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Abstract— Verification of uncertain, complex dynamical sys-
tems is crucial in the modern day world. An increasingly
common method to verify complex logic specifications for dy-
namical systems involves symbolic abstractions: simpler, finite-
state models whose behaviour mimics the one of the systems
of interest. By sampling trajectories of the concrete, unknown
system and via robust analysis, we build a data-driven abstrac-
tion, related to the underlying model through a probabilistic
behavioural inclusion relation. As the distribution from which
the trajectories are drawn is unknown, we adopt two distinct
distribution-free theories, namely scenario optimization and
conformal prediction. We compare and discuss the differences
between the two approaches in terms of the type of guarantees
that they are able to provide. Furthermore, via experimental
benchmarks we outline the efficiency of the two methods with
respect to the number of samples available and the tightness
of the guarantees.

I. INTRODUCTION

The increasing digitalisation and interconnection of sys-
tems is forging a new large class of complex models, often
equipped with decision making capabilities and data-driven
perception (e.g. self-driving cars). These systems introduce
two challenges: their inherent complex nature prevents the
use of exact models, along with the verification of desired
behaviours with either formal or probabilistic approaches.
Thus, one can embrace a black-box model approach, and
rely solely on observations of the unknown system. As the
resulting models are uncertain, their verification becomes
ever more essential, yet more complex. Verification aims at
checking the correctness of a system against specifications
expressed in formal languages; typically, these languages
require the knowledge of the underlying distribution to
accurately model the transition probabilities. In a data-driven
setting however, an accurate distribution is often unknown;
we thus turn to confidence intervals to provide a similar
intuition. Two popular techniques are scenario approach
[6], [12] and conformal prediction [29], [33]. The former
is an optimisation-based technique that provides probably
approximately correct (PAC) guarantees on a user-defined
performance metric. The approach relies on independently
drawn samples and it is distribution-free, namely it requires
no previous knowledge about the underlying distribution
driving a system’s uncertainty. The latter is a statistical
technique providing confidence intervals for general predic-
tion algorithms; similarly to the scenario theory, it foregoes
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assumptions on the underlying distribution and on the actual
prediction mechanism.

The scenario approach (SA) is extensively employed in
data-driven verification and synthesis. Among others, in [9],
[2], [17] where the authors employ the scenario approach to
construct interval MDPs, equipped with probability intervals
derived from the scenario approach. One-step transitions are
used in [10] to define a PAC alternating simulation relation
between abstractions and the concrete system. Modeling
of unknown systems is also a prominent area of research:
in [21], the authors propose PAC over-approximations of
monotone systems, finally employed to build abstractions of
the concrete systems; [15] builds abstractions and synthesises
controllers based on data-driven growth rates. Data-driven
ℓ-complete models are presented in [24] for linear PETC
models and in [7] for general systems.

Conformal prediction (CP) is a lightweight statistical tech-
nique for uncertainty quantification of complex models [1],
[33], [29]. CP has been applied to a wide range of appli-
cations, e.g. in drug discovery [8], robotic motion planning
[19], and within a variety of machine-learning frameworks
[3]. CP has further been used for system verification under
temporal logic specifications [20], [5], [26]. In particular,
[25], uses CP to estimate the conformance between two
stochastic systems, while we are here instead interested
in using CP for checking a behavioral inclusion property
between two systems. Closest to our work are [13], [22],
[31], [4] in which CP is applied to reachability problems
where no system knowledge and only a finite number of
system observations is available.

Contributions. In this work, we tackle a verification
problem for unknown dynamical systems. Our approach
constructs a data-driven finite abstraction, belonging to the
so-called Strongest Asynchronous ℓ-complete Abstractions
(SAℓCA), from a collection of independent samples of the
underlying system’s trajectories. We define the notion of
probabilistic behavioural inclusion to relate the abstraction
to the system behaviours stemming from random samples.
We leverage two approaches to provide confidence results
on the probabilistic inclusion: the scenario theory for non-
convex problems, and the conformal prediction approach.
Further, we compare the two methods, highlighting their
similarities and differences, in terms of the confidence guar-
antees they offer and of computational requirements. Once
the probabilistic behavioural inclusion is established, the
desired property can then be verified directly on the finite
state abstraction with standard techniques [30].
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II. PRELIMINARIES

A. Notation

Let ∆ be the event space of a random vector and denote by
(∆,F ,P) the associated probability space, where F is a σ-
algebra and P : F → [0, 1] is a probability measure on ∆. For
any fixed N ∈ N, we consider a sequence ω0, ω1, ..., ωN of
independent identically distributed random variables (RVs)
with ωi : ∆ → Ω, where (Ω,G) is a measurable space and,
for x ∈ ∆, ω̂i := ω(x) denotes a realization of it. Our work
takes a distribution-free outlook, i.e. P is unknown.

