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Abstract— This paper presents a nonlinear model predictive
control strategy for automotive fuel cell system operation.
The system-level air-path modeling approach, widely adopted
in control-oriented studies, is extended by the critical aspect
of membrane hydration. The control problem formulation
reflects the task of dynamic power tracking and efficiency-
optimized actuation of the peripheral components as well as
adherence to system constraints to avoid harmful operation.
This is combined with an analysis of the design parameters
sampling time, integration scheme, and prediction horizon for
efficient transcription of the optimal control problem. Closed-
loop simulation results, conducted using a sampling rate of 8ms,
the standard fourth-order explicit Runge-Kutta method with
one integration step and a horizon length of 25, successfully
meet the control objectives.

I. INTRODUCTION

Proton exchange membrane fuel cells (PEMFCs) convert
chemical energy directly into electricity through the electro-
chemical reaction between hydrogen and oxygen, producing
water and waste heat as byproducts. PEMFCs hold great
promise for automotive applications as they offer several
advantages: efficiencies of 50-55% surpassing those of in-
ternal combustion engines (15-35%), zero local emissions,
superior power and energy density compared to recharge-
able batteries, and the ability to refuel rapidly [1]. An
automotive fuel cell system (FCS) comprises the fuel cell
(FC) stack and various peripheral components: the air-path
subsystem, hydrogen supply subsystem, water management
subsystem, thermal management subsystem, and electrical
subsystem. The air-path subsystem, which supplies oxygen
by pressurizing ambient air using an electric compressor,
holds particular significance for several reasons. Firstly, the
compressor consumes up to 30% of the FC stack power
output, making it a significant parasitic load. Secondly, the
speed of power delivery by the FCS is limited by the
dynamics of the air path, which are slower than those of the
hydrogen supply and the electrochemical reaction. Thirdly,
the air path is subject to critical constraints, including an
oxygen excess ratio (OER) as well as compressor surge and
choke [2]. In addition to the well-established issue of air-path
control, the performance of the PEMFC itself depends on the
proton conductivity of its membrane. Thus, balancing the
membrane’s water content between too dry conditions with
high membrane resistance and too wet conditions, where
liquid water blocks the reactant pathways, is essential [3].
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Overall, the control objectives are (i) dynamic power re-
sponse, (ii) high FCS efficiency, and (iii) preventing safety-
critical and lifetime-limiting states. Particularly during dy-
namic operation and due to the different time scales, main-
taining operational limits is challenging [3].

A. State of the Art

Various studies have applied model predictive control
(MPC) to FCSs with a focus on air-path dynamics, e.g. [2],
[4]. A few have broadened the system’s scope by including
other subsystems and providing more detailed FC modeling
for a more realistic representation and the enforcement of
crucial constraints outside the air path, as seen in [5], [6].
In all these MPC applications to FCSs, the characteristic
nonlinear system dynamics are linearized around the current
operating point (OP).
Nonlinear MPC (NMPC) directly optimizes the nonlinear
system dynamics, potentially enhancing prediction accuracy,
especially during transients. Luna et al. [7] apply NMPC
to a FCS with a focus on degradation and other aspects
beyond the air-path dynamics. Neisen et al. propose two
NMPC variants for automotive FCSs in [8], [9] with a focus
on the air-path dynamics, where [9] also considers the FCS
in a hybrid setting with a battery system. They employ the
GRAMPC toolbox [10] to solve the continuous-time optimal
control problem (OCP). In contrast, this work uses the
direct method. Direct methods offer advantages over indirect
ones, as they handle inequality constraints more easily,
with established approaches [11]. Schmitt et al. propose a
tracking NMPC for the air-path control of FCSs tailored to
a 10kW test bench [12]. Despite the small power not being
representative of the automotive application, they notably
investigate aspects of real-time capability, including the
choice of integration scheme and condensing method [13],
and evaluate their control algorithms on embedded hardware
tailored to automotive environments.

B. Contribution

This paper extends the work of Neisen et al. and Schmitt
et al. application-wise by specifically considering the humid-
ification state of the membrane in addition to the air path in
the NMPC design. We combine this with numerical analyses
to guide the selection of the design parameters sampling
time, integration scheme, and prediction horizon, taking into
account both computational cost and control performance.
The paper is structured as follows: In Section II, we present
the control objectives and structure. Section III describes the
dynamic equations. Section IV outlines the NMPC’s OCP
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formulation, and Section V covers the aformentioned numer-
ical analyses for its efficient transcription into a nonlinear
program (NLP). Finally, Section VI presents closed-loop
simulation results.

