reward to be the operator’s profit,
which we define as the difference between the revenue from
serving passengers and the cost of operations:

rt
reb= ∑

i, j∈V

xt+1
i j (pt+1

i j −ct+1
i j )− ∑

(i, j)∈E

yt
i jc

t
i j.

Action space (Areb): given the number of idle vehicles and their
current spatial distribution, we consider the problem of determin-
ing the desired idle vehicle distribution at

reb. Specifically, the policy
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Fig. 1. (Left) The policy π is trained on a dataset collected by a (potentially sub-optimal) policy πβ without any environment interaction before being deployed. (Right)
Both actor and critic update raw graph representations of the transportation network to compute (i) a desired distribution of idle vehicles a and (ii) an estimate of the
Q-function, respectively.

describes a probability distribution over stations, indicating the
percentage of idle vehicles to be rebalanced towards each station.
State space (Sreb): we define the state to contain the information
needed to determine proactive rebalancing strategies, including
the structure of the transportation network through its adjacency
matrix A and state-level information by means of a feature matrix
X. Specifically, given a planning horizon K, we consider: (1)
the current and projected availability of idle vehicles in each
station mt

i ∈ [0,M],∀i∈V and {mt′
i, j}t′=t,...,t+K

, (2) provider-level
information trip price pt

i, j and cost ct
i, j, (3) current dt

i j and
estimated {d̂t′

i, j}t′=t,...,t+K
transportation demand between all

stations. We assume to have access to a noisy and unbiased
estimate of demand in the form of the rate of the underlying
time-dependent Poisson process describing travel behavior in the
system, although this could come from a prediction model.
Dynamics (Preb): The stochastic evolution of travel demand
between stations follows a time-dependent Poisson process, with
a time-varying arrival rate estimated from real data. The process
is independent of the rebalancing action and the arrival process
of other passengers in other locations. Additionally, the evolution
of state elements is characterized as follows: (1) the estimated
availability {mt′

i, j}t′=t,...,t+K
is determined based on the number

of idle vehicles at station i at time step t+1 plus the number of
incoming vehicles minus the number of outgoing vehicles (from
both passenger and rebalancing flow), (2) provider-level state
variables, such as trip price pt

i j and cost ct
i j, are assumed to be

exogenous and known beforehand.

C. Conservative Q-Learning for AMoD Systems

We propose a SAC formulation with the conservative loss
of CQL as an approach to learning rebalancing policies offline.
We assume the availability of a dataset D = {(st,at,st+1,rt)}
containing historical rebalancing decisions collected by a behavior
policy πβ . Our objective is to train an agent using this dataset
without any further interactions with the AMoD system and
to achieve a policy that matches or even outperforms πβ . The
offline learning process and the actor and critic architectures are
illustrated in Figure 1. We use GNN encoders to parameterize
the neural architecture for the policy πφ(at|st) and the Q-function
Qθ(st, at). GNNs have proven to be particularly effective in

transportation applications due to their ability to capture and
process spatial relations within the network. Additionally,
GNNs can process transportation networks of varying sizes and
connectivity, while traditional machine learning methods, such
as MLPs, are limited to fixed-size inputs. In what follows, we
introduce the neural network architectures in more detail:

Policy network πφ(a|s). To define a valid vehicle distribution, the
output of the policy network is sampled from a Dirichlet distribu-
tion. More precisely, the network architecture comprises one graph
convolutional layer with skip-connections that uses a sum-pooling
function as neighborhood aggregation and a ReLU non-linearity
on its output. This is followed by three MLP layers (with ReLU
activations on the first two) that output the concentration parameter
c for the Dirichlet distribution. To ensure the positivity of c, we
apply a softplus activation function in the last layer.

Critic network Qθ(st,at). We propose an architecture for the critic
which uses the same GNN encoder as the policy network. The
main difference to the actor architecture is that the encoded state in-
formation is concatenated with the action on a node level, followed
by two MLP layers with ReLU activation. The global sum-pooling
function is not performed until before the last layer. We found this
architecture choice to be essential for satisfactory results.