Given a set Q we denote its H-th cartesian product by
QH , unless otherwise specified. For qH ∈ QH we denote
its (k + 1)-th element by qH(k) for k ∈ [0, H − 1]. We
denote the restriction of qH to the interval I = [k1, k2],
with k1 < k2 < H by qH |[k1,k2] := qH(k1)...qH(k2). Given
two sequences qH,1 ∈ QH and qH′,2 ∈ QH′

we denote
their concatenation by qH,1 · qH′,2. For ∞ > H ≥ H ′, we
say that qH,1 exhibits qH′,2 if there exists k ≥ 0 such that
qH,1(k + i) = qH′,2(i) for i = {0, ...,H ′ − 1}, denoted
qH,1 |= ♢qH′,2. Given a set of sequences Q ⊆ QH we
say that Q exhibits qH′,2 if there exists qH ∈ Q such that
qH |= ♢qH′,2, denoted Q |= ♢qH′,2.

B. Scenario Optimization

The scenario approach (see [6] for more details) constructs
an optimisation program

min
θ

cT θ

s.t. g(θ, ω̂i) ≤ 0, for all i = 1, ..., N,
(1)

where θ ∈ Rd represents the optimisation variable, c ∈ Rd

represent the cost, g : Rd × Ω → R is a constraint function.
Once the optimal solution θ∗N is computed, the scenario
theory allows to obtain high-confidence bounds on the proba-
bility of constraint violation. The value θ∗N depends on the N
collected samples ω̂1, ..., ω̂N ; the following theorem allows
to determine the probability that θ∗N would violate the new
constraint given by a realization of ω0, g(θ∗N , ω̂0).

Theorem 1 (PAC bounds [12, Theorem 1]). Given a confi-
dence parameter β ∈ (0, 1) and the solution θ∗N , it holds

PN (P{g(θ∗N , ω0) > 0} ≤ ϵ(s∗N , β,N)) ≥ 1− β, (2)

where ϵ(·) can be computed via a polynomial equation (omit-
ted here for brevity) and s∗N is the so-called complexity of
the solution, representing the minimum number of constraints
(m ≤ N ) that yield the same solution θ∗N . □

C. Conformal Prediction

Conformal prediction (CP) is a statistical technique pro-
viding confidence intervals for general prediction algo-
rithms. Let us consider the aforementioned random1variables
ω0, ..., ωN . In this work we employ a formulation of CP
where we have sampled ω̂1, ..., ω̂N ; based on that alone,
we want to predict ω0. With this, we emphasize that no

1The framework of CP requires a slightly weaker assumption than i.i.d.,
namely it is sufficient that they are exchangeable, see [29] for details.

additional information or feature of ω0 is available at the
time of prediction. Additionally, we adopt the formulation of
CP known as split conformal prediction [23], [11], where the
set of observations is divided into two subsets as described
below. The set of outcomes is usually formalized through
the notion of a bag. A bag Î := *ω̂1, ..., ω̂N+ = *ω̂i+Ni=1

is a collection of elements, or examples, in which repetition
is allowed and any information about the ordering of the
list ω̂1, ..., ω̂N is removed. We partition Î in a training
set Îtrain and a calibration set Îcal, for simplicity assume
Îtrain = {ω̂i : i = 1, ...,M}. The first step is the definition of
a nonconformity measure A(Îtrain, ω), a real valued function
that assigns a measure to how different an element ω ∈ Ω is
from the training examples, see [33] for details. We adopt this
measure to assign to every observation in the calibration set a
score indicating how different the observation is when com-
pared to the training examples, known as the nonconformity
score Rj := A(Îtrain, ω̂j) for ω̂j ∈ Îcal. We are interested in
predicting the nonconformity score R0 from the bag *ω̂i+Ni=1.
Formally, given a failure probability δ, we want to estimate
a prediction interval γδ(ω1, ..., ωN ) such that

PN+1[R0 ≤ γδ(ω1, ..., ωN )] ≥ 1− δ, (3)

where PN+1 is the product measure on the N + 1 i.i.d.
RVs. It can be shown [29] that γδ(ω1, ..., ωN ) is the (1 −
δ)-th quantile of the empirical distribution of the values
RM+1, . . . , RN , and RN+1 := ∞. By defining p :=
M+⌈(N−M+1)(1−δ)⌉ we set γδ(ω1, ..., ωN ) = Rp, that
is the p-th smallest nonconformity score is an upper bound
for R0; note that if p = N + 1, inequality (3) is trivially
valid but uninformative.

