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Abstract—We propose a tractable adaptive risk-sensitive
optimal control framework tailored to uncertain nonlinear
stochastic system dynamics. The architecture exhibits dual
features meaning that the controller actively maintains a balance
between exploitation and exploration. The problem statement
is cast as an instance of Active Inference. Active Inference is
an emerging framework in theoretical neuroscience that seeks
to explain the behaviour of biological agents by practising
inference on probabilistic graph models. The developed algo-
rithm leverages a receding horizon strategy that simultaneously
estimates the uncertain parameters of the dynamic system
from past observations and designs controller parameters by
predicting the future performance of the controlled system. The
algorithm does not make use of the separation and certainty
equivalence principles. We further show that for the special case
of linearly parameterized controller and dynamics, the approach
leads to a quadratic programming problem maintaining a
manageable computational complexity. The capability and an-
ticipated properties of the proposed algorithm are demonstrated
on a simulated nonlinear system.

I. INTRODUCTION

Risk-sensitive optimal control (RSOC) refers to a general-
ization of conventional stochastic optimal control theory by
incorporating some notion of risk, e.g. higher moments of the
conventional utility function, into the performance measure
[1], [2]. Although the concept has been known for several
decades and is well-studied theoretically [3], only recently
a small number of contributions have been investigating
practical implementations for non-trivial cases that reach
beyond the linear-quadratic setting. E.g. in [2], an iterative
nonlinear RSOC with imperfect observations was proposed
using iterative linearization of nonlinear system dynamics and
employing the linear exponential quadratic Gaussian (LEQG)
controller [3]. Other works have explored how to deal with
uncertain dynamics and adaptivity. An adaptive risk-sensitive
model predictive control with stochastic search is suggested
by [4]. In [5], [6], the RSOC problem is solved using value
iteration and Q-learning. Here no model is required at all.

In terms of balancing between exploration and exploitation,
adaptive controllers can be classified into two categories
- adaptive controllers with or without dual features. Dual
control theory, founded by the seminal work of Feldbaum [7],
[8], focuses on the idea that controlling an unknown system
imposes a dual objective. The primary goal is to control
the system effectively based on some performance metrics
while the controller should also intentionally explore the
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Fig. 1: The schematic diagram of the proposed algorithm.

system to gather information in the short term for long-term
performance improvement. This approach is referred to as
goal-directed exploration, where the control system actively
incorporates the learning process into its decision-making.
In contrast, with non-dual adaptive controllers, learning is
accidental or passive, resulting in unintentional exploration.
Unfortunately, the optimal adaptive dual control is analyti-
cally intractable and methods need to be devised that solve
an approximation of the original problem.

This paper deals with the challenge of solving the adaptive
RSOC problem with dual features by employing a probabilis-
tic inference perspective. Expressing the stochastic optimal
control problem (SOC) as a probabilistic inference problem
has drawn significant attention from researchers [1], [9]. For
instance, different approaches based on input inference for
control (I2C) algorithm are developed in [10]–[12], which
formulate the SOC problem as an input estimation problem
and solve it using an expectation-minimization (EM) algo-
rithm. Approximate inference control (AICO) [13], [14] is
another approach to tackle the SOC problem. It interprets the
quadratic cost over the control input as a prior distribution
and computes the posterior distribution of states using the
Gaussian message-passing technique.

In this paper, we address the aforementioned research gaps
by extending the I2C algorithm [10]–[12] by incorporating
the system identification which produces a tractable optimal
adaptive dual controller. This is achieved by casting the
problem in the active inference framework (AIF). AIF is a
theoretical framework that explains the human brain’s be-
haviour, including perception, planning, and action, in terms
of probabilistic inference [15], [16]. In our approach, we
predict the future behaviour of the controlled system using the
collected information at each time step in a receding horizon
strategy and apply the EM algorithm to minimize variational
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free energy bound by updating the unknown parameters and
computing the smoothed density as a posterior distribution
of states and control inputs over time (see Fig. 1). We will
show that this concurrency between controller design and
system identification intrinsically keeps the balance between
exploitation and exploration. Furthermore, our approach only
requires solving a quadratic program at every time step which
enjoys a low computational cost.

