
A Markov Decision Process Approach for Decentralized UAV
Formation Path Planning

Francesco Trotti1, Alessandro Farinelli2 and Riccardo Muradore1

Abstract— Fleet coordination and formation flight for Un-
manned Aerial Vehicles (UAVs) are challenging and important
problems that have received significant attention in recent years.
In this paper, we propose a decentralized approach based
on a Markov Decision Process (MDP) to ensure the control
and formation flight of UAVs. We present a methodology for
planning trajectories online that enables UAVs to maintain
formation geometry while avoiding no-fly zones and reaching
a desired goal area. By leveraging the dynamic model of fixed-
wing UAV within the MDP formalization, we can provide
optimal reference values for the UAV low-level controller.
Furthermore, by harnessing the capabilities of MDPs to handle
uncertainty, we can consider the behavior of nearby UAVs
taking advantage of the predicted state vectors shared among
them. Therefore, by exploiting the UAV dynamic model, and
the estimation of the possible trajectories of the other UAVs,
we can ensure collision-free and feasible actions for the UAV
in a decentralized way. This approach has been validated and
tested through simulations involving various scenarios.

I. INTRODUCTION

Fleet coordination and formation flight for Unmanned
Aerial Vehicles (UAVs) are well-known problems that have
received significant attention in recent years, especially in
response to the growing demand for autonomous system
capabilities. Achieving autonomy in formation flight and fleet
coordination requires control systems capable of handling
different levels of uncertainty, arising from the unexpected
behavior of agents within the fleet, due to the limited or
absent knowledge of the states of the other UAVs, or environ-
mental conditions. Considering these aspects, the planning
problem for a fleet becomes more challenging and complex.

Several hierarchical approaches, as proposed in [1], aim
to address formation control, managing issues like leader-
following, behavioral, and virtual structure problems through
control-theoretic methods. Additionally, leveraging control-
theoretic techniques, as discussed in [2], helps coordinate
a fleet of mobile robots using a feedback control law and
a reactive control framework. However, these approaches
often require a centralized component, limiting scalability to
a large number of robots. A significant number of approaches
in the literature are based on the consensus theorem, as noted
in [3], [4], and [5]. Some collision avoidance control algo-
rithms for multi-UAV systems designed around consensus-
based algorithms and leader-follower control strategies are

1 Francesco Trotti and Riccardo Muradore are with the
Department of Engineering for Innovation Medicine, University
of Verona, 37134, Italy francesco.trotti@univr.it,
riccardo.muradore@univr.it

2 Alessandro Farinelli is with the Department of
Computer Science, University of Verona, 37134, Italy
alessandro.farinelli@univr.it

presented in [6] and [7]. However, these approaches primarily
focus on the leader-following consensus problem, assuming
that only the parameters of followers are uncertain. In
contrast, [8], also utilizing the consensus theorem, addressed
the issue of parametric uncertainties and unknown external
disturbances for both leaders and followers by employing a
multivariable model reference adaptive control (MRAC).

Other approaches, like [9], formalize the problem as
a decentralized receding horizon controller, based on the
optimization problem formalized as mixed-integer linear
programs (MILP). Approaches based on Nonlinear Model
Predictive Control (NMPC), as discussed in [10], leverage
a polytopic description of each robot’s shape and formulate
collision avoidance as a dual optimization problem. Mixed
approaches, as presented in [11], combine decentralized
Model Predictive Control (MPC) formalization with consen-
sus control strategies to address cooperative formation con-
trol with collision avoidance. Nevertheless, these approaches
often fail to account for various types of uncertainty, such
as model errors, sensor measurement errors, or environmen-
tal dynamics. Therefore, different approaches formalize the
problem of formation flight as a decision-making process, to
consider different uncertainties due to the environment [12].