II. CONTROL TASK & STRUCTURE

Given the current state of a FC dominant electric vehicle,
which comprises a FCS and a small hybridization battery, the
task of the control algorithm is to determine the optimal actu-
ator inputs so that the vehicle’s power output, Pdrive, matches
the power demand, all while maintaining safe and efficient
operation. For the context of this work, this control task
is divided between two controllers. The high-level NMPC
incorporates a static model of the FCS and a dynamic model
of the battery. Minimizing the FCS’s efficiency and charge
depletion of the battery, it determines the optimal power
split between the two systems. The statically optimized
operating points of the FCS can further serve as references
for the peripheral components in the low-level NMPC, which
directly actuates the fuel cell electric vehicle (FCEV). For
that purpose, the low-level NMPC incorporates a dynamic
model of the FCS and a static model of the battery. It tracks
the references provided by the high-level controller and thus
ensures that the power demand is dynamically met and FCS
efficiency is statically maximized. At the same time, it avoids
critical states which would lead to damage or aging of the
FCS components. Here, we specifically consider preventing
oxygen starvation, compressor surge and choke as well as
maintaining proper membrane hydration.
The division of the control task between two controllers is
motivated by the different relevant time scales, which are
slower for the power-split optimization than for the low-level
controller. The latter is focus of this work and its controller-
internal model is presented in the following.

III. SYSTEM DYNAMICS

The control-oriented model of the FCEV primarily com-
prises a dynamic FCS model and a static battery model,
as illustrated in Fig. 1. Details of the battery model, along
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Fig. 1: Schematic overview of the model structure used for
control-oriented modeling the FCEV.

with power loss considerations in the DCDC converters,
are addressed in [14]. This section focuses on the FCS
model, comprising the dynamics of the air path and the static
relationships for stack voltage, membrane humidity, and

anode. Our model is largely based on the zero-order model
by [3], which is primarily developed using first principles.
It is based on the following assumptions: (1) All gases are
treated as ideal gases; (2) The temperature of the FC stack
is perfectly controlled by the cooling system, ensuring a
constant and uniform stack temperature of Tst = 80 ◦C; (3)
The properties of the flow exiting the cathode (temperature,
pressure, humidity) are assumed to be the same as those in-
side the cathode and are considered to dominate the reaction
at the catalyst layers; (4) Water inside the cathode exists
solely in vapor form. Once the relative humidity exceeds
100%, it instantly condenses to liquid form and is removed.
Thus, flooding is not modeled; (5) Finally, spatial variations
are neglected.
Since the FCS model in [14], consisting of the air path and
the stack voltage, is expanded here for the consideration of
membrane humidification, this section concentrates on the
submodels which are added to or modified from [14].

A. Cathode flow model

For the cathode airflow dynamics, we apply mass continu-
ity and the ideal gas law to oxygen, nitrogen and water vapor
inside the cathode volume Vca. This yields the following
differential equations for the partial pressure of oxygen, pO2 ,
nitrogen, pN2 , and vapor, pH2O,ca:

dpO2

dt
=

R ·Tst

MO2 ·Vca
·
(
ṁout

O2,im − ṁreact
O2

− ṁout
O2,ca

)
, (1)

dpN2

dt
=

R ·Tst

MN2 ·Vca
·
(
ṁout

N2,im − ṁout
N2,ca

)
, (2)

dpH2O,ca

dt
=

R ·Tst

MH2O ·Vca

(
ṁout

H2O,im + ṁgen
H2O + ṁH2O,mem

+ ṁhum,ca
H2O − ṁout

H2O,ca − ṁcond
H2O

)
,

(3)

where R is the universal gas constant and Mi the molar mass
of the respective species i ∈ {O2,N2,H2O}. The inlet and
outlet mass flow rates, ṁout

i,im and ṁout
i,ca in (1) to (3), are

calculated using thermodynamic properties. The former are:

ṁout
O2,im =

xO2,atm

1+wim
· ṁout

im , (4)

ṁout
N2,im =

1− xO2,atm

1+wim
· ṁout

im , (5)