The main contributions of the paper are summarized as
• Casting the adaptive RSOC problem as an active infer-

ence framework.
• Employing receding horizon strategy alongside active

inference framework to implement the proposed algo-
rithm online.

• Keeping exploitation and exploration balance effectively
to achieve dual features.

We organize the remainder of the paper as follows. In
Section II, we explain the problem formulation for designing
the adaptive RSOC problem, and Section III represents its
corresponding probabilistic inference problem. The proposed
algorithm based on active inference is explained in Section
IV. A simulation example is provided in Section V. In the
end, Section VI is devoted to conclusions and future work.

II. PROBLEM STATEMENT

In this section, we introduce the dual control problem
that will enjoy our attention throughout. As explained in the
introduction the dual control problem falls apart into two
subproblems that need to be solved simultaneously so that the
overall control architecture exhibits dual features. The first
subproblem is concerned with model-based control design.
The second subproblem is concerned with identifying the
parametric uncertainty of the dynamic system.

Consider a class of dynamical uncertain nonlinear stochas-
tic discrete-time systems described by

xt+1 = f (xt, ut; θ) + vt (1)
yt = xt + wt (2)

Here xt ∈ Rnx , yt ∈ Rnx , and ut ∈ Rnu represent the state,
measurement output and control input vector of the dynamic
system at discretized time t, θ ∈ Rnθ represents a lumped
parameter vector, vt ∈ Rnx and wt ∈ Rnx denote additive
zero-mean Gaussian noises, which model the stochasticity
of the system and measurement noise, respectively, given
by Gaussian distributions N (vt|0, V ) and N (wt|0,W ) in
which V ∈ Rnx×nx and W ∈ Rnx×nx are positive-definite
covariance matrices, and f : Rnx × Rnu × Rnθ 7→ Rnx is
a Lipschitz nonlinear mapping and its differentiability at θ
will be required. The initial state is assumed to follow a
normal distribution x0 ∼ N (x0|mx0 , Px0). Hereafter, we
use τt , (xt, ut) ∈ Rnx+nu to denote the concatenated state-
control vector at time t.

A. Control subproblem

Remark that we assume the full state is observed; however,
the state measurement itself is disturbed by additive noise.
In the strictest interpretation, the system is therefore partially
observed and we can only estimate the state. However, since
the full state is measured, in this work, we aim to design a

parameterized stochastic controller that is a function of the
present measurement, yt, alone. Specifically, we consider a
class of parameterized controllers as follows

ut = π(yt;φ) + εt (3)

in which φ ∈ Rnφ is the parameter vector of the controller
that needs to be designed and εt ∈ Rnu denotes an additive
zero-mean Gaussian noise. The additive noise models the
intentional stochasticity of the controller, its nature and
purpose will become apparent later. The noise is given by
a Gaussian distribution N (εt|0,Σ) in which Σ ∈ Rnu×nu
is a positive-definite covariance matrix which is absorbed in
φ for design. Finally, π : Rnx × Rnφ 7→ Rnu represents a
Lipschitz nonlinear mapping, differentiable in φ .

To design the controller, the following RSOC problem [1],
[3] will be taken into account

min
φ
− 1

γ
log
(
Ep(τ0:T ,y0:T |θ,φ) [exp (−γL (τ0:T ))]

)
︸ ︷︷ ︸

,Jγ(θ,φ)

(4)

Here T is a given finite time horizon, τ0:T , (τ0:T−1, xT ),
and y0:T denotes sequences of state-control pairs and mea-
surement output from t = 0 to t = T , respectively. The joint
probability density of the state-control trajectory τ0:T and
measurement trajectory y0:T is denoted as p(τ0:T , y0:T |θ, φ)
and depends on the dynamic system parameter θ and control
parameter φ. Further, E, denotes the expected value of a
random variable, when subscripted we highlight the measure,
and, L (τ0:T ), is the standard cumulative cost defined as

L (τ0:T ) , lT (xT ) +

T−1∑
t=0

lt(τt) (5)