III. PROBLEM FORMULATION

A. System Description and Verification Problem

Consider a time-invariant dynamical system with symbolic
outputs described by

Σ(x) :=


xk+1 = f(xk),

yk = h(xk),

x0 = x,

(4)

where xk ∈ X ⊂ Rnx is the plant’s state at time k ∈ N+, nx

is the state-space dimension, x0 is the initial state, yk ∈ Y
is the system output with |Y| < ∞. The expression of the
flow f(·) and of the output map h(·) are unknown, but we
assume that given an initial condition x0 we can observe
the output sequence or behaviour y0, y1, ... generated by
Σ(x0). We denote with BH(Σ(x0)) ∈ YH the behaviour
for the time interval k = [0, H − 1] generated by Σ(x0),
and by BH(Σ) the set of all behaviours for the same time
interval generated by all possible initial conditions. The map
h(·) can be regarded as a partitioning map, that returns the
partition label (or index) corresponding to any state xk. This
observation relates to the notion of equivalence class [30]:

[y] = {x ∈ X | y = h(x)},
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and similarly, we define the equivalence class for an output
sequence yℓ,i = yi(0)yi(1)...yi(ℓ− 1) ∈ Yℓ as

[yℓ,i] = {x| yi(j) = h(f j(x)) for j = 0, ..., ℓ− 1}, (5)

with f0(x) = x. Equation (5) states that for i = 1, ..., |Y|ℓ,
i.e. for every ℓ-sequence yℓi ∈ Yℓ the output equivalence
class [yℓ,i] is the set of points x such that if the dynamical
system is initialized at x, then the output sequence over the
time interval [0, ℓ − 1] corresponds to yℓ,i. Further, for all
ℓ ≥ 1, the set of all [yℓ,i] forms a partition of the domain X .

Our goal consists of verifying whether an unknown system
(4) satisfies a given specification in a probabilistic sense.
Examples of specifications can be found in [30].

B. Transition Systems, ℓ-complete Models, System Relations

We solve the verification problem with an abstraction-
based technique: we represent the concrete system Σ by a
(finite-)state transition system, such that it is amenable to
algorithmic iterative verification frameworks.

Definition 1 ((Autonomous) Transition System (TS) [30]).
A transition system (TS) S is a tuple (X ,X0, σ,Y,H), where
X is the set of states, X0 ⊆ X is the set of initial states, Y
is the set of outputs, σ ⊆ X ×X is a transition relation, and
H : X → Y is an output map.

One can represent system (4) equivalently in the form of
a TS, where the state space is given by Rnx , the transition
relation is dictated by f , and the output map is dictated by
h(·). Denote by S the transition system equivalent to (4). We
extend our notation S(x0), BH(S(x0)), and BH(S) for TSs
using this equivalence. S and Σ have identical behaviours,
that is bH ∈ BH(Σ) ⇐⇒ bH ∈ BH(S). From now on, we
assume that for the concrete system it holds X0 = X .

As we assume to have access solely to S’s behaviours,
i.e. sequences of elements of Y , we first discuss which
abstraction class suits this scope. In [27], [28], the authors
present a particular class of abstractions known as Strongest
Asynchronous ℓ-complete Approximations (SAℓCA). We mo-
tivate our interest in the SAℓCA of S because it can be
constructed directly by knowing the set of all behaviours2 of
a system, BH(S), bypassing the need for the knowledge of
the internal mechanisms of the underlying model.

We now illustrate how to construct such abstractions. Let
us define the set of all ℓ-long subsequences of all H-long
behaviours in the TS S as

Πℓ,H :=
⋃

b∈BH(S)

⋃
0≤k≤H−ℓ

b|[k,k+ℓ−1]. (6)

Note that Πℓ,H ⊆ Yℓ, and from the knowledge of Πℓ+1,H ,
all the (ℓ+ 1) subsequences, we can easily obtain Πℓ,H , all
the ℓ subsequences.