VI. EXPERIMENTS

In this section, we present simulation results using data from
different cities. Specifically, the goal of our experiments is to
answer the following questions: (1) can a policy solely trained on
a static dataset learn effective rebalancing strategies in real-world
urban mobility scenarios? (2) how do characteristics of the dataset
influence the performance and transfer capabilities of offline RL
agents? and (3) can we quantify the benefits of deploying an agent
trained offline compared to one trained from scratch via online
data? 1

A. Benchmarks

In our experiments, we compare our proposed offline-RL
framework with the following methods:

1(Code, data and hyperparameters available: https://github.com/
carolinssc/offline-rl-amod)
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TABLE I
AVERAGE REWARD (PROFIT, THOUSANDS OF DOLLARS). BOLD HIGHLIGHTS BEST PERFORMING (NON-ORACLE) MODEL.

City Random No Reb. ED CQL SAC MPC-Forecast MPC-Oracle
NYC Brooklyn 26.5(±0.4) 27.6(±0.6) 49.2(±0.9) 53.1(±1.1) 56.1(±1.1) 56.5(±1.2) 57.2(±0.8)
Shenzhen West 48.6(±1.7) 60.0(±0.7) 58.4(±0.9) 61.6(±0.5) 62.3(±0.7) 60.6(±1.0) 65.2(±1.0)
San Francisco 12.5(±0.6) 10.1(±0.4) 14.1(±0.4) 14.2(±0.4) 14.8(±0.3) 13.9(±0.5) 15.9(±0.4)

No rebalancing: we measure the performance of the system
without any rebalancing activities.
Heuristics:

1) Random policy: at each time step, the desired distribution
is sampled from a Dirichlet prior with a concentration
parameter c=[1,1,...,1].

2) Equally distributed policy (ED): rebalancing actions are
selected to restore an equal distribution of vehicles across
all areas in the transportation network.

Learning-based: within this class of methods, we measure the
performance of RL agents trained via online learning.

1) SAC: the online version of our method based on the Soft
Actor-Critic algorithm. In practice, this benchmark serves
as an upper bound of performance for our offline approach
as we define both actor and critic networks as in our CQL
formulation, but with the additional possibility of infinitely
interacting with the environment.

MPC-based: within this class of methods, we measure the
performance of traditional optimization-based approaches using
a Model Predictive Control (MPC) approach.

1) MPC-Oracle: this benchmark serves the purpose of
quantifying the performance of an ”oracle” controller. We
provide this model with perfect foresight information of
all future user requests and system dynamics within the
planning horizon K. However, notice that this optimization
model is NP-hard and thus does not scale well with
increasing instance sizes.

2) MPC-Forecast: we relax the assumption of perfect foresight
information in MPC-Oracle and substitute it with a noisy
and unbiased estimate of demand. This method serves as
a realistic control-based benchmark in situations where
system dynamics are unknown. As for MPC-Oracle, this
formulation suffers from the same lack of scalability.

B. Learning from Offline Data

We evaluate the rebalancing algorithms on taxi trip data from
the cities of NYC (Brooklyn), Shenzhen (Downtown West), and
San Francisco. We obtain the pre-processed data from [5]. We
train each online baseline model for 10000 episodes with a time
horizon T = 20. As a planning horizon, we set K = 6. For our
offline RL experiments, we train each model on a fixed dataset
of 10000 transitions.

Results in Table I show that by learning from a static dataset
collected by a sub-optimal policy, the RL agent achieves
performance on par with online methods, outperforming both
heuristics and optimization-based benchmarks. Specifically,
AMoD control policies learned through offline RL are only
7.2% (NYC), 5.5% (Shenzhen), and 10.7% (San Francisco) from

Oracle performance, which assumes perfect information about
future system dynamics. More importantly, the resulting policies
are only 5.3% (NYC), 1.1% (Shenzhen), and 4% (San Francisco)
from the performance of their online counterpart, which is allowed
to freely interact with the urban network during training. Results
in Table I also show how both RL-based approaches can achieve
performance that is comparable or superior to that of MPC-
Forecast, thus highlighting the benefits of using learning-based
approaches to control stochastic, unknown systems, a characteristic
that is particularly relevant in real-world settings where accurately
modeling transportation demand is in itself a challenging process.

