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Abstract— In this paper, we present a novel 3D formation
control scheme for directed graphs in a leader-follower multi-
agent setup,, achieving (almost) global convergence to the de-
sired shape. Specifically, we introduce three controlled variables
representing bispherical coordinates that uniquely describe the
formation in 3D. Acyclic triangulated directed graphs (a class of
minimally acyclic persistent graphs) are used to model the inter-
agent sensing topology, while the agents’ dynamics are governed
by single-integrator model. Our analysis demonstrates that the
proposed decentralized formation controller ensures (almost)
global asymptotic stability while avoiding potential shape ambi-
guities in the final formation. Furthermore, the control laws are
implementable in arbitrarily oriented local coordinate frames
of follower agents using only low-cost onboard vision sensors,
making it suitable for practical applications. Finally, we validate
our formation control approach by a simulation study.

I. INTRODUCTION

Formation control in multiagent systems has undergone
extensive investigation over the past decade. Depending
on the sensing and controlled variables, previous research
efforts can be broadly classified into [1], [2]: position-
based , displacement-based, distance-based [3], [4], bearing-
based [5], and angle-based [6]–[8] methodologies. Works in
[9], [10] provide more recent classifications on formation
control methods as well as a comparative literature review
on issues related to target formation’s constraints, required
measurements, and shape convergence.

Within these categories, the position-based approach re-
quires agents to possess a common understanding of a
global coordinate system. Conversely, the displacement-
based (often referred to as consensus-based) and bearing-
based methods require that agents’ local coordinate frames
are perfectly aligned (have common orientation).

Meanwhile, coordinate-free techniques, namely, distance-
and angle-based methods in [3], [4], [6], [7], and [9] present
a more attractive architecture for formation control due to
their reduced implementation complexities and their ability
to characterize the desired formation shape by a set of
coordinate-free scalar variables, typically involving distances
or angles. These scalar variables serve to define formation
errors for the individual agents. Furthermore, agents must
possess measurements of vectorized relative information of
their neighboring agents (e.g., relative positions or bearings)
in their local coordinate frames to constitute a control law.
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Thus, coordinate-free approaches facilitate the design and
implementation of formation control laws within the confines
of agents’ local coordinate frames, obviating the necessity
for global position measurements, such as those provided
by GPS systems, or the presumption that agents’ local
coordinate frames are aligned. Another significant benefit
of coordinate-free formation control strategies is the cost-
effectiveness for agents. This is because they mandate sim-
pler sensing and interaction mechanisms. While a majority
of coordinate-free techniques depend on relative position
measurements for all agents, only a few existing methods use
only bearing or vision-based measurements [7], [9], [11], [7].
Vision based measurements are more practical since bearing
data is captured straightforwardly using onboard cameras,
making it more advantageous in real-world settings [12].

It is worth noting that the majority of existing research
on coordinate-free formation control operates under the
assumption of bidirectional sensings. This line of research
often relies on various graph rigidity concepts, including
distance, angle, ratio-of-distances, and sign rigidity notions
[6], [7], [9], [10]. However, from a practical standpoint, it
is more realistic to consider directed sensing among agents
due to inherent sensing limitations or issues introduced by
measurement mismatches in undirected formation control
[13]. In this regard, the concept of persistent graphs emerged
as the directed counterpart of distance rigidity [14]. Earlier
control designs for achieving persistent formations can be
found in [4]. Regrettably, most coordinate-free formation
control methods offer guarantees of local (non global) con-
vergence to the desired shape. This means that even if agents
eventually meet the desired formation constraints, they might
not converge to the desired shape due to issues like reflection,
flip, and flex ambiguities as highlighted in [3], [6], [7], [9],
[10].