In this paper, we propose a decentralized controller for the
formation flight of a fleet of UAVs. Specifically, we formalize
the problem as a decision-making process introducing an
online path planner (high-level controller) for each UAV,
formalized as a Markov Decision Process (MDP). The high-
level controller provides the best local reference values to
the UAV low-level controller (assumed to be given), exploit-
ing a nonlinear dynamic model of the UAV. The MDP is
formalized to consider constraints related to formation flight
(e.g., maintaining the correct position within the formation)
and constraints related to path planning (e.g., reaching the
target area and avoiding designated no-fly zones).

Furthermore, each UAV shares its predicted poses, ob-
tained during the simulation horizon, with the other UAVs to
avoid possible collisions. Along the shared predicted poses
a probability distribution is modeled to design the uncertain
position of the other UAVs in the time. Since only the action
at the next sample time is effectively applied to the UAV
low-level controller the other predicted states may not be
accurate. Therefore, an exponential distribution is modeled
so that a higher probability is assigned to states closer in time
than to states farther away (since they will be less explored
by the algorithm). We propose an online path planner for
each UAV utilizing the MDP online solver Monte Carlo Tree
Search (MCTS) [13].

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 436



The main contributions of this paper are:
• The online path planner is formalized as an MDP, which

leverages the UAV internal nonlinear dynamic model
to compute the best local reference values, taking into
account formation and environmental constraints.

• The distributed approach relies on the shared predicted
poses to estimate the position of the UAVs over time
with a certain probability.

The paper follows this structure: Section II covers MDP
and MCTS, revisiting the UAV dynamic model and low-level
controller. Section III defines the problem, while Section IV
details system operation. Simulation results are presented in
Section V. Finally, Section VI concludes and outlines future
research directions.

II. BACKGROUND
A. MDP and MCTS
Markow Decision Processes (MDPs) framework allows to
generate a policy for an agent in a fully observable envi-
ronment. A MDP is defined by the tuple ⟨S,A, T ,R, γ⟩,
where:

• S is the state space with s ∈ S
• A is the action space with a ∈ A
• T is the transition model T a

s,s′
= P(st+1 = s′|st =

s, at = a) that defines the probability to evolve from
the current state s at the time t to the future state s′ at
the time t+ 1 by taking the action a

• R(s, a) is the reward function from the current state
s ∈ S taking the action a ∈ A

• ϵ is the discount factor (ϵ ∈ [0, . . . , 1])
Consequently, the MDP policy is a mapping from state to
action, determining which action will be chosen from each
state at any distract-time t.

The online solvers for the MDP are widely used since
they manage to lower computational time and memory usage
compared to offline solvers, admitting an approximation of
the solutions. A popular online MDP solver is Monte Carlo
Tree Search (MCTS), which alternates between planning and
execution phases to provide online actions for the agents.
MCTS operates through four phases:

1) Selection: The algorithm selects the node to reach the
leaf of the tree using Upper Confidence bounds applied
to Trees (UCT) [14].

2) Expansion: New nodes are added to the leaf node
3) Simulation: A simulator denoted by G is used to

emulate the possible agent behaviors in the future.
Given a state and an action, the simulator provides the
state at time t+1 (st+1) and a reward value rt+1. The
simulator can be defined as follows: (st+1, rt+1) ∼ G.

4) Back-propagation: The score obtained during the sim-
ulation is back-propagated to the root.

B. Aircraft dynamic model
The non-linear dynamic UAV model used in our formula-

tion is taken from [15][16], and [17]. The aircraft state vector
is

x = [x y h v ψ ]T . (1)

where x, y, h are the position and altitude of the UAV, v is
the UAV airspeed and ψ is the UAV yaw angle. The dynamic
model is

ẋ = v cos(ψ) cos(γ)

ẏ = v sin(ψ) cos(γ)

ḣ = v sin(γ)

v̇ =
T −D

m
− g sin(γ)

ψ̇ =
g tan(ϕ)

v cos(γ)

(2)

The UAV is controlled using an inverse dynamics controller
[18], [19] to control the thrust T and the roll and flight path
angles ϕ and γ of the UAV defining the desired airspeed
value vd, the desired altitude hd and the desired yaw angle
ψd. Therefore the thrust is

T = m(Kv(vd − v) + g sin γ) +D (3)

where Kv is the positive speed control gain. The flight path
angle is controlled to reach the desired altitude

γ =
(
arcsin

(
Kh(hd − h)

v

)
(4)

where Kh is a positive gain, while the roll angle is controlled
to reach the desired yaw angle considering the flight path
angle,

ϕ = arctan

(
Kψ(ψd − ψ)v cos(γ)

g

)
(5)

where Kψ is the positive gain and g is the gravity. The
controllers modeled in the MDP are the discrete-time version
of the continuous-time control laws (3)-(5).