Crucially, the results highlight a drastic improvement in the sam-
ple efficiency of offline RL methods. If, on one hand, learning from
online data requires approximately between 20000 and 200000
interactions with the transportation network, the offline agent is
solely trained on a fixed dataset of 10000 samples, resulting in
up to 20× improvement in sample efficiency. Most importantly,
the samples used by the offline approach do not result from active
interaction with the system but rather from historical data readily
available to any service operator, thus challenging the current
paradigm of simulation-based training and online interaction.

C. Impact of Dataset Quality
Within the offline RL literature, the fact that the performance of

offline learning is highly dependent on the dataset characteristics is
well-established [24], [25]. Hence, we conduct experiments using a
variety of datasets by collecting training data from policies with dif-
ferent degrees of optimality [24], [21]. We store data generated by
policies with approximately 75% (Medium M) and 90% (High H)
and 100% (Expert E) of the online RL performance. Additionally,
we collect a dataset via a deterministic, greedy heuristic, denoted
by Greedy (G). The heuristic selects rebalancing trips to match the
projected demand distribution averaged over the next K time steps.

The results reported in Table II confirm the strong dependency
of offline learning on the dataset characteristics. Interestingly, a
higher performance of the behavior policy does not indicate a better
performance of the offline agent. Specifically, the policy trained on
the Medium dataset outperforms the one trained on High in both
NYC and Shenzhen scenarios. Moreover, despite being generated
by a deterministic heuristic with a narrow policy, the G-dataset
results in control policies that outperform the policy used to gener-
ate the data it was trained on. For example, the policy obtained via
CQL in the Shenzhen scenario achieves improved rebalancing cost
and revenue by 11% and 1%, respectively, compared to the greedy
heuristic. The results demonstrate that all policies outperform the
No Rebalancing and heuristic baselines, except for the agents
trained on San Francisco-G and Shenzhen-G, suggesting that
offline agents can produce policies that can be reliably deployed.

As an additional analysis, we report the relative reward of the be-
havior policy, together with the spread and 0.01-/0.99-interquartile
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TABLE II
PERFORMANCE OF OFFLINE AGENTS TRAINED ON DATASETS WITH DIFFERENT CHARACTERISTICS. BEST-PERFORMING MODEL NOT TRAINED ON EXPERT DATA

IS HIGHLIGHTED IN BOLD. REWARD INDICATES THE RELATIVE PERFORMANCE OF THE BEHAVIOR POLICY TO THE EXPERT POLICY.

Performance Dataset characteristics
Dataset Expert Behavior Policy CQL Reward Spread IQR
NYC Brooklyn-M 56.1 42.6(±2.4) 53.1(±1.1) 76% 0.42 0.24
NYC Brooklyn-H 56.1 50.2(±1.3) 52.0(±1.3) 89% 0.16 0.13
NYC Brooklyn-G 56.1 49.6(±0.9) 50.9(±1.4) 88% 0.03 0.03
NYC Brooklyn-E 56.1 56.3(±0.9) 56.4(±0.8) 100% 0.12 0.11
Shenzhen West-M 62.3 45.8(±3.6) 61.6(±0.5) 74% 0.50 0.27
Shenzhen West-H 62.3 56.1(±1.6) 59.7(±0.9) 90% 0.25 0.15
Shenzhen West-G 62.3 55.9(±0.7) 57.8(±1.5) 89% 0.03 0.03
Shenzhen West-E 62.3 62.0(±0.9) 61.9(±0.7) 100% 0.13 0.11
San Francisco-M 14.8 11.6(±1.0) 14.2(±0.4) 78% 0.64 0.46
San Francisco-H 14.8 13.6(±0.4) 14.3(±0.4) 91% 0.47 0.27
San Francisco-G 14.8 13.1(±0.5) 13.6(±0.5) 88% 0.04 0.04
San Francisco-E 14.8 14.7(±0.3) 14.8(±0.3) 100% 0.28 0.24