To deal with the issue of ambiguous shapes, several
recent studies have proposed 2D and 3D distance-based
formations by incorporating additional formation constraints
to agents, such as signed areas/angles and volumes, to allow
defining the target shape uniquely [10], [15]–[19]. However,
these approaches inadvertently introduce undesired equilibria
at particular agent positions through the control design
procedure, which significantly complicates the controllers’
gain adjustment for ensuring global shape convergence [15],
[16], [17]. Recent studies have introduced an alternative
approach to guarantee global convergence of coordinate-free
formations. For instance, [20], [21], utilize formation error
variables along orthogonal directions to characterize directed
2D and 3D distance-based formations with guaranteed (al-
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most) global convergence to the desired shape, respectively.
Furthermore, [8] has provided global stabilization for the
angle-rigid formations. However, agents must use relative
position information. Moreover, recently [11] proposed a 2D
directed formation control approach using orthogonal bipolar
coordinate variables to achieve almost global convergence to
the desired shape. The main advantages of [11] w.r.t. [20]
and [8] are in employing bearing measurements instead of
relative position measurements for follower agents and also
providing extra degrees of freedom for adjusting scale and
orientation of the formation. Nevertheless, the results in [8]
and [11] are only limited to 2D formations.

In this work, inspired by [11], we present a 3D directed
coordinate-free formation control method using bispherical
coordinates. Our method ensures (almost) global conver-
gence to the desired shape while using only vision-based
sensing for follower agents. We utilize triangulated acyclic
minimally persistent graphs to model the inter-agent sens-
ing topology, which gives rise to a distance-rigid directed
leader-follower structure with a minimal number of edges.
Moreover, our novel approach utilizes local bispherical co-
ordinates to characterize formation errors, relying on onboard
vision sensors for bearing and distance ratio measurements.
This technique circumvents the need for relative position
measurements, which are often challenging to obtain in
environments like deep space. Leveraging the fact that each
follower’s formation errors can be reduced (independently)
by moving along the three orthogonal directions of its asso-
ciated bishperical coordinate basis, we design decentralized
controllers achieving (almost) global asymptotic convergence
to the target shape. To the best of the authors’ knowledge,
this work is the first to employ bispherical coordinates for
coordinate-free 3D formation control for achieving (almost)
global shape convergence without encountering undesired
equilibria.

II. PROBLEM FORMULATION

Consider a multiagent system composed of n mobile
agents in 3D, governed by the following dynamics:

ṗi = ui, i = 1, . . . , n, (1)

where pi ∈ R3 and ui ∈ R3 are the position and the
velocity-level control input of agent i expressed with respect
to a global coordinate frame, respectively. Let us model
the sensing topology among agents as a directed graph
G = (V, E), where V = {1, 2, . . . , n} is the set of vertices
representing the agents and E = {(j, i) | j, i ∈ V, j ̸= i},
where if (j, i) ∈ E ⇒ (i, j) /∈ E , is the set of directed edges
modeling the directed sensing among the agents. To be more
precise, (j, i) ∈ E denotes an edge that starts from vertex j
(source) and sinks at vertex i, and its direction is indicated by
j → i. For (j, i), we say i is the neighbor of j. The relative
position vector pij , and the relative bearing vector v̂ij ∈ R3

corresponding to the directed edge (j, i) are defined as:

pji := pi − pj , v̂ij :=
pi − pj
∥pi − pj∥

, (j, i) ∈ E . (2)

Particularly, in this article, the physical interpretation of the
directed edge (j, i) ∈ E is that only agent j can measure
the relative bearing of agent i with respect to itself, i.e., v̂ji,
and not vice versa. As will be highlighted later, we will also
assume that only agent 2 is capable of measuring its relative
position w.r.t. its neighbor, which is agent 1. Moreover,
we assume that the graph G is triangulated and imposes a
hierarchical structure, where agent 1 is the leader, agent 2 is
the first follower with agent 1 acting as its neighbor, agent 3
is the second follower following agents 1 and 2, and agents
i ≥ 4 are ordinary followers with each one having exactly
three neighbors to follow with smaller indices. Hence, we
impose the following assumption for constructing G.