III. PROBLEM STATEMENT

The fleet is composed of n UAVs that have to keep a
desired formation geometry. The fleet has to reach the target
area avoiding some no-fly zones in a 3D scenario maintaining
the desired formation geometry. A nonlinear dynamic model
is used to describe the behavior of the UAVs and each aircraft
has an inverse dynamics controller to reach the provided
reference values. For each UAV an MDP is formalized to
guarantee that

• the UAV maintains the formation geometry
• the UAV avoids the no-fly zones
• the UAV does not collide with the other UAVs

Given these constraints, the MDP has to provide the best
reference values (vd, hd, ψd) for the UAV low-level controller
that minimize the cost function, as shown in [20]. Some
assumptions commonly used in the literature are needed to
understand and justify some behavior of our approach.

Assumption 1: The UAVs in the fleet have the same
dynamic model.

Assumption 2: The geometry of the formation is known
by all UAVs and it is expressed with respect to the frame of
the lead UAV.

437



A. MDP Formalization

Our approach is based on discrete actions and states;
therefore, we discretize the state space S and the action space
A. Since our approach is decentralized, we first present a
generic MDP formalization, which is applied to each UAV.

States: The MDP state represents how the system evolves
over time. It consists of the UAV state vector and future
predictions of the other UAVs

s = [x, ĥ] (6)

where, x represents the UAV state vector (1), and ĥ contains
the predictions of the future state vectors of the other UAVs.
In particular, ĥ is defined as:

ĥ =

x
i
t+1 . . . xit+N
...

. . .
...

xnt+1 . . . xnt+N

 (7)

where i ranges from 0 to n (number of UAVs in the fleet),
t = NTs with Ts the sampling time, and N is a parameter
that defines the length of the horizon.

Actions: The actions are the reference values for the UAV
low-level controller (3)-(5)

a = [vd, hd, ψd]
T (8)

where vd, hd and ψd are the desired velocity, altitude and
yaw angle. The controller will handle thrust and the tack
and bank angles based on these reference values. The action
set is defined as a percentage increment or decrement of the
reference value.

Transition model: The transition model defines the next
state given the current state and an action. In our case, we use
the aircraft dynamic model with the control loop explained in
subsection II-B. This allows to simulate different reference
values (actions) from the current state by evaluating the
system evolutions through the cost function. During the
simulation, an exponential probability, commonly used in
literature to represent the probability of being in that position
at specific time, is considered in the predicted poses matrix
(ĥ) to stochastically model the poses of the other UAVs
along the horizon. Therefore, the exponential probability is
attributed in the following way

P(xi|t) = e−λt (9)

where i is the i-th row in the predicted poses matrix (ĥ), t
is the sampled time in the i-th row (t = [t+ 1, . . . , t+N ])
and −λ is the decay rate, which determines how fast the
probabilities decrease, and finally, the values are normalized
to guarantee sum one. The uncertainty arises from the fact
that the MDP, solved by MCTS, uses only the action at
the time t + 1. Thereby, the other estimates represent only
the best sequence of actions at the time t, but with the
next computation the sequence of actions could be different.
Additionally, the exponential probability is used to represent
the uncertainty in order to give a higher likelihood to the
states closer to the current time t and less to the states in the
far future.

Cost function: The cost function evaluates the goodness of
an action (the cost function is the reward function explained
in Section II). In our approach, the cost function aims to
minimize a combination of metrics, including reaching the
target area, maintaining the correct position in the formation,
and avoiding no-fly zones.