The constant γ ∈ R+ in (4) is the risk-sensitivity parame-
ter. Applying Taylor series expansion on the logarithm of the
objective function in terms of L yields

− 1

γ
log
(
E
[
e−γL

])
= E [L]− γ

2
Var [L]+O(γVar [L]) (6)

where Var denotes the variance of a random variable and
O denotes high order terms [3]. Therefore, the objective
function (4) takes into account the expectation and variability
of cost L, which is one attractive motivation for considering
the objective function (4) to design an RSOC. In conclusion,
remark that the RSOC problem (4) collapses to the risk-
neutral objective when γ → 0.

B. Identification subproblem

Note that to solve (4) it is required that θ is known. The
second problem that we aim to treat is the estimation of
parametric uncertainty. Therefore we adopt the probabilis-
tic system identification framework where the identification
problem is formulated as a Maximum Likelihood estimation
problem [17]. The uncertain parameters of the dynamic
system (1) are estimated by minimising the negative log-
likelihood of the measurement output at all time steps with
respect to θ [17].

θ̂ = arg min
θ
−log (p(y0:T |θ, φ)) (7)
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Fig. 2: PGM for RSOC

Some additional remarks are in place. As is well-known,
treating problem (7) directly for any arbitrary nonlinear
system is intractable [18]. Instead, in practice one relies
on an iterative optimisation procedure known as the EM
algorithm. Details are provided in section IV-B. Here it
suffices to note that the EM algorithm produces a sequence of
parameter estimates that converges to the optimal parameters
by solving a series of easier surrogate problems. In a dynamic
setting, the measurement sequence, y0:T , increases with every
sampling period. When the computational resources only
allow a single iteration of the EM algorithm every period,
a dynamic extension of the EM algorithm can be considered
where the estimate from the previous iteration is used as prior
for the next [19], [20]. This realises a dynamic identification
procedure with manageable computational requirements.

C. Dual problem

We can now treat both problems separately. Ergo, we solve
(7) in real-time for θ̂t, then subsitute θ̂t for θ in (4) and solve
for φ̂t. This strategy would result in a control architecture
without dual features for it implements the separation prin-
ciple. Instead, we seek a tractable control architecture that
exhibits dual features. To that end, we will embed the RSOC
problem in the same formal framework as the identification
problem and reformulate it as an inference problem. Specifi-
cally, this will allow us to embed (4) and (7) in an overarching
problem statement that we can solve simultaneously. In the
next section, we establish the probabilistic perspective on
RSOC. In section IV we establish the overarching problem.

III. PROBABILISTIC PERSPECTIVE ON RSOC

In this section, we discuss the representation of the RSOC
problem as an inference problem using a probabilistic graph
model (PGM). PGM refers to a type of probabilistic model
where a graph is employed to represent the conditional
dependency structure between random variables [21]. Fig.
2, shows the PGM for the RSOC. In this graphical model,
a dummy random binary variable Ot ∈ {0, 1} at each time-
step is introduced to indicate the notion of optimality or task
fulfilment. Apart from their purpose and interpretation, these
variables can be treated as regular observations. The state-
control sequence is considered latent [1], [12].

When Ot = 1 it is implied that time step t is optimal. To
construct a convenient likelihood objective for the inference
problem [22], we assume that the probability of being optimal

at time t is proportional to an exponential utility transform
of the immediate cost, lt(τt) [9], [12], as follows

p(Ot = 1|τt) ∝ exp(−γlt(τt)) (8)

Based on Kolmogorov’s probability axioms, the immediate
cost, lt(τt), needs to be defined by a positive structure for
γ > 0. Hereafter, we unload the notation by simply writing
Ot instead of Ot = 1.