Definition 2 ((Strongest asynchronous) ℓ-complete abstrac-
tion (adapted from [28])). Let S := (X ,X0, σ,Y,H) be a

2Originally in [27] the authors construct the SAℓCA using infinite length
behaviours, but under the assumption that X0 = X it is possible to use
finite length behaviours equivalently.

Fig. 1: Partition of the domain based on the set Π2,H

sequences (left), and the resulting SAℓCA for ℓ = 1 (right).

TS, and let Πℓ+1,H be defined as in (6). Then, the TS Sℓ :=
(Xℓ,Xℓ0, σℓ,Y,Hℓ) is called the strongest asynchronous ℓ-
complete abstraction (SAℓCA) of S, where Xℓ := Πℓ,H ,
Xℓ0 := Xℓ, Hℓ(xℓ) := xℓ(0) and

σℓ := {(xℓ, x
′
ℓ) : xℓ · x′

ℓ(ℓ− 1) ∈ Πℓ+1,H} (7)

Note that, the set of states Xℓ consists of output sequences
of the original system, that is, if [yℓ,i] ̸= ∅ then yℓ,i ∈ Πℓ,H .
By construction, and intuitively, it holds that BH(S) ⊆
BH(Sℓ) [28]. The advantage of knowing the SAℓCA of
a system is that we have obtained a finite-state machine
containing all the behaviors of the original (possibly infinite-
state) system at the expense of accepting the existence of
a set of spurious behaviours, that is, behaviours that the
abstraction contains but the concrete system doesn’t. We
provide an example of the construction of the SAℓCA for
the bi-dimensional linear system{

3x
(1)
k+1 = x

(1)
k + 2x

(2)
k ,

3x
(2)
k+1 = x

(2)
k − 1.8x

(1)
k ,

with Y = {1, 2, 3} in Figure 1. The set Π2,H is independent
of H for H ≥ 2; for more details about this system, the
interested reader may refer to [7].

Definition 3 (Behavioural inclusion [30]). Consider two
systems Sa and Sb with Ya = Yb. Sa is behaviourally
included in Sb until horizon H if this holds until horizon
H , i.e. BH(Sa) ⊆ BH(Sb), denoted Sa ⪯BH

Sb. □

From the discussion above and Definition 3 we state that
any dynamical system S defined as in (4) is behaviorally
included by its SAℓCA Sℓ until horizon H . Therefore, any
property satisfied by all the behaviours of the abstraction is
necessarily satisfied by all the behaviours of the underlying
system; the converse is however not true.

IV. DATA-DRIVEN ABSTRACTIONS

From here on for the probability space (∆,F ,P) we fix
the sample space to be ∆ = X where X is a compact
subset of Rnx and P = Px, where Px represents a probability
distribution over the domain X , which might be known or
unknown. As previously mentioned, we assume to collect the
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behaviours of (4) by sampling initial conditions. In practice,
we interact with the following random object

Σr(x) :=


xk+1 = f(xk),

yk = h(xk),

x0 ∼ Px.

(8)

Let us denote by Sr the equivalent representation of the
system above as TS. Hence, the behaviour BH(Sr(x0))
represents a RV originating from Px; we denote by bH ∈
BH(Sr) the set of all behaviours of Sr with strictly positive
probability measure. Consider a sequence of N i.i.d. RVs
x0,1, ..., x0,N ∼ Px and let ωi : X → YH be defined as ωi :=
BH(Sr(x0,i)). We sample N initial conditions in the dynam-
ical system, and consider the resulting H-long behaviours
displayed by Sr, denoted by Î := *BH(Sr(x̂0,i))+Ni=1 =
*ω̂i+Ni=1. Now, let us define a data-driven version of (6) for
finite behaviours using this set

Π̂ℓ,H :=
⋃
ω̂∈Î

⋃
k∈[0,H−1]

ω̂|[k−ℓ+1,k], (9)

where the hat remarks that this set is derived from samples.