The component of the cost function responsible for reach-
ing the target position is defined as the Euclidean distance
between the UAV XUAV = (x, y, h) and the target area
XT = (xT , yT , hT )

rD = ∥XT −XUAV∥ (10)

The component that keeps the UAV in the right position
within the formation is determined by the displacement
between the desired pose (position and orientation) in the
formation and the current UAV pose. The desired pose is
expressed in the UAV frame placed in the point of symmetry
of the formations (ΓM ). Therefore, a transformation matrix
is needed to express the desired pose (Γd) in the current
UAV frame (ΓU ). This transformation matrix is obtained by
combining the position vector error and the yaw angle error
(ψe = ψM−ψU ) between the two poses. The transformation
matrix is defined as

TM,U =


cos(ψe) − sin(ψe) 0 (xM − xU )
sin(ψe) cos(ψe) 0 (yM − yU )

0 0 1 (hM − hU )
0 0 0 1

 (11)

where the upper left 3 × 3 matrix is the rotational matrix,
and the vector 4 × 1 contains distance between the origins
of ΓM in ΓU .

The desired formation pose expressed in the current UAV
frame (ΓU ) is defined as Γd = ΓMTM,U . Consequently, the
cost value is

rF = (RΓU
−RΓd

) +

3∑
i=1

P iΓd
(12)

where P iΓd
represents the i-th position value of the Γd matrix,

while RΓU
and RΓd

are respectively the current UAV rotation
and the desired rotation.

The function to avoid no-fly zones is modeled as a
repulsive force [21]

rZi =

ν
((

1
dZi

− 1
d0

)2)
, if dZi < d0

0, otherwise
(13)

where, dZi
is the distance between the UAV and the i-th

no-fly zone (Z is the no-fly zones set), d0 is the repulsive
threshold, and ν > 0 is the repulsive coefficient.

Additionally, a repulsive force generated by the position of
the other UAVs in the predicted poses matrix (ĥ) is added
to avoid collisions between the aircrafts. In particular, the
repulsive force is scaled by the probability of the state in
the predicted poses matrix. In this way, the states with lower
probability (states more in the future) have less impact on
the total force compared to the states closer to the current

438



Selection

R

Simulation Back-propagation

n Iteration

a

... ...

a

Expansion

...

a

Fig. 1. MCTS algorithm

time (higher probability). This case could happen when the
other constraints (e.g. no-fly zones) force the aircraft to break
the formation and then they could collide with each other.
Therefore, the UAV repulsive force is

rUi
=

νσ
((

1
dUi

− 1
d0

)2)
, if dUi

< d0

0, otherwise
(14)

where dUi
is the distance vector between the current UAV

horizon and the i-th UAV in the predicted poses matrix, d0
is calculated as the distance between the i-th UAV in the
predicted poses matrix and the current formation position for
the current UAV; while νσ is the repulsive coefficient scaled
for the probability (according to (9)) along the i-th state
vector of the predicted matrix. Therefore, σ is the probability
distributed function (PDF) given the state in the predicted
poses matrix and the time. The reward value concerning the
no-fly zones and the UAVs is:

rR =

Z∑
i=1

rZi +

n∑
i=1

rUi (15)

The overall cost value is the sum of all these components:

r = −rD − rF − rR (16)

Note that all the components are negative because we
minimize the cost function (the closer is to zero, the better).

IV. FORMATION PLANNING

In this section, we present the evolution of the proposed
approach over time. Specifically, the MDP computes the
best reference values for the UAV low-level controllers to
minimize the cost function considering various constraints.
At each time step, each MDP provides the best action to the
low-level controller, and after shares its predicted poses of
N steps to the other UAVs.