The following factorisation of the joint density can be
obtained by considering factors in the PGM from Fig. 2.

p(τ0:T ,O0:T , y0:T |θ, φ) = p(x0)p(OT |xT )p(yT |xT )

×
T−1∏
t=0

p(Ot|τt)p(yt|xt)p(xt+1|τt; θ)p(ut|yt;φ) (9)

where p(xt+1|τt; θ) indicates the state transition probability
density parameterized by θ according to the dynamic model
(1), p(yt|xt) indicates the probability distribution of the
measurement output according to the dynamic model (2),
p(ut|yt;φ) represents the probability density of the con-
troller (3) parameterized by φ, p(Ot|τt) is defined in (8),
p(x0) denotes the initial state probability, and p(OT |xT ) and
p(yT |xT ) refer to the terminal cost and the probability of the
final state measurement, respectively.

Finally, we state the following theorem, inspired by [1], to
cast the RSOC problem into a variational inference problem
for controller design.

Theorem 1. The minimization of the risk-sensitive objective
function (4) w.r.t. controller parameter φ for given a para-
metric uncertainty vector θ is equivalent to the minimization
of the negative log-likelihood (neg-log-likelihood) of the
optimality variable at all time steps.

arg min
φ

Jγ(θ, φ) = arg min
φ

− 1

γ
log (p(O0:T |θ, φ)) (10)

Proof. By substituting (8) in (9), and applying the property
of exponents in multiplication expressions on its result, we
have

p(τ0:T ,O0:T , y0:T |θ, φ) ∝ p(τ0:T , y0:T |θ, φ)exp (−γL (τ0:T ))

(11)

where L (τ0:T ) is introduced in (5), and p(τ0:T , y0:T |θ, φ) is
specified by

p(x0)p(yT |xT )

T−1∏
t=0

p(yt|xt)p(xt+1|τt; θ)p(ut|yt;φ) (12)

By taking the integral of both sides of (11) w.r.t. all possible
trajectories τ0:T and y0:T , we obtain

p(O0:T |θ, φ)

=

∫
p(τ0:T ,O0:T , y0:T |θ, φ)dτ0:T dy0:T

∝
∫
p(τ0:T , y0:T |θ, φ)exp (−γL (τ0:T )) dτ0:T dy0:T

= Ep(τ0:T ,y0:T |θ,φ) [exp (−γL (τ0:T ))]
(13)

Eventually, by taking the logarithm of (13) and multiplying
−1/γ by its result, the equivalency in (10) is established.

1322



Note that the proportionality constant is the same for any
trajectory τ0:T .

In the next section, we show how both inference problems
(10) and (7) for controller design and identifying the dynamic
system can be combined as an AIF problem.

IV. ADAPTIVE RSOC AS ACTIVE INFERENCE

In this section, we propose a tractable alternative for the
adaptive dual control framework using an active inference
framework to solve the adaptive RSOC problem.

Recall that AIF is a concept from theoretical neuroscience
that is founded on the free energy principle (FEP) in the
context of cognition and decision-making. Active inference
aims to explain how biological or artificial agents, including
the human brain, interact with their environment to actively
reduce free energy, which includes minimizing the surprise or
uncertainty of any event. Reducing surprisal or uncertainty
for an agent occurs through making predictions based on
internal models, updating them using sensory input, and
taking actions to bring those predictions in line with sensory
input [16].

To cast controller design (10) and system identification
(7) as an active inference problem, we assess the following
simultaneous surprisal minimization (the division by γ > 0
is neglected in the optimization process).

min
φ,θ
−log (p(O0:T , y0:T |θ, φ)) (14)

A. Surprisal Minimization
We state the following lemma to explain the relationship

between surprisal minimization (14) and the mentioned in-
ference problems (10) and (7).

Lemma 1. The neg-log-likelihood (14) can be decomposed in
the following two ways. To simplify the notation, the subscript
0 : T is eliminated for O, y, and τ , and the conditioning on
θ and φ is not characterized in the probability densities. KL
denotes the standard Kullback–Leibler (KL) divergence for
two probability distributions.