Assumption 1: The directed sensing graph G is con-
structed such that:

(i) out(i) = i− 1,∀i ≤ 3, and out(i) = 3,∀i ≥ 4;
(ii) if there is an edge between agents i and j, where i < j,

the direction must be j → i;
(iii) if (k, i), (k, j) ∈ E then (j, i) ∈ E .

Here, out(i) denotes the out-degree of vertex i that is the
number of edges in E whose source is vertex i and whose
sinks are in V\{i}. It is important to note that (i) and (ii) of
Assumption 1 impose G to be acyclic minimally persistent
with edge set cardinality |E| = 3n − 6 [2]. Moreover, As-
sumption 1.(iii) ensures that G is triangulated and composed
of acyclic-directed tetrahedrons. Fig. 1(a) shows an example
of G constructed under Assumption 1.

Remark 1: It is known that graphs satisfying Assumption
1 can be systematically constructed using 3D Henneberg
type I insertion [19], [21]. Such graphs belong to a class of
acyclic minimally persistent graphs, which are the directed
counterpart of undirected distance rigid graphs [2], [4],
[14]. Minimally persistent graphs (persistent graphs with a
minimum number of edges) are favorable in practice since
they require a minimum number of relations (sensing) among
agents.

Associated with each ordinary follower l ≥ 4 in G with
three neighbors i, j, and k, we can define a signed volume of
the tetrahedron formed by vertices i < j < k < l as follows
[21]:

Vijkl =
1

6
det

[
1 1 1 1
pi pj pk pl

]
= −1

6
(pi − pl)

⊤
[(pj − pl)× (pk − pl)] .

(3)

The sign of Vijkl is interpreted as follows: If an observer
positioned at vertex l observes the sequence of vertices i, j,
and k in a counterclockwise orientation with respect to the
plane containing i, j, and k, denoted as ijk, the sign of
Vijkl is positive. Conversely, a clockwise observation yields a
negative sign for Vijkl. Note that this volume metric becomes
zero if any triad of vertices (i.e. i, j, k) becomes collinear
or if all four vertices lie on the same plane. We define the
stacked signed volumes corresponding to all tetrahedral sub-
graphs of G by the mapping V : R3n → Rn−3:

V(p) =

[
. . . ,

1

6
det

[
1 1 1 1
pi pj pk pl

]
, . . .

]⊤
, (4)
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Fig. 1. (a) A graph constructed under Assumption 1 with 5 agents, which
consists of two tetrahedral subgraphs. The blue tetrahedron has a positive
volume (V1234 > 0) and the red one has a negative volume (V1235 < 0).
(b) Position of vertex 4 makes a tetrahedron with positive volume V1234 > 0
(blue) while its reflected position 4’ leads to the same volume (|V1234| =
|V1234′ |) with a negative sign V1234′ < 0 (red). (c) Tetrahedron ABCD
and three of its edge lengths, face angles, and dihedral angles.

∀(l, i), (l, j), (l, k) ∈ E − {(2, 1), (3, 1), (3, 2)}, where p =
[p1, . . . , pn] and its m-th (m ≤ n − 3) component is the
signed volume of the m-th tetrahedron constructed with
vertices i < j < k < l. For example, the stacked signed
volumes of the graph in Fig.1(a) has two elements, where
V1234 > 0 (shown in blue) and V1345 < 0 (shown in red). It
is known that based on the directed sensing graph G under
Assumption 1, we can uniquely define a desired formation
characterized by the followings [21]:

1) A set of 3n−6 desired distances d∗ji, appointed to the
directed edges (j, i) ∈ E .