A. MCTS

The MCTS algorithm serves as an online solver for the
MDP problems. It’s based on tree exploration and expansion
and consists of four main phases, performed within a fixed
time interval: selection, expansion, simulation, and back-
propagation, as illustrated in Figure 1. MCTS is an on-
line solver that alternates between simulation and execution
phases until the goal is achieved.
Selection phase: In the selection phase, the algorithm
chooses the best local action to reach a new state within

the tree. This selection is made using the Upper Confidence
Bounds applied to Trees (UCT) [14], [13], which is:

a∗ = argmaxa∈A(s)

(
Q(s, a)

N(s, a)
+ C

√
logN(s)

N(s, a)

)
(17)

where, A(s) is the action set, Q(s, a) is the value obtained by
executing action a in state s, C is the exploration-exploitation
constant, N(s) is the number of visits to the node with state
s, and N(s, a) is the number of visits to the child node of the
node with state s when applying action a. By utilizing the
UCT strategy, we can balance the depth and breadth of tree
exploration, and it also allows to cross the tree and reach
unexplored nodes by evaluating node scores obtained in
previous simulations. The depth of the MCTS tree represents
how many time steps into the future the algorithm analyzes,
while the breadth of each layer of the tree represents how
many alternatives the algorithm explores at each time step.
Expansion phase: The selection phase concludes when a
leaf node is reached, and from this node, several new nodes
(states) equal to the size of the action space A are created.
Simulation phase: The simulation phase explores more in-
depth the possible evolutions in the future from the current
state, trying different actions. The simulation phase is based
on the use of a simulator G that, given a state and an
action, provides the future state and the reward values, i.e.
(st+1, rt+1) ∼ G(sk, ak).
To obtain the next state and reward value, the simulator
relies on the transition model and cost function defined
in Section III-A. After expanding a node, a new random
node is selected, initiating the rollout method. This method
tries different random actions from the current state until a
specified maximum depth (rollout horizon) is reached. By
doing so, the algorithm explores the future of the current
state more profoundly by employing the simulator G with
various random actions. Upon reaching the maximum depth
for the rollout, a reward value for all simulations is computed
utilizing the cost function and discount factor

R =

H∑
i

ϵiri (18)

where, ri represents the partial reward value obtained at each
step during the rollout, and H stands for the rollout horizon
(maximum depth). The discount factor ϵ, or forgetting factor,
determines how rewards diminish over time. Values obtained
closer to the current state have larger weights than those
from more distant time steps. Following the rollout phase,
the explored nodes are removed, and only the cumulative
reward value R is retained.
Back-propagation phase: The back-propagation phase up-
dates the parameters of the nodes by crossing the tree from
leaf to root along the path defined by UCT. In particular,
given R the reward obtained during the simulation phase,
the Q(s, a) value of each visited node is updated following

Q(s, a) = Q(s, a) +
R−Q(s, a)

N(s)
(19)

439



Fig. 2. UAV control schema

Scenario 1 Scenario 2
# Sim 600 1000

H 2 4
ν 100 100
k 3 3

n UAV 3 3

Formation

0

12

TABLE I
PARAMETERS AND FORMATION

B. System evolution

These four phases of the MCTS are executed in a loop
until the time constraints are met. When this occurs, the
UCT strategy is applied at the root node to determine the
best action at time t + 1, which is then applied to the low-
level UAV controller. Following the execution of this action,
the new state vector of the UAV becomes the new root for
the next iteration of the MCTS algorithm. To guarantee the
correct length of the vector of predicted poses, the number
of the MCTS simulations has to be set in order to create a
tree with a depth greater than or equal to N . In particular,
the vector of predicted poses is formed by applying the
UCT strategy to the MCTS tree N times to extract the best
estimated states from the current state. It’s important to note
that only the t+1 action is employed in the UAV low-level
controller, and the predicted poses are used solely to share
a likely trajectory of the other UAVs.

By leveraging this concept, the system remains resilient
to communication issues between UAVs when disturbances
last for a duration shorter than the vector of predicted poses
length. This is because each UAV knows the actions that
other UAVs will take in the next N steps. Each UAV
independently solves its own MCTS algorithm, generating
the best local reference values for its low-level controller
while considering the other UAVs. Figure 2 illustrates the
loop system for one UAV (ĥi represents the vector of
predicted poses of the i-th UAV). Consequently, the fleet
evolves in a decentralized manner over time, and, after the
MCTS iterations, each UAV shares its vector of predicted
poses with the other UAVs.