range (IQR) of the actions in the dataset. This information is used
to report the coverage (i.e., diversity) of the dataset. It should be
noted that determining coverage in continuous state-action spaces
is still an open challenge [25]; however, we believe the IQR to be a
reasonable metric across the problem settings we investigate. This
information provides insights into the inferior performance of the
High- and Greedy-datasets for NYC and Shenzhen. Both datasets
exhibit a narrow action distribution while still being far from expert
performance. Hence, the agents are implicitly constrained to a
limited subset of actions by the conservative loss on the Q-function,
limiting the possibilities for improvement. Low coverage in the
dataset can only be compensated by the high performance of the
behavior policy, as in the case of the Expert dataset. Following the
same line of reasoning, the superior performance of the Medium
dataset can also largely be attributed to its diversity, where the
difference in dataset coverage is a result of the method used
for data collection. Specifically, as the training progresses, the
Dirichlet distribution becomes increasingly narrow and the agent
less exploratory. This finding is coherent with prior work, where
CQL generally performs best on datasets with high coverage [25].

More broadly, we find that a fixed policy that hardly explores
the state-action space is likely to be suboptimal for offline
learning. In light of this, current operators should consider
ways of gathering operational data while keeping in mind this
quality-diversity trade-off. Moreover, since in this work, we
assume that we do not have access to a simulation environment to
validate the performance of our policy, we train our offline agents
for a fixed number of steps. However, to strengthen the impact
on real-world applications, employing an appropriate Off-Policy
Evaluation (OPE) method [26] that allows us to validate the policy
during training is essential. This approach will not only improve
the final performance by enabling hyperparameter tuning and
detection of overfitting but also provide an estimate for the policy
performance and dataset quality before deployment.

D. Transfer and Generalization

To extensively assess the generalization capabilities of our pro-
posed approach, we also study the extent to which policies learned
through offline data are able to generalize to out-of-distribution
(OOD) scenarios as well as to different cities. Specifically, the abil-
ity to transfer policies learned through offline RL to new environ-

ments without the need for additional data is particularly valuable
for operators looking to expand their service to new cities. Table
III presents the results of evaluating the zero-shot performance of a
policy trained on offline data for the NYC Brooklyn dataset in com-
parison to (i) an agent trained online on NYC Brooklyn (i.e., SAC)
and (ii) an expert policy, which is fully re-trained in the respective
city (i.e., Expert). With zero-shot, we refer to the case in which
policies are trained on data belonging to one city (e.g., New York)
and later deployed to another system (e.g., Rome) without further
training. Moreover, we assess the agents’ ability to generalize in an
OOD scenario within NYC-Brooklyn, where we simulate a surge
in demand in an area that had low demand in the training data. The
results show that the policy learned by CQL exhibits similar or bet-
ter generalization performance compared to SAC trained on online
data. Most importantly, despite being trained offline on data from
a different city, agents learned via offline RL achieve an interesting
degree of portability to new cities compared to the Expert policy,
which has been re-trained from scratch in every environment.
As observed in the previous sections, these experiments confirm
how the transfer capabilities of offline policies are also highly
dependent on the quality-diversity trade-off. This is evident in the
case of the expert dataset (characterized by the smallest coverage
but the highest reward), which leads to a policy that, although
achieving the best performance in NYC, is outperformed by the
CQL-M agent in other cities. In other words, learning from datasets
that are more diverse, even if less performant, leads to agents that
are better able to generalize across a variety of scenarios.

E. Economically-feasible Reinforcement Learning

In this section, we quantify the practical benefits of offline
learning with subsequent online fine-tuning within AMoD
systems compared to online RL methods. Specifically, although
technically feasible, online data collection with a partially
trained policy in AMoD systems is not realistic. Especially
during the initial phases of training, the online agent requires
extensive exploration of the environment, which will almost
certainly result in erroneous and extremely high-cost rebalancing
decisions. Within this context, offline RL offers a practically
viable alternative by avoiding interactions with the environment
until a sufficient level of performance is achieved.