ṁout
H2O,im =

wim

1+wim
· ṁout

im , (6)

where ṁout
im is the inlet manifold exit flow, xO2,atm the molar

fraction of oxygen in ambient air, and wim the humidity ratio
in the inlet manifold. The latter is calculated as follows

wim =
MH2O

xO2,atm ·MO2 +(1− xO2,atm) ·MN2

· φatm · psat

patm −φatm · psat
,

where psat is the saturation pressure at Tst, and patm and Φatm
are the ambient pressure and relative humidity, respectively.
A linearized nozzle equation is used to calculate the cathode
exit flow rate, ṁca,out:

ṁca,out = kca,out(pca − pom), (7)
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where pca = pO2 + pN2 + pv,ca is the cathode total pressure,
pom the outlet manifold pressure, and kca,out the nozzle
constant. With ṁca,out defined in (7), the mass flow rate of
each species at the cathode exit, ṁout

i,ca, is given by:

ṁout
i,ca =

pi ·Mi

pO2 ·MO2 + pN2 ·MN2 + pv ·MH2O
· ṁout

ca (8)

Electrochemistry principles are used to calculate the rates
of oxygen consumption, ṁreact

O2
, and water vapor generation,

ṁgen
H2O, from the stack current Ist:

ṁreact
O2

=
MO2 ·n · Ist

4 ·F
, ṁgen

H2O =
MH2O ·n · Ist

2 ·F
, (9)

where F is the Faraday Constant and n the number of FCs
in the stack. The net vapor mass flow across the membrane,
ṁH2O,mem, is calculated in the membrane hydration model,
and the vapor injected by the humidifier, ṁhum,ca

H2O , is a control
input. Lastly, the amount of vapor that condenses instantly
once pH2O,ca exceeds psat, denoted as ṁcond

H2O, is defined as

ṁcond
H2O = Ψ · kcond ·

MH2O ·Vca

R ·Tst
· (pH2O,ca − psat) , (10)

where kcond is the condensation rate constant and Ψ the tran-
sition function between condensation (pH2O,ca > psat) and
no condensation (pH2O,ca ≤ psat). To avoid hard switching
between 0 and 1, we use an approximation with a sigmoid
function [15]:

Ψ =
1
π
· arctan

(
ksig · [pv,ca − psat]

)
+

1
2
, (11)

The constant ksig determines the width of the transition area,
thus balancing approximation error and numerical stiffness.

B. Membrane hydration model

The membrane hydration model based on [3] calculates the
water flow across the membrane and its water content. Both
are assumed to be uniform across the membrane’s surface.
The water transport occurs via two distinct mechanisms.
The first, electro-osmotic drag, involves water molecules
being dragged from anode to cathode by the protons, where
the amount of water is proportional to the electro-osmotic
drag coefficient, nd. Secondly, back-diffusion, driven by
the gradient of water concentration across the membrane,
typically moves water from cathode to anode, where we
assume the water concentration to change linearly over the
membrane thickness, tmem. Combining the two mechanisms,
the total molar flux from anode to cathode is

ṅH2O,mem,fc = nd ·
Ist

Afc ·F
−Dw ·

cH2O,ca − cH2O,an

tmem
, (12)

where Afc denotes the cell area and cH2O,i with i ∈ {an,ca}
the water concentration at the anode and cathode. The coef-
ficient nd and the diffusion coefficient of water through the
membrane Dw vary with the membrane water content λmem:

nd = 0.0029 ·λ 2
mem +0.05 ·λmem −3.4 ·10−19 (13)

Dw = Dλ · exp
(

2416 ·
(

1
303

− 1
Tst

))
(14)

Dλ =


10−6 ,λmem < 2
10−6 · (1+2 · (λmem −2)) ,2 ≤ λmem ≤ 3
10−6 · (3−1.67 · (λmem −3)) ,3 < λmem < 4.5
1.25 ·10−6 ,λmem ≥ 4.5

The membrane water content, as well as the water content
of the anode, λan, and cathode, λca, are calculated from the
respective water activities ai, i ∈ {an,ca,mem}:

λi =

{
0.043+17.81 ·ai −39.85 ·a2

i +36.0 ·a3
i ,0 < ai ≤ 1

14+1.4 · (ai −1) ,1 < ai ≤ 3,

with the water activities given by

ai =
pH2O,i

psat
, i ∈ {an,ca}, amem =

1
2
· (aan +aca) (15)

The vapor concentrations are calculated as follows:

cH2O,i =
ρmem,dry ·λi

Mmem,dry
, i ∈ {an,ca}, (16)

where ρmem,dry denotes the membrane’s dry density and
Mmem,dry the membrane dry equivalent weight. Finally, the
total vapor mass flow considered for the stack is

ṁH2O,mem = MH2O ·Afc ·n · ṅH2O,mem,fc. (17)

Note that the expressions for Dλ and λi violate the require-
ment for continuous differentiability. Therefore, the hard
switching is again numerically smoothed similar to (11).