(i) −log (p(O, y)) = −log(p(O))− Ep(τ |O,y) [log(p(y|τ))]︸ ︷︷ ︸
Observational Exploration

+ KL [p(τ |O, y) ‖ p(τ |O)]︸ ︷︷ ︸
Optimality Divergence

(ii) −log (p(O, y)) = −log(p(y))− Ep(τ |O,y) [log(p(O|τ))]︸ ︷︷ ︸
Optimality Exploration

+ KL [p(τ |O, y) ‖ p(τ |y)]︸ ︷︷ ︸
Observational Divergence

Proof. By expanding the right-hand side of (i) and using the
Bayes’ rule for p(O) = p(τ,O)/p(τ |O), we obtain

−
∫
τ

p(τ |O, y)log
(
p(τ,O)

p(τ |O)
p(y|τ)

p(τ |O)

p(τ |O, y)

)
dτ (15)

We know the fact that O and y are conditionally independent
given τ , so p(τ,O, y) = p(τ,O)p(y|τ). The simplification of
the expression in the parenthesis results

−
∫
τ

p(τ |O, y)log
(
p(τ,O, y)

p(τ |O, y)

)
dτ = −log (p(O, y)) (16)

The equality of (ii) can be proven in the same way.

Considering the decomposition (i), we can interpret that
minimising the neg-log-likelihood (14) w.r.t. φ to design the
controller, in addition to optimizing the neg-log-likelihood
(10), ensures that observations y0:T are as likely as possible
under the state-action pairs τ0:T while simultaneously mini-
mizing the optimality divergence term, which means the goal
is to keep the density p(τ |O, y) as close to p(τ |O) as possible
while maximizing observational exploration. Effectively, the
optimality divergence term acts as a regularizer to reduce
the overfitting to any specific observation. Briefly, we try
to optimize the neg-log-likelihood (10) while exploring the
observation space y as little as possible to have a better
convergence for the system identification. Similarly, we can
explain the decomposition (ii) to interpret the system iden-
tification by minimizing the neg-log-likelihood (14) w.r.t. θ.
Finding θ using (14), besides taking neg-log-likelihood (7)
into account, considers the optimality exploration term to ex-
plore the optimality space while simultaneously minimizing
the observational divergence term to avoid the overfitting.

Corollary 1. We can conclude that concurrently minimizing
the inference problem (14) w.r.t. θ and φ can be more
valuable and effective to separately solve the problems (10)
and (7) because, for finding each of θ and φ, we consider a
regulated exploration in the space of the other one. Thus,
balancing exploitation and exploration is inherent in our
approach. So, we introduced a new framework as an adaptive
dual control.

B. Free Energy Minimization

Solving the optimization problem in (14) requires com-
puting the model evidence p(O, y) =

∫
τ
p(O, y, τ)dτ which

is analytically intractable [12], [16]. Therefore, we aim to
derive a variational free energy bound (F) for the surprisal
minimization (14) according to [16]. To that end, consider the
arbitrary inference distribution, q(τ0:T ). Then we evaluate the
Kullback-Leibler divergence between the inference distribu-
tion and the posterior distribution, p(τ0:T |O0:T , y0:T ; θ, φ).

0 ≤ KL[q(τ0:T ) ‖ p(τ0:T |O0:T , y0:T ; θ, φ)]

= Eq(τ0:T ) [log(q(τ0:T ))− log(p(τ0:T |O0:T , y0:T ; θ, φ))]

= Eq(τ0:T ) [log(q(τ0:T ))− log(p(τ0:T ,O0:T , y0:T |θ, φ))]︸ ︷︷ ︸
F0:T (q,θ,φ)

+ log(p(O0:T , y0:T |θ, φ))
(17)

Here the variational free energy is defined as the Kullback-
Leibler divergence between our inference distribution and the
joint density. Due to the positive definiteness of the Kullback-
Leibler divergence, the variational free energy bounds the
surprisal as follows

−log(p(O0:T , y0:T |θ, φ)) ≤ F0:T (q, θ, φ) (18)

Thus instead of minimizing the surprisal, (14), we can
minimize the free energy which, by construction, proves to
be an upper bound on the former. Further remark that the
free energy depends on the arbitrary inference distribution.
The gap between surprisal and free energy is minimized
if the inference distribution coincides with the posterior.
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This invites an iterative procedure better known as the EM
algorithm. The EM algorithm is an iterative method that
operates by alternating between two main steps: first, finding
the lowest upper bound for the neg-log-likelihood function
through inferring the density of latent variables (known as the
E-step); and then, minimizing this bound w.r.t. the unknown
parameters (known as the M-step). The repetition of these
E-step and M-step iterations leads to convergence such that
it is guaranteed to converge to a local optimum [21].