Definition 4 (Data-driven SAℓCA). Given Π̂ℓ+1,H the
TS Ŝℓ := (X̂ℓ, X̂ℓ0, σ̂ℓ,Y,Hℓ) is called the data-driven
(strongest asynchronous) ℓ-complete abstraction (SAℓCA) of
Sr, where X̂ℓ := Π̂ℓ,H , X̂ℓ0 := Π̂ℓ,H , Hℓ(xℓ) := xℓ(0)

σ̂ℓ := {(xℓ, x
′
ℓ) : xℓ · x′

ℓ(ℓ− 1) ∈ Π̂ℓ+1,H} (10)

Remark 1. To distinguish between the data-driven SAℓCA
viewed as a function of the bag of RVs I :=
*BH(Sr(x0,i))+Ni=1 = *ωi+Ni=1 or viewed as a function of
the bag of realizations Î = *ω̂i+Ni=1 we use the notation
Ŝℓ(I) and Ŝℓ(Î) respectively.

By comparing (6) and (9) it is easy to see that Π̂ℓ+1,H ⊆
Πℓ+1,H . If Π̂ℓ+1,H = Πℓ+1,H the data-driven SAℓCA would
be identical to the “true” SAℓCA (modulo zero-measure
behaviours), and as such we could conclude that we have
obtained a data-driven abstraction which behaviorally in-
cludes the original system. However, in general, it holds that
Π̂ℓ+1,H ⊂ Πℓ+1,H . Recall that the set of all [yℓ+1,i] forms a
partition of the domain, and thus so does Πℓ+1,H . Therefore,
unless every [yℓ+1,i] has been visited at least once by some
of the state trajectories initialized at one of the N initial
conditions *x̂0,i+Ni=1, the set Π̂ℓ+1,H will not be equal to
Πℓ+1,H . Moreover, we have no way of knowing the missing
subsequences Πℓ+1,H \ Π̂ℓ+1,H . However, we show that we
can use either the scenario approach or conformal prediction
to upper bound the probability measure of the equivalence
classes of the sequences belonging to Πℓ+1,H \ Π̂ℓ+1,H .

For this reason, we provide a generalization of Definition 5
which bridges the random nature of our abstractions with the
formal verification of specifications on the original system.

Definition 5 (Probabilistic Behavioural Inclusion). Consider
a TS Sa, a sequence of N + 1 i.i.d. RVs x0,0, ..., x0,N ∼ µ,
let ωi : X → YH be defined as ωi := BH(Sa(x0,i)) and
define I = *ωi+Ni=1. Let Sb(I) be a TS as per Definition 4,

with Ya = Yb. We say that Sa is behaviourally included in
Sb with probability greater or equal than 1− ϵ until horizon
H with respect to µ if it holds:

µ [B(Sa, Sb(I))] ≥ 1− ϵ, (11)
B(Sa, Sb(I)) := BH(Sa(x0,0)) ⊆ BH(Sb(I)),

where Sa(x0,0) denotes the internal behaviour of system Sa

starting from x0.

The characterisation provided by (11) describes the be-
haviours emerging from system (8) which are in fact RVs.
Thus, the probabilistic behavioural inclusion does not merely
‘count’ the behaviours, but rather weights them by their
associated probability. In other words, relation (11) defines,
or rather provides an upper bound, the maximum probability
mass of unseen (i.e. unpredictable) behaviours by ϵ. Consid-
ering the deterministic behavioural inclusion, all behaviours
in Sa ought to lie within B(Sb). If, instead, two systems
satisfy the probabilistic behavioural inclusion, the total sum
of the probability assigned by µ to the behaviours that do
not lie within B(Sb) should be smaller than ϵ.

Ultimately, we aim at relating the concrete system Sr with
its data-driven SAℓCA through a probabilistic behavioural
inclusion. By constructing an abstraction based on the col-
lected behaviours of a system, we are implicitly asking how
predictable a system is based on its past realizations. We
employ two different techniques to provide guarantees about
relation (11), outlined in the following.

A. Scenario Theory Guarantees

Let us sample N i.i.d. initial conditions in the dynam-
ical system, and consider the resulting H-long behaviours
displayed by Sr, denoted by Î := *BH(Sr(x̂0,i))+Ni=1 =
*ω̂i+Ni=1. We construct the data-driven SAℓCA as described
in the previous section. We are now interested in using the
scenario approach to show that the concrete system is be-
haviorally included in such an abstraction with a probability
greater or equal than some constant. To define the scenario
program, we encode every collected H-long behaviour as a
binary vector where every entry encodes whether one (out
of the possible |Y|ℓ+1) ℓ + 1 sequences is exhibited by
the H-long behaviour, as per [7]. Let yℓ+1,j ∈ Yℓ+1 for
j ∈ {1, ..., |Y|ℓ+1} be a sequence of length ℓ+1, and define
v : YH → {0, 1}|Y|ℓ+1