The training curves depicted in Figure 2 and 3 clearly show
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TABLE III
ZERO-SHOT PERFORMANCE OF SAC AND CQL TRAINED ON NYC-BROOKLYN.

City Expert No Reb. ED SAC CQL-M CQL-E
Rome 3.2(±0.2) 2.3(±0.2) 2.9(±0.2) 2.9(±0.2) 2.8(±0.2) 2.7(±0.2)
San Francisco 14.8(±0.3) 10.1(±0.4) 14.1(±0.4) 14.0(±0.5) 14.2(±0.4) 13.9(±0.5)
Shenzhen West 62.3(±0.7) 60.0(±0.7) 58.4(±0.9) 58.3(±3.1) 60.0(±1.0) 59.3(±1.2)
Washington DC 13.4(±0.2) 11.4(±0.3) 13.0(±0.2) 13.0(±0.8) 13.2(±0.3) 12.9(±0.5)
NYC-Brooklyn OOD - 29.9(±1.1) 56.0(±0.2) 61.8(±1.2) 60.5(±1.4) 62.1(±1.1)

Fig. 2. Training reward obtained by an online agent compared to online
fine-tuning of CQL-M in the NYC Brooklyn environment

the extreme sub-optimality of the online learning paradigm. The
offline learned agent successfully starts online fine-tuning in
high-reward regions and avoids the low-reward regions that the
SAC agent visits during initial exploration. Moreover, the inherent
advantage of parametric policies - their tendency to become
increasingly deterministic as training progresses - means that our
offline pre-trained policy is inherently less stochastic, leading to
safer online fine-tuning.

To further assess the potential savings offered by our approach,
we compare the costs associated with training from scratch against
the online fine-tuning of the offline trained agent in Table IV.
We evaluate the difference in rebalancing costs and lost profit
due to unmet demand using prices and costs estimated from
real-world trip data. In NYC Brooklyn, the offline agent saves
20 780 interactions, over 2 600 000$ in rebalancing cost, and
over 160000$ of unmet demand, thus showing the significant
amount of economical cost of training an agent within real-world
systems. In the case of Shenzhen West, the pre-trained agent
renders the entirety of online training from scratch redundant.
Crucially, these experiments clearly quantify the benefits of offline
learning and challenge the current approach of online learning
by demonstrating its limitations.

TABLE IV
COST OF TRAINING AN AGENT FULLY ONLINE COMPARED TO ONLINE

FINE-TUNING OF CQL-M.

City Interactions Reb. Cost Unserv. demand
NYC Brooklyn 20 780 2 640 100 162 859
Shenzhen West 200 000 18 169 878 1 720 820
San Francisco 14 700 174 782 37 899

Fig. 3. Training reward obtained by an online agent compared online fine-tuning
of CQL-M in the Shenzhen environment.

VII. CONCLUSION

Research on the central system-level control of AMoD systems
focuses on developing RL approaches via online data. However,
this is hardly practical within real-world urban systems, where the
cost of making wrong decisions at a fleet level is extremely high.
In this work, we propose offline RL as an appealing paradigm to
approach the challenges in this space and enable centralized RL-
based solutions to be applied even without simulated environments.
Specifically, we introduce an algorithm that leverages the combina-
tion of offline RL and optimization to learn how to control AMoD
systems solely via offline data, thus completely removing all inter-
actions with both the real world and complex mobility simulators.
Our approach shows strong performance in all real-world settings
we evaluate, outperforming both optimization-based and heuristic
approaches and matching the performance of online RL algorithms.
Crucially, our method shows sample-efficient online fine-tuning
capabilities, effectively enabling service operators to avoid expen-
sive rebalancing decisions that make online training an impractical
solution within real-world settings. In future work, we plan to
investigate the combination of offline RL with ways to explicitly
consider transfer and generalization in the design of neural architec-
tures and training strategies, such as casting the problem under the
lens of Offline Meta-RL. More generally, we believe this research
opens several promising directions for the application of these con-
cepts within economically-critical, real-world mobility systems.
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