• E-step: The inequality of (18) turns to equality when the
KL divergence term in (17) takes zero or equivalently
q(τ0:T ) = p(τ0:T |O0:T , y0:T ; θ, φ). Consequently, we
need to compute the smoothed density of the state-
control pairs given the estimated parameters from M-
step [12]. To this end, any smoothing algorithms in [23]
for nonlinear dynamic systems can be applied, such as
the Extended or Unscented Rauch-Tung-Striebel (RTS)
smoothing algorithms.

• M-step: Using a given smoothed density of the state-
control pairs from E-step and substituting the joint
probability of (9) in the variational free energy bound
(17), we retrieve the subsequent optimization problem
to find the parameters θ and φ.

arg min
θ,φ

−Eq(τ0:T )

[
log
(
p(x0)p(OT |xT )p(yT |xT )×

T−1∏
t=0

p(Ot|τt)p(yt|xt)p(xt+1|τt; θ)p(ut|yt;φ)

)]
(19)

C. Receding Horizon Strategy

The problem proposed in (14) cannot be applied in a
real-time setting. To that end, we propose a generalization
with a receding prediction horizon [24]. To incorporate
the receding horizon strategy into the EM procedure over
the fixed time horizon H , instead of (14), we consider
the adapted surprise p(O0:t+H , y0:t). Using Bayes’ rule it
becomes p(Ot+1:t+H |O0:t, y0:t)p(O0:t, y0:t). It decomposes
the variational upper bound optimization mentioned in (17)
and (18) into two time-windows: from 0 to t to update
the system parameter estimation relating to p(O0:t, y0:t) and
from t + 1 to t + H to compute the controller parameters
relating to p(Ot+1:t+H |O0:t, y0:t). By considering the new
surprisal in the free energy bound (17), we also need to infer
the prediction of the future observations of the system for free
energy minimization (19), i.e., we should infer the smoothed
density q̂(τ0:t+H , yt+1:t+H |y0:t,O0:t+H ; θ̂, φ̂) at each time
step which can be obtained using Bayes’ rule as

q̂(τ0:t+H |y0:t,O0:t+H ; θ̂, φ̂)p(yt+1:t+H |τt+1:t+H ; θ̂, φ̂)
(20)

By taking the logarithm of the product operator and marginal-
izing the trajectories in the expectation of (19) and using (20),
we decompose and simplify (19) into two time-windows as

arg min
θ,φ

Jpast(θ) + Jfuture(φ) (21)

with

Jpast(θ) = −
t∑

k=0

Eq̂(τk+1,τk)

[
log (p(xk+1|τk; θ))

]
(22)

Jfuture(φ) = −
t+H−1∑
k=t+1

Eq̂(τk)p(yk|xk)

[
log (p(uk|yk;φ))

]
,

(23)

and where q̂(·|y0:t,O0:t+H ; θ̂, φ̂) is the smoothed density
mentioned in (20). In the past time of t, we applied the
previously optimized controller parameters and observed the
past measurements of the system. Therefore, the past terms
of (19) do not participate in the optimization procedure w.r.t.
φ. Likewise, we employ the estimated system parameter θ
to predict the future of the controlled system. Hence, the
future terms of (19) are not engaged in the optimization
procedure w.r.t. θ. We acknowledge that there are alternative
optimization strategies to be explored however in this work
we have restricted to that described here.

Solving the optimization problem (21) in each time step
introduces a novel adaptive model predictive control (AMPC)
algorithm for stochastic nonlinear systems with the risk-
sensitive optimality criterion. Also, employing the shifted or
receded fixed prediction horizon over time can enable our
framework to be applied in an infinite-horizon framework.