C. Other static relations

We do not consider a dynamic model of the anode. Instead,
we assume perfect control of anode pressure pan, i.e. no
pressure difference across the membrane: pan = pca. We
further assume the relative humidity in the anode, Φan, to
be a control input. The hydrogen partial pressure, pH2 , is
then given by

pH2 = pan −φan · psat. (18)

Besides, in addition to the power consumed by the com-
pressor motor, Pcm, the total stack power, Pst, is further
diminished by the power consumption of the humidification
subsystem, Phum,ca and Phum,an. The constant term Paux simply
combines the power consumption of all remaining actuators.

Pfcs,net = Pst −Pcm −Phum,ca −Phum,an −Paux (19)

IV. CONTROL PROBLEM FORMULATION

A. Prediction model

The differential and algebraic equations that the controller-
internal model comprises are generally referred to as:

ẋ(t) = f (x(t),u(t), p(t))

y(t) = g(x(t),u(t), p(t)),
(20)

where x ∈ R7 and u ∈ R6 are the state and input vector,
respectively, and p ∈ R2 is the run-time parameter vector,
consisting of Tst and the battery state-of-charge. For our
NMPC design, we adopt the delta formulation. This allows
us to constrain the rates of change of the inputs while
maintaining a sparse OCP structure of the resulting NLP,
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given that multiple shooting is used. The approach extends
the state vector, denoted as x̃ in the augmented state space,
to include the actuated variables, while the augmented input
vector ũ comprises their rates of change:

x̃ =
[

pim pO2 pN2 pH2O,ca pom mim ωcp

Ist Ucm hom ṁhum,ca Φan Ibat
]⊤ ∈ R13

ũ =
[
İst U̇cm ḣom m̈hum,ca Φ̇an İbat

]⊤ ∈ R6

The outputs y we select for tracking are:

y =
[
Pdrive Pfcs,bus Pbat,bus ṁcr Π λca λan

]⊤ ∈ R7

Note that, from this point forward, the augmented state x̃ and
input vector ũ will simply be referred to as x and u.

B. Optimal Control Problem
The NMPC is defined by the OCP in (21). The objec-

tive function regulates the outputs to their reference val-
ues yref(t)∈R7 starting from the initial state x̂0 and penalizes
input changes over the prediction time tp. The last two
terms in the cost functional penalize the violation of soft
constraints, where ε ∈ R9 is the vector of slack variables.

min
x(·),u(·),ε

1
2

∫ tp

0

(
∥y(t)− yref (t)∥2

Q +∥u(t)∥2
R
)

dt

+∥ε∥2
Sq + |ε|Sl

s.t. 0 = x(0)− x̂0,

ẋ(t) = f (x(t) ,u(t) , p(t)) ∀t ∈ [0, tp],

0 ≥ h(x(t) ,u(t) , p(t) ,ε) ∀t ∈ [0, tp].

(21)

The inequality function h forces all states and actuators ex-
cept for the battery current Ibat to be non-negative. Addition-
ally, it considers actuator limits by imposing the following
input constraints:

Imin
st ≤ Ist, hom ≤ 1, Φan ≤ 1, (22)

where hom is the opening position of the outlet manifold
valve. The lower bound on the stack current ensures opera-
tion away from the open-circuit voltage, which is a catalyst
and membrane stressor [5]. To accommodate actuator dy-
namics that are not explicitly modeled, we also constrain
the rates of input changes, recognizing that this notably
simplifies the typically more complex behavior of actuators.

umin ≤ u ≤ umax (23)

The above constraints on the actuators are all enforced as
hard constraints, i.e., no constraint violation is allowed.
In contrast, the safety and degradation constraints considered
in this work are imposed as soft constraints to ensure
feasibility of the problem. Safe operation of the compressor
is guaranteed within the choke and surge boundary:

13.125 · ṁcr +0.82−Π ≤ εchoke

Π−278.6852 · ṁ2
cr −17.8817 · ṁcr −0.7888 ≤ εsurge

(24)

Moreover, to ensure sufficient delivery of oxygen to the
cathode channels, the OER λO2 = ṁout

O2 ,im/ṁreact
O2

is constrained:

λO2 ≤ λ
min
O2

+ ελO2
(25)

Lastly, the water content in the anode, cathode and mem-
brane, λi with i ∈ {ca,an,mem}, is constrained:

λi,min − ελi,min ≤ λi ≤ λi,max + ελi,max (26)

V. ANALYSES FOR PROBLEM TRANSCRIPTION

Using the so-called direct method, the continuous-time
OCP in (21) is discretized. Here, multiple-shooting is applied
and the resulting NLP reads:

min
x0,...,xN−1,
u0,...,uN−1,

ε

1
2

N−1∑
k=0

∥yk − yref,k∥2
Q +∥uk∥2

R +∥ε∥2
Sq + |ε|Sl

s.t. 0 = x0 − x̂0,

xk+1 = F (xk,uk, pk) k = 0, . . . , N −1,
0 ≥ h(xk,uk, pk,ε) k = 0, . . . , N −1

(27)

When transcribing the OCP, several design aspects influence
the numerical size of the NLP, which affects both the
computational cost of solving it and the resulting control
performance. In this work, we analyze the choice of predic-
tion horizon N, integration scheme, and sampling time Ts.

A. Sampling time Ts

The sampling time determines the upper bound of achiev-
able control bandwidth. Ideally, we seek the control response
time to be as fast as the fastest time constant of the prediction
model. To analyze its time constants, we simulate the model
with inputs corresponding to a power trajectory covering 100
different OPs from 10kW to 50kW. At each OP, the system
dynamics are linearized and the eigenvalues λOP of the
system matrix AOP = ∂ f/∂x

∣∣
OP are evaluated. We assume, that

the reciprocal of each eigenvalue is a good representation of
the autonomous response time of the corresponding system
mode at the respective OP. We further assume that the
resulting eigenvalues λOP are a good approximation of the
dynamic behavior of the controller-internal model, since the
simulation trajectory covers a wide range of different OPs.
Upon evaluating the time constants, we find the fastest
system mode to have a time constant between 7.6ms and
9ms, while the system’s slowest time constant is 1.3s. The
former provides a guide in selecting an appropriate order of
magnitude for the sampling time. Here, we choose Ts = 8ms.

B. Numerical integration scheme and step size

Every numerical integration scheme applied to the pre-
diction model corresponds to a discretization error and a
computational cost, both of which we aim to minimize.
To select an appropriate scheme, we investigate accuracy
and computational cost for explicit Runge-Kutta (ERK) and
implicit Runge-Kutta (IRK) methods with different stages s.
For the latter, we utilize Gauss-Legendre (GL) collocation
methods of order p = 2 ·s and Radau IIa (RDIIa) methods of
order p = 2 · s−1. This approach is adopted from [12]. All
mentioned integration schemes are implemented in MATLAB
using acados [16] and each scheme is referred to with its
abbreviation and the number of stages s, i.e. ERK with four
stages is denoted as ERK4.
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Fig. 2: Relative discretization error vs. mean CPU time for
tested integration schemes.

As a measure for accuracy, we define the relative discretiza-
tion error erel, for a simulation of Nt time steps starting from
the initial state x̂0 with a constant input u, as follows:

erel =
1
nx

nx

∑
i=1

1
Nt

Nt

∑
k=0

|F(xk,uk, pk)−Fgt(xk,uk, pk)|
Fgt(xk,uk, pk)

, (28)

where nx is the number of states. The subscript ”gt” refers to
the ground truth discretization, which is numerically calcu-
lated with GL3 and 400 integration steps. We evaluate erel for
each integration scheme and a range of integration steps from
1 to 10, where one integration step corresponds to a step size
of 8ms. Additionally, we determine the corresponding mean
CPU time out of 4000 simulation repetitions, conducted on a
Lenovo T480s laptop, with a Intel Core i7-8550U at 1.8GHz
with 16GB RAM. The resulting relationship between erel and
mean CPU time is shown in Fig. 2.