V. SIMULATION RESULT

The proposed technique has been tested in two different
simulated scenarios. In both cases, the fleet must reach a
desired area while avoiding no-fly zones and attempting to
maintain formation whenever possible. In the first scenario,
various no-fly zones are taken into consideration, whereas in
the second scenario, a no-fly zone barrier with a breach is
considered. Table I lists the most important hyper-parameters
used during the simulations and also shows the formation

(a) UAV1 and UAV2 absolute error
along x axis

(b) UAV1 and UAV2 absolute error
along y axis

Fig. 3. Absolute error along x and y axis

(a) First scenario (b) Second scenario

Fig. 4. Fleet paths. The green rectangle is the target area and the red areas
are the no-fly zones

geometry. In particular, the symmetry point of the formation
is located at UAV0. As a result, all the other formation points
are expressed relative to the reference frame of the UAV0.
In both scenarios, the initial conditions for UAV0 are set
to x0 = [50, 50, 1.5, 200, 0.78], while for the other UAVs,
the initial conditions are the same, with their poses adjusted
to fit the correct formation position. In the experiments the
altitude is not shown since the target altitude is equal to the
initial condition and the UAVs maintain constant the altitude
during the simulation. The proposed results are tested on the
feet of three UAVs, but the approach is easily extendable to a
fleet with more agents since it is local for each UAV, and the
complexity is not directly related to the number of agents.

A. First scenario: Multi No-fly Zones

In the first scenario, the fleet has to reach the target area
avoiding some no-fly zones. Figure 4(a) shows the paths
generated by the proposed methodology. It is possible to
see that the UAVs maintain the formation until the no-fly
zones are reached. In particular, the UAV0 avoids the no-
fly zone by passing to the right. Since UAV0 defines the
formation geometry, the desired formation position for UAV1
also shifts to the right. However, on the right side of UAV1,
another no-fly zone is present. Consequently, the optimal
local action for UAV1 is to move closer to UAV0. This
adjustment occurs because, in the cost function of UAV1, the
repulsive no-fly zone component becomes more significant
than the formation constraint. As a result, UAV1 moves
closer to UAV0. On the other hand, in the presence of the
no-fly zone, the UAV2 changes completely the path. This
behavior is due to reward values obtained in the simulations.
In particular, if the UAV2 had passed to the right side of the
no-fly zone a penalty regarding the wrong position in the
formation would have been taken into account and also a

440



(a) UAV1 and UAV2 absolute error
along x axis

(b) UAV1 and UAV2 absolute error
along y axis

Fig. 5. Absolute error along x and y axis

highly repulsive component due to the closeness to the UAV0
and UAV1 would have been added. Whereas, passing on the
left side of the no-fly zone, the UAV2 obtains only a penalty
from the formation position component and avoids possible
collision with the other UAVs. These considerations are also
highlighted in Figure 3, where the absolute error along the
x (Figure 3(a)) and y (Figure 3(b)) axes are shown for each
UAV. It is possible to see the error increases near the no-fly
zone (yellow area in the plots) while in the other parts, the
error is small.

B. Second scenario: Breach Crossing

In the second case, a scenario where the fleet has to cross
different breaches and maintain the formation is considered.
As in the previous case the fleet has to avoid the no-fly zones
and reach the target area while keeping the formation. Figure
4(b) shows the trajectories executed by the UAVs with the
zoom on the most important part of the path. In this case, the
formation is maintained throughout the path by all UAVs. In
particular, exploiting the greater number of simulations and
the rollout depth, more future evolutions of each UAV are
analyzed. Additionally, since the no-fly zones are modeled as
a barrier, the simulations of all UAVs are quite similar unless
the formation position displacement. Figure 5 shows the
absolute error along the x (Figure 5(a)) and y (Figure 5(b))
axes for each UAV, the error is small but increases a little in
the area between the two no-fly zones. This behavior is due to
the target attractive component, leading to a bad reward as the
UAVs move away from the target. However, the formation
attractive components and the high rollout depth (the future
is analyzed more in depth) allow to compensate for the target
attractive penalty by finding the best trajectories.