to be the map encoding an H-
sequence as a binary vector whose j-th entry is equal to
1 if yℓ+1,j appears in BH(Sr(x̂0,i)). Formally

v(j)(ŵi) :=

{
1 if ω̂i |= ♢yℓ+1,j ,

0 else ,

for j ∈ {1, ..., |Y|ℓ+1}. We define the scenario program as

min
θ∈Θ

1T
|Y|ℓ+1 · θ

s.t. (θ − v(ŵi)) ≥ 0, i = 1, . . . , N,
(12)

where 1|Y|ℓ+1 is a column vector of ones, and θ ∈ R|Y|ℓ+1

.
It can be shown [7] that the solution θ∗N represents which
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(ℓ + 1)-sequences were witnessed within the sample set Î,
and that the complexity s∗N is equal to the cardinality of the
smallest subset of the N collected trajectories that includes
all the ℓ + 1-sequences. After setting a desired confidence
parameter β, we employ Theorem 1, in order to provide
an upper probability bound ϵ(s∗N , β,N). This value sets an
upper limit to the violation of the scenario constraints, i.e.
the probability of witnessing an unseen ℓ+ 1-sequence. We
can now state the following proposition [7].

Proposition 1. Consider a confidence β, a sequence of N+1
i.i.d. RVs x0,0, ..., x0,N ∼ µ, let ωi : X → YH be defined as
in Definition 5 and Î = *ω̂i+Ni=1. It holds that

PN
x

[
Px

[
B(Sr, Ŝℓ(Î))

]
≥ 1− ϵ(s∗N , N, β)

]
≥ 1− β.

(13)

In practical terms, after the construction of Ŝℓ, the prob-
ability of sampling a new (initial condition leading to a)
behaviour that is not included in its behaviours is bounded
by ϵ, with confidence β. According to Definition 5, with
confidence not smaller than 1−β, Sr is behaviorally included
in Ŝℓ with probability greater or equal than 1−ϵ until horizon
H with respect to the distribution Px, as the probability is
related to the next, single, sample.

B. Conformal Prediction Guarantees
Consider again the set Î. We split the data set into two

parts, denoted Îtrain of cardinality M and Îcal of cardinality
N − M ; we use the former to construct the set Π̂ℓ+1,H

according to (9) and derive the data-driven SAℓCA Ŝℓ

as shown in Definition 4 and the latter to compute the
nonconformity scores. According to Section II-C for every
ω̂i ∈ Îcal we define the following nonconformity score

Ri := A(Îtrain, ω̂i) :=

{
0 if ω̂i ∈ BH(Ŝℓ(Îtrain)),

1 else.
(14)

Without loss of generality let the Ri’s be ordered in non-
decreasing order, we compute the smallest δ that returns
a nonconformity score of 0, i.e. δmin := min{δ : p =
M + ⌈(N −M + 1)(1− δ)⌉, Rp = 0}. We conclude that

PN+1
x [R0 ≤ Rp] ≥ 1− δmin, (15)

and, since Rp is 0, we have obtained a bound on the
probability that the next initial condition will generate a
behaviour that is already captured by the SAℓCA Ŝℓ.

Proposition 2. Consider a sequence of N + 1 i.i.d. RVs
x0,0, ..., x0,N ∼ µ, let ωi : X → YH and I be defined as in
Definition 5. Then it holds that

PN+1
x

[
B(Sr, Ŝℓ(I))

]
≥ 1− δmin. (16)

Proof. The proof follows from (15).

In other words, the probability that the behaviour arising
from x0,0 is not included in the behaviours of Ŝℓ is bounded
by δmin. With respect to Definition 5, Sr is behaviorally
included in Ŝℓ with probability greater or equal than 1−δmin

until horizon H with respect to the distribution PN+1
x , as the

probability is defined on the whole sequence of RVs.

ϵ(0.1) ϵ(10−2) ϵ(10−3) ϵ(10−6) ϵ(10−9) δ δ̂
5.8 9.1 11.8 19.8 27.3 5.9 1.6

34.1 39.4 44.0 55.9 66.4 3.9 1.3

TABLE I: Value of ϵ for various values of β (in brackets), δ
and the empirical δ̂ – for the Fighter F-16 benchmark (top)
and the TCL (bottom). Values are multiplied by 10−4.