2) A set of n− 3 desired signed volumes V ∗
ijkl ∈ V(p∗)

Given a desired formation characterized by a graph G (un-
der Assumption 1) and the corresponding sets of desired
distances and signed volumes, the objective is to design a
decentralized controller for (1) such that:

∥pi(t)− pj(t)∥ → d∗ji , Vijkl(t) → V ∗
ijkl as t → ∞, (5)

for all (j, i) ∈ E and all Vijkl ∈ V, respectively, while
avoiding zero distance among all neighboring agents (i.e.,
∥pji∥ ≠ 0,∀(j, i) ∈ E ,∀t ≥ 0).

Note that characterization of the desired formation just
by a set of desired distances is not unique and suffers
from local shape convergence and reflection issues due to
the existence of undesired shapes (namely reflection, flip,
and flex ambiguities) (see [2], [16], [18] for examples). To
tackle these issues, extra types of formation parameters (e.g.,
signed volume, signed area, edge-angle) have been recently
employed along with the distances to characterize the desired
formation uniquely, which is necessary for having global
shape convergence [15], [17], [18], [21]. Particularly, the
notion of strong congruency was introduced in [20] and
[21] for distinguishing the desired shape of a formation
from its reflected version. It is known that satisfaction of
(5) is equivalent to strong congruency [21] between the
actual formation of the agents and the desired formation (see
[21], Lemma 1]). This means that if (5) gets satisfied, the
agents can achieve the desired formation only up to rotations
and translations [21]. As an example, consider distances
∥p41∥ , ∥p42∥ , ∥p43∥, and the signed volume V1234 in Fig.
1(b), where V1234 > 0. Assuming vertex 4′ as the reflected
version of vertex 4 without altering its distances with respect

to 1, 2 and 3, then we get V1234′ < 0. In general, this
property allows us to distinguish the position of agent l from
its reflection with respect to the plane passing through agents
i, j, and k.

III. BISPHERICAL COORDINATE SYSTEM

Consider a tetrahedron defined by vertices A,B,C,D. It
encompasses 4 faces FPQR for each triad of {P,Q,R} ∈
{A,B,C,D}, 6 edge lengths dPQ for each unique pair
of vertices {P,Q} ∈ {A,B,C,D}, 12 face angles θPQR
defined by the angles between edges PQ and QR for each
set of vertices {P,Q,R} ∈ {A,B,C,D}, and 6 dihedral
angles αPQ representing the angles between the faces adjoin-
ing edge PQ for each vertex pair {P,Q} ∈ {A,B,C,D}.
Fig.1(c) illustrates three of the edge lengths, face angles, and
dihedral angles on tetrahedron ABCD.

A. Bispherical Coordinates

Now, consider a tetrahedral subgraph of G where i < j <
k < l. The first bispherical coordinate, denoted by ξl ∈ [0, π],
is equal to the edge angle θilj , which can be expressed as
the angle between relative bearing vectors from agent l to
the neighboring agents i and j as follows:

ξl := θilj = cos−1
(
v̂⊤li v̂lj

)
, l ∈ V\{1, 2, 3}. (6)

Note that for agent 3 we define: ξ3 := cos−1
(
v̂⊤31v̂32

)
.

Fig. 2(a) illustrates the relative bearing vectors among the
agents in a tetrahedral subgraph and the first bispherical
coordinate ξk and ξl for agents k and l, respectively. Defining
the ratios of distances rlij := ∥pli∥ / ∥plj∥ = dli/dlj and
rlik := ∥pli∥ / ∥plk∥ = dli/dlk for l ∈ V\{1, 2, 3}, one can
define the second bispherical coordinate ηl as:

ηl := ln rlij = ln
∥pli∥
∥plj∥

, l ∈ V\{1, 2, 3}, (7)

where ηl ∈ R. Note that, when agent l approaches agent i
or agent j (i.e., either dli → 0 or dli → 0 ), ηl tends to
±∞. Note that, only one ratio of the distance is defined
for agent 3, that is η3 = ln(d31/d32). Finally, the third
bispherical coordinate, denoted by φl ∈ [0, 2π), l ≥ 4, is
the angle between half-planes ijk and ijl measured in
the counterclockwise direction from the former to the latter
(see Fig. 2(b)). In particular, one can obtain φl as follows:

φl =


αij if sgn

(
v̂⊤li (v̂lj × v̂lk)

)
= sgn (Vijkl) > 0

2π − αij if sgn
(
v̂⊤li (v̂lj × v̂lk)

)
= sgn (Vijkl) < 0

π if Vijkl = 0 and (v̂ji × v̂li)
⊤
(v̂ji × v̂ki) < 0

0 otherwise

, (8)

where αij ∈ (0, π) is the dihedral angle of the tetrahedron
ijkl on edge (j, i). Note that the sign of v̂⊤li (v̂lj × v̂lk) is
the same as the sign of Vijkl since v̂⊤li (v̂lj × v̂lk) consists
of the normalized vectors used in (3). The third and fourth
cases in (8) correspond to when agent l and all its neighbors
are in the same plane meaning that Vijkl = 0. As αij is
undefined in these cases, if the half-plane including agents
i, j, and k is the same half-plane including agents i, j, and
l then φl = 0 . Otherwise, φl = π. Moreover, when 3 or 4
number of agents in the subgraph with agents i, j, k, and l
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are collinear, φl = 0. Finally, note that for agent 3 we always
have φ3 = 0 since it always lies on 123. Also, note that
one can find βij := cosαij by calculating the angle between
the normal vectors of faces Fijk and Fijl as follows:

βij =
(v̂ij × v̂ik)

⊤
(v̂ij × v̂il)

∥v̂ij × v̂ik∥∥v̂ij × v̂il∥
=

cos θkil − cos θjik cos θjil
sin θjik sin θjil

. (9)

B. Desired Formation Characterization

Given a target formation, one can use the desired bispher-
ical coordinates of agent m ≥ 3 with respect to its neighbors
to uniquely characterize the desired formation shape using
the following expressions:

η∗l = ln
d∗li
d∗lj

, ξ∗l = θ∗ilj = cos−1

(
d∗li

2 + d∗lj
2 − d∗ji

2

2d∗lid
∗
lj

)

φ∗
l =

{
α∗
ij = cos−1

(
cos θ∗

kil−cos θ∗
jik cos θ∗

jil

sin θ∗
jik sin θ∗

jil

)
if V ∗

ijkl > 0

2π − α∗
ij if V ∗

ijkl < 0

(10)

Note that, for agent 3 we have η∗3 := ln
d∗
31

d∗
32

and ξ∗3 :=

cos−1
(

d∗
31

2+d∗
32

2−d∗
21

2

2d∗
31d

∗
32

)
.

Lemma 1: Given a desired formation shape based on a
specific directed sensing graph G = (V, E) under Assumption
1, satisfying

∥p2(t)− p1(t)∥ → d∗21, as t →∞ (11a)
ξm(t) → ξ∗m , ηm(t) → η∗m, m ≥ 3, as t →∞ (11b)

φm(t) → φ∗
m, m ≥ 4, as t →∞ (11c)

is equivalent to the satisfaction of (5).
Proof: The proof has been omitted due to lack of space

and can be found in [22].
Recall that based on (5), only the first follower (agent 2)

and second follower (agent 3) have to keep specific distances
with respect to their neighbors, while all other agents (or-
dinary followers) must preserve a designated signed volume
and three exact distances relative to their neighboring agents.
Thus, to achieve the target formation through satisfying (5),
each ordinary follower (m ≥ 4) is required to control four
variables: three distances and a signed volume. Nevertheless,
introducing an additional shape constraint (i.e. signed vol-
ume) for the ordinary followers may cause new undesirable
equilibria due to the interaction of distance and signed-
volume constraints at particular agent locations (refer to [15],
[16], [17], [18] for an in-depth discussion and examples in
2D formations). It is crucial to note that these four variables
do not always form an orthogonal space, in which each one
can be controlled independently via moving along orthogonal
directions. Lemma 1 circumvents this by requiring ordinary
followers to control merely three orthogonal (independent)
formation variables (11b) and (11c). We will exploit this
property to design decentralized formation controllers for the
follower agents, as detailed in Section IV, thereby allowing
(almost) global convergence to the desired shape. Moreover,
as mentioned earlier, by altering the distance between agents
2 and 1, ∥p2(t)− p1(t)∥, the formation’s scale at steady-
state can be controlled. Here, scaling refers to maintaining all
angles while adjusting all edge lengths proportionally. Thus,