D. Special case

As a special case we consider a dynamic system (1) and
controller (3) that are linearly parameterized by basis func-
tions ψ(τt) ∈ Rnx×nθ and σ(yt) ∈ Rnu×nφ , respectively.
Also, we assume a well-known quadratic cost as, lt(τt),
which will be encoded into the probability of the optimality
variable Ot. Therefore, we have

f(τt; θ) = ψ(τt)θ ⇒p(xt+1|τt; θ) = N (xt+1|ψ(τt)θ, V )

K(yt;φ) = σ(yt)φ⇒p(ut|yt;φ) = N (ut|σ(yt)φ,Σ)

p(Ot = 1|τt) ∝ N (zt = z∗t |τt,Γ−1)
(24)

where zt ∈ R(nx+nu) denotes the measurement variable
relating to the optimality variable Ot. We consider Γ , γQ
in which Q ∈ R(nx+nu)×(nx+nu) is a positive-definite
weighting matrix for a standard quadratic cost. Applying
the optimization problem (21) on the linearly parameterized
expressions mentioned in (24) yields the following two
unconstrained quadratic programming w.r.t. θ and φ

{θ̂i, V̂ i} = arg min
θ,V

t∑
k=0

Eq̂i(τk+1,τk)

[
(xt+1 − ψ(τt)θ)

>
V −1 (xt+1 − ψ(τt)θ)

]
(25)

and

{φ̂i, Σ̂i} = arg min
φ,Σ

t+H−1∑
k=t+1

Eq̂i(τk)p(yk|xk)

[
(ut − σ(yt)φ)

>
Σ−1 (ut − σ(yt)φ)

]
(26)
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where i indicates the iteration index for the EM algo-
rithm iterations and q̂i(·|y0:t,O0:t+H ; θ̂i−1, φ̂i−1) refers to
the smoothed density computed using estimated parameters
from the previous iteration. For each time step, the opti-
mization problems (25) and (26) are computed iteratively
until convergence. Finally, the whole introduced algorithm
is summarized in Algorithm 1 and shown in Fig. 1.

Algorithm 1: Adaptive RSOC
Input: Γ, ψ(.), σ(.), H , mx0 , Px0 , and N .
Output: φ∗t and Σ∗t .
for t do // Real-time loop

θ̂0, V̂ 0, φ̂0, Σ̂0 ← θ∗t−1, V
∗
t−1, φ

∗
t−1,Σ

∗
t−1

for i = 1 : N do // EM iteration
xp0 = yt
for k = 0 : H − 1 do // Prediction

ypk ∼ N (ypk|x
p
k,W )

upk ∼ N (upk|σ(ypk)φ̂i−1, Σ̂i−1)

xpk+1 ∼ N (xpk+1|ψ(τpk )θ̂i−1, V̂ i−1)
Store (upk, y

p
k) in DP

E-Step: Apply Extended/unscented RTS
smoothing algorithm on DR ∪ DP to find q̂i

M-Step: Update θ̂i, V̂ i, φ̂i, and Σ̂i using (25)
and (26)

θ∗t , V
∗
t , φ

∗
t ,Σ

∗
t ← θ̂N , V̂ N , φ̂N , Σ̂N

ut ∼ N (ut|σ(yt)φ
∗
t ,Σ

∗
t )

Execute ut and observe yt+1 from the dynamic
system

Store (ut, yt) in DR

V. SIMULATION EXAMPLE

Consider the following nonlinear dynamic system derived
from Duffing’s equation which can model the behaviour
of a noisy and unstable mass-spring-damper system with a
nonlinear hardening spring.

p̈+ bṗ+ k(1 + a2p2)p+ vt = u (27)

where p, ṗ, and p̈ indicate displacement, velocity, and acceler-
ation, respectively, b < 0 and k > 0 are related to the negative
damping coefficient and the spring constant normalized by
mass, and a is the non-linearity constant for the hardening
spring. vt is a zero-mean Gaussian noise.

We considered 60% parametric uncertainty on the nominal
values for the simulations. Table I shows the nominal and
perturbed parameter values.

The following proportional-integrator-derivative (PID)
controller is applied to the dynamic system (27).