VI. CONCLUSIONS

In this paper, we introduce a decentralized methodology
for controlling and ensuring the formation flight of multiple
UAVs. Each UAV is modeled as an MDP to determine opti-
mal local reference values for low-level controllers, factoring
in planning and formation constraints such as reaching tar-
gets, avoiding no-fly zones, maintaining formation positions,
and preventing collisions. Leveraging a shared predicted
poses matrix, our approach guarantees collision-free paths
between UAVs. Validation in two scenarios demonstrates
fleet behavior under various constraints and parameters.
Future work involves comparing our method with current
techniques, incorporating a manned lead aircraft into the

fleet model, and refining position estimation filters within
the MDP framework.

REFERENCES

[1] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architec-
ture for spacecraft formation control,” IEEE Transactions on control
systems technology, vol. 9, no. 6, pp. 777–790, 2001.

[2] H. Yamaguchi, “A cooperative hunting behavior by mobile robot
troops,” in Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No. 98CH36146), vol. 4. IEEE, 1998,
pp. 3204–3209.

[3] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,” in Proceedings of the 2005,
American Control Conference, 2005. IEEE, 2005, pp. 1859–1864.

[4] Q. Wang, H. Gao, F. Alsaadi, and T. Hayat, “An overview of consensus
problems in constrained multi-agent coordination,” Systems Science &
Control Engineering: An Open Access Journal, vol. 2, no. 1, pp. 275–
284, 2014.

[5] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,” IEEE
Transactions on Industrial informatics, vol. 9, no. 1, pp. 427–438,
2012.

[6] Y. Kuriki and T. Namerikawa, “Consensus-based cooperative forma-
tion control with collision avoidance for a multi-uav system,” in 2014
American Control Conference. IEee, 2014, pp. 2077–2082.

[7] J. Zhang, J. Yan, P. Zhang, and X. Kong, “Collision avoidance in fixed-
wing uav formation flight based on a consensus control algorithm,”
IEEE Access, vol. 6, pp. 43 672–43 682, 2018.

[8] Z. Zhen, G. Tao, Y. Xu, and G. Song, “Multivariable adaptive control
based consensus flight control system for uavs formation,” Aerospace
Science and Technology, vol. 93, p. 105336, 2019.

[9] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas, “De-
centralized receding horizon control and coordination of autonomous
vehicle formations,” IEEE Transactions on control systems technology,
vol. 16, no. 1, pp. 19–33, 2007.

[10] R. Firoozi, L. Ferranti, X. Zhang, S. Nejadnik, and F. Borrelli, “A
distributed multi-robot coordination algorithm for navigation in tight
environments,” arXiv preprint arXiv:2006.11492, 2020.

[11] Y. Kuriki and T. Namerikawa, “Formation control with collision avoid-
ance for a multi-uav system using decentralized mpc and consensus-
based control,” SICE Journal of Control, Measurement, and System
Integration, vol. 8, no. 4, pp. 285–294, 2015.

[12] B. Floriano, G. A. Borges, and H. Ferreira, “Planning for decentralized
formation flight of uav fleets in uncertain environments with dec-
pomdp,” in 2019 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2019, pp. 563–568.

[13] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp.
235–256, 2002.

[15] J. Sun, J. M. Hoekstra, and J. Ellerbroek, “Openap: An open-source
aircraft performance model for air transportation studies and simula-
tions,” Aerospace, vol. 7, no. 8, p. 104, 2020.

[16] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and
practice. Princeton university press, 2012.

[17] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and
simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[18] A. Isidori, Nonlinear control systems II. Springer, 2013.
[19] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[20] F. Trotti, A. Farinelli, and R. Muradore, “An online path planner based

on pomdp for uavs,” in 2023 European Control Conference (ECC).
IEEE, 2023, pp. 1–6.

[21] C. W. Warren, “Global path planning using artificial potential fields,”
in 1989 IEEE International Conference on Robotics and Automation.
IEEE Computer Society, 1989, pp. 316–317.

441