by dynamically setting a target distance d∗21(t) relative to the
leader, the first follower can modulate the formation’s scale,
which is vital in real-world formation control scenarios like
navigating through tight spaces or avoiding obstacles.

C. Bispherical Coordinates Basis Vectors

In the previous subsections we showed that the desired
positions of agents l ≥ 4 w.r.t. their neighbors can be
uniquely characterized by bispherical coordinates. Here, we
derive the bispherical coordinate basis associated with each
follower agent l ≥ 4.

Note that, in each tetrahedral subgraph of G, where i <
j < k < l, l ≥ 4, one can define a virtual local Cartesian
coordinate frame for agent l denoted by {Cl}, with its origin
located in the middle of the i − j line (see Fig. 2(a)). The
basis of {Cl} can be written in terms of the relative bearing
vectors (expressed in a global coordinate frame) associated
with agent l as follows:

X̂l = −v̂ji, Ẑl =
v̂ji × v̂ki

∥v̂ji × v̂ki∥
, Ŷl = Ẑl × X̂l. (12)

The bispherical coordinates are related to the {Cl} frame
with the following (almost) one-to-one (except at the foci of
the bispherical coordinates, i and j) transformation [23]:

x
[Cl]
l =

al sinh ηl
cosh ηl − cos ξl

, y
[Cl]
l =

al sin ξl cosφl

cosh ηl − cos ξl
, z

[Cl]
l =

a sin ξl sinφl

cosh ηl − cos ξl
, (13)

where p
[Cl]
l = [x

[Cl]
l , y

[Cl]
l , z

[Cl]
l ]⊤ ∈ R3 is the position of

vertex l with respect to frame {Cl} and al := 0.5 ∥pji∥ > 0.
The bispherical coordinate system (ξl, ηl, φl) is indeed a 3D
orthogonal curvilinear coordinate system [23], [24] (similar
to the spherical coordinate system), thus, a local orthogonal
basis can be defined at each point in the 3D plane of {Cl}
showing the directions of increase for ξl, ηl, and φl. Figs.
2 and 3 altogether show orthogonal bispherical coordinates
basis ξ̂l, η̂l, and φ̂l ∈ R3 associated with {Cl} at some
arbitrary points of interest.

Remark 2: The relations in (12) and (13) are still valid
for agent 3. Indeed since agent 3 is always on 123 plane,
we have z

[Cl]
3 = 0 and φ3 = 0. Moreover, when agents i,

j, and k are collinear or collocated, the basis in 12 are not
well-defined. To tackle this issue, we can use Algorithm 1
of [21], which guarantees that v̂ji× v̂ki is well defined. This
means that the output vector of [21, Algorithm 1] will be
an arbitrarily selected vector perpendicular to pji and pki
when agents are collinear or collocated. Also, it is worth
mentioning that the unit orthogonal basis of {Cl} are the
normalized version of the orthogonal basis defined in [21].