ẋc = p+ ṗ

u = −K1p−K2ṗ−K3xc (28)

in which xc is the integrator state of the controller which
will be augmented in the state vector of the dynamic system,
K1, K2, and K3 are the controller gains supposed to be
designed. After time-discretization of (27) and (28) with
sampling time ts = 0.1 [s] and defining the time-discretized
state vector as xt , [pt, ṗt, xct ]

>, we can achieve the linear

TABLE I: Nominal and Perturbed Parameter Values

Parameter b [1/s] k [1/s2] a

Nominal Value -0.1 1 0.1
Perturbed Value -0.16 0.4 0.04

TABLE II: Performance Value for Different Settings

Variation of H
H = 30 H = 50 H = 80

(N is fixed and N = 30)
Cost Function J 5.26 3.72 3.44

Variation of N
N = 20 N = 30 N = 60

(H is fixed and H = 50)
Cost Function J 4.05 3.72 3.41

parameterization form in (24). We solve the Adaptive RSOC
problem (14) using Algorithm 1 to design the controller gains
K1, K2, and K3 in the presence of parametric uncertainty
with the following settings

Q = diag([0.25, 0.1, 0.1, 0.1])

γ = 0.25

mx0 = [5, 2, 0]>

V = W = Px0 = 10−4I3
Σ = 10−4

(29)

where I3 is a 3 × 3 identity matrix and diag denotes the
diagonal matrix operator.

The performance of the proposed algorithm 1 for different
horizon lengths and different numbers of iterations of the EM
algorithm are reported in Table II which demonstrates that by
increasing the horizon length or the number of iterations for
the EM algorithm, we can achieve more optimal performance.

We applied the LEQG controller [3] on the linearized
dynamic system (27) to design the PID controller gains. If
the LEQG controller is aware of the uncertainty values on
the system’s parameters, the cost function value and the states
and control input trajectories are revealed in Table III and Fig.
3 as “Optimal LEQG”. In this case, we have an optimal con-
troller for the system perturbed by the parametric uncertainty
and we can compare different methods and settings with it
to find how much they are far from the optimal solution.
Furthermore, we designed the LEQG controller using the
nominal values of the system’s parameters and applied it to
the perturbed system. Its results are depicted as “Perturbed
LEQG” in Table III and Fig. 3 such that it cannot preserve
the stability of the system in the presence of uncertainty.

Also, we separately solved the system identification in-
ference problem (7) and the controller design inference
problem (10) at each time step in a receding horizon strat-
egy. In this approach, the EM algorithm and finding the
extended/unscented RTS smoothing density are separately
carried out for both inference problems. Table III and Fig.
3 signify our algorithm has more optimal results than sepa-
rately conducting system identification and controller design
(“SysID+ContDesign”) because as we showed in Subsection
IV-A, considering minimization of the inference problem (14)
can improve the balance between exploration and exploitation
efficiently. Ergo, the proposed control architecture exhibits
dual features.
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TABLE III: Performance of Different Methods

Method Cost Function
Optimal LEQG 2.84

Our Algorithm (H = 50, N = 60) 3.41
SysID+ContDesign (H = 50, N = 60) 6.99

Perturbed LEQG 10.85

VI. CONCLUSION

The main goal of the current study was to merge system
identification and controller design within an active inference
framework to solve the RSOC problem whilst exhibiting dual
features. This paper employed the EM algorithm, combining
the RTS smoother in the E-Step and predictive parameter
updates in the M-Step, to effectively design an adaptive
controller for uncertain stochastic systems. The proposed ap-
proach yields a natural balance between exploitation and ex-
ploration and results in a computationally efficient quadratic
programming solution. Numerical simulations confirmed the
performance of the proposed algorithm framework. Future
efforts will focus on considering other risk metrics like
CVaR and encoding safety constraints within the proposed
algorithm. It would also be interesting to consider a broader
class of stochastic systems like non-Gaussian systems.
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Fig. 3: Upper figure: state vector signals pt [m] (dashed curves)
and ṗt [m/s] (dash-dotted curves) and lower figure: control input
signal ut [N/kg] (solid curves) for different approaches.
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