Depending on the required accuracy, different schemes
provide the most computationally efficient approximation of
the state trajectories, as illustrated by the Pareto front in
Fig. 2. For accuracies of erel > 10−6, the integrations schemes
ERK1, ERK2, GL1 and ERK4, each with one integration
step, dominate, ranking from least to most accurate. For
accuracies below erel = 10−6, mostly the IRK method GL
dominates on the Pareto front, except for ERK4 with two
integration steps. For high accuracies, GL3 with the highest
order tested is the most efficient. For a desired accuracy in
the vicinity of erel = 10−6, i.e. between ERK4 and GL2, each
with one integration step, we opt for the less accurate but
more efficient ERK4.

C. Prediction horizon N

Ideally, the choice of prediction time tp = Ts ·N ensures
that the MPC can sufficiently predict how the manipu-
lated variables may affect the cost or outputs of interest.
In this work, we do not consider future references to be
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Fig. 3: (a) Relative cost difference and CPU time vs. predic-
tion horizon, (b) CPU time vs. relative cost difference.

available in the prediction horizon. Thus, for the tracking
of constant references, the slowest time constant of the
prediction model may serve as a benchmark. However, we
consider dynamically changing references with a time scale
of one second here. At the same time, large horizons lead
to more decision variables and constraints, i.e. to a larger
optimization problem with longer execution times and higher
memory footprint. Fig. 3a (blue) shows the evaluation of
the average computation time for one control update in a
closed-loop simulation conducted with a sampling time of
Ts = 8ms and varying prediction horizons. Additionally, we
examine the relative cost difference ∆Jrel for each N as
defined in (29), where J(N) =

∑nc
i=1

Ji(N)/N is the sum over
all control updates nc of the average cost for one prediction
interval at control update i. Among the prediction horizons
tested, J(N = 85) has the smallest value and is therefore used
as the reference Jref.

∆Jrel(N) =
J(N)− Jref

Jref
(29)

Fig. 3a (red) shows that the smaller N, the larger ∆Jrel.
Overall, the CPU time increases with larger N with a linear
trend, while the cost improvement decreases with larger
N with an exponential trend. Plotting these two measures
against each other, we observe a trade-off curve, depicted
in Fig. 3b, guiding the control designer to balance between
computation time and cost. Here, we choose N = 25.

VI. SIMULATION RESULTS

We test the proposed control algorithm in an ideal closed-
loop setting with no model mismatch. The implementation
was carried out in MATLAB, using CasADi 3.6.4 [17]
with the solvers IPOPT 3.14.11 and MUMPS 5.4.1.
The NMPC is evaluated in a challenging scenario with rapid
and substantial changes in power demand, see Fig. 4. The
system trajectories subject to critical operational constraints
are given in Fig. 5. For the high and sudden power demand
at t = 6s, we observe that the FCS power output struggles
to meet its reference rapidly. This is due to both the lower
limit on OER (Fig. 5b) and the compressor choke boundary
(Fig. 5a), which coincide with the system trajectories during
the power increase. This observation can be attributed to the
slow dynamics of the air path. For this reason, the battery
power overshoots its reference (Fig. 4c), so that the overall
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power can be delivered dynamically (Fig. 4a). An equivalent
observation can be made during the sudden and substantial
decrease in power at t = 9s, except that, there is no upper
limit on the OER, and the limitation arises from compressor
surge. The membrane water content, depicted in Fig. 5c, is
kept within its bounds. When operating at a lower reaction
rate, the membrane is minimally humidified to ensure it
remains within its lowest permissible boundary. At higher
reaction rates between 6s and 9s, λmem would automatically
satisfy the constraints due to increased water production.
Still, we observe actuation by the humidification system,
resulting in higher λmem and slightly higher FCS efficiency.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced an NMPC approach to manage dy-
namic power delivery with consideration of the air-path and
water management subsystem in automotive FCSs. Our study
examines the design parameters sampling time, integration
scheme, and prediction horizon to find a balance between
control effectiveness and computational efficiency. In a de-
manding evaluation scenario, the proposed controller meets
the set control objectives and adheres to critical constraints,

laying a groundwork for further investigation into water
management’s effect on the overall system performance.
Future efforts will focus on employing advanced numerical
optimal control techniques to develop a real-time capable
controller. Additionally, we aim to refine the prediction
model by incorporating factors like liquid water dynamics
and other relevant effects.
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