C. Discussion of SA and CP guarantees

Let us discuss and highlight the critical differences be-
tween the guarantees that we derive using these two distinct
approaches. Recalling the scenario approach guarantees in
(13), we notice that the inner probability layer can be
derived as a conditional statement on the sequence of RVs
x0,0, ..., x0,N , i.e. we rewrite the inner probability as

Px

[
B(Sr, Ŝℓ(Î))

]
= PN+1

x

[
B(Sr, Ŝℓ(I)) | I = Î

]
(17)

whereas the outer probability layer is defined on the product
space XN and defines a lower bound on the probability
of drawing samples x̂0,1, ..., x̂0,N such that (17) holds. In
contrast, conformal prediction returns a bound directly on
the joint probability (16) defined by the RVs x0,0, ..., x0,N .
In [32] the author establishes how to derive PAC-type guar-
antees for conformal prediction, obtaining a validity result of
split CP conditional to the calibration set. Further, in [18],
the authors establish a link between a particular formulation
of scenario optimization (not applicable in our case) and
conformal prediction. We plan to further explore the details
and connections between the two fields.

V. EXPERIMENTAL EVALUATION

F-16 Fighter Jet. We employ the F-16 model from
[14], providing an accurate 13-dimensional nonlinear rep-
resentation of a fighter jet. We collect N = 104 trajectories,
with randomness in the initial conditions and collect altitude
data. We are interested in verifying that the altitude should
always be greater than 3575 feet; the domain [3575, 3625]
is divided into 20 partitions. To construct the SAℓCA with
ℓ = 4 we split the trajectories into sequences of length 5,
resulting in 52 different sequences. Let us first consider the
scenario guarantees: by Theorem 1 we obtain the bound ϵ
varying the value of β, as reported in Table I. Next, we
tackle the problem from the CP outlook: we split the dataset
into a training and calibration sets, and we compute the
nonconformity scores Ri as per (14) on a calibration dataset,
composed of M = N/2 samples. We pick the highest index
p (see (3)) such that the non-conformity score is 0, resulting
in a value of δmin = 5.9 · 10−4. The confidence β plays a
significant role in the final values of ϵ: setting β = 10−1

returns ϵ ≈ δ, whilst as β decreases towards more typical
values (10−6, 10−9), the ϵ bound deteriorates. To validate the
CP results, we sample an additional 5 ·104 initial conditions,
and compute the empirical bound δ̂ by counting the number
of sequences that violate the nonconformity score condition.

The resulting data-driven abstraction certifies that the un-
safe state (representing the plane altitude exiting the domain)
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is unreachable from the initial states, thus satisfying the
safety property, within the probability bounds of Table I.

Thermostatically Controlled Load. We consider a
thermostatically controlled load (TCL) benchmark [16]. A
(simple) deterministic room temperature evolution model is

θk+1 = a · θk + (1− a) · (θamb −mk · Tr · P ), (18)

where a, Tr and P are thermal parameters, θk and θamb are
respectively the room temperature at time k and the external
temperature, mk is a binary control input (ON or OFF)
designed to maintain the temperature at 20 ± 0.5◦C. The
domain is D = [19.25, 20.75], partitioned into 20 regions.

We fix ℓ = 4 and H = 50, we sample N = 104 initial
conditions uniformly, obtaining 171 5-sequences. We report
in Table I ϵ and β (for the SA) along with the minimum
value of δ (for the CP), validated empirically by sampling
additionally 5 · 104 initial conditions. We verify on the
SAℓCA that the system temperature remains in the prescribed
bounds, with the aforementioned probability bounds.

VI. CONCLUSIONS

We have presented a method to construct a data-driven ab-
straction of a deterministic system with unknown dynamics.
The abstraction can be used to verify safety specifications,
equipped with specific probability guarantees. Under two dif-
ferent perspectives, the scenario approach and the conformal
prediction, we characterise a probabilistic behavioural inclu-
sion relation. These two approaches provide probability guar-
antees with different interpretations, the former including a
conditional probability and a confidence parameter, the latter
stemming from joint probability distributions. Future work
includes further investigations on the existing links between
SA and CP. We plan to extend the provision of guarantees
for infinite-horizon properties under the conformal prediction
framework, and formulate control synthesis problems.
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