Lemma 2: For a given tetrahedral directed sub-graph as in
Fig. 2(a), the bispherical coordinates basis ξ̂l, η̂l, φ̂l, l ≥ 4
(see Figs. 3 and 2) associated with the virtual local Cartesian
frame {Cl} , l ≥ 4 in Fig. 2 can be expressed with respect
to {Cl} as follows: ξ̂l = f1X̂l + f2f3Ŷl + f2f4Ẑl, η̂l =
−f2X̂l + f1f3Ŷl + f1f4Ẑl, φ̂l = −f4Ŷl + f3Ẑl, where
X̂l, Ŷl, and Ẑl are given by (12), which are the Cartesian
basis vectors assigned to agent l in {Cl} and f1(ξl, ηl, φl) =
− sinh ηl sin ξl
cosh ηl−cos ξl

, f2(ξl, ηl, φl) = cosh ηl cos ξl−1
cosh ηl−cos ξl

, f3(φl) =
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(a) (b)

Fig. 2. (a) Showing direction of φ̂ for for three cases of agent l positions
(indicated by l, l′ and l′′). Note that agents i, j, l, and l′ are on the same
plane but different half-planes leading to opposite φ̂ directions. (b) 2D view
of {Cl} showing φ̂ and φ for some different positions of agent l. (indicated
by l, l′ and l′′)

Fig. 3. 2D view of i − j − l plane in Fig. 2(a). In the entire upper half
plane (blue) φ̂ is pointing outwards, while it points inwards in the lower half
plane (red). Y ′

l is rotated version of Yl around Xl lying down in i− j − l
plane. This figure depicts the projection of the isoquant surfaces of ξ, η on
i − j − l plane and their corresponding orthogonal basis vectors ξ̂ and η̂
for two different positions of l and l′. Note that ξ̂ and η̂ always lie on the
i− j − l plane, which are perpendicular to φ̂.

cosφl, f4(φl) = sinφl. Note that φ3 = 0, and φ̂3 = Ẑ3 for
agent 3.

Proof: The proof is simple and can be followed
similarly to [23].

IV. PROPOSED CONTROLLER

A. Formation Errors

To quantify the control objectives we define 4 types of
error variables. First, squared distance error between agents
2 and 1 is defined as:

ed = ∥p21∥2 − d∗221. (14)

Second, the edge-angle and logarithmic ratio of the distances
errors are defined as:

eξm = ξm − ξ∗m, eηm
= ηm − η∗m, m ≥ 3, (15)

where ξ∗m, and η∗m are given in (10). Finally, the dihedral
angle error is defined as:

eφm
= φm − φ∗

m, m ≥ 4, (16)

where φ∗
l is given in (10). Note that (15) and (16) are

independent (orthogonal) error variables defined only for the

followers. More precisely, by moving along each bispherical
coordinate’s basis, ξ̂m, η̂m, and φ̂m, each follower can reduce
(15) and (16) respectively, without affecting the other error
variable. Finally, due to the above discussion and Lemma 1,
by adopting the bispherical coordinates approach, the control
objective of (5) is met by zero stabilization of the error
signals defined in (14), (15), and (16).

B. Proposed Control Law and Stability Analysis

Notice that in the proposed formation control setup, the
leader (agent 1) does not participate in forming the desired
shape, thus its behavior is independent of the other agents. In
this respect, the leader’s control law is u1 = 0 without loss
of generality. We propose the following formation control
laws:

u2 = κ2edp21 = κ2ed ∥p21∥ v̂21, (17a)

u3 = −κ3eξ3 ξ̂3 − λ3eη3
η̂3, (17b)

ul = −κleξl ξ̂l − λleηl
η̂l − γleφl

φ̂l, l ≥ 4, (17c)

where κ2, κ3, λ3, and κl, λl, γl, l ≥ 4, are positive control
gains and ξ̂l, η̂l, and φ̂l are the bispherical coordinates basis
associated with ordinary followers. Note that the proposed
control laws in (17) are decentralized, since each agent only
uses the measured information w.r.t. its neighbors and can
obtain all the required info via its local sensing. (see [22].)
Note that although the proposed control laws (17) are given
with respect to a virtual coordinate frame {Cl}, l ≥ 3
we emphasize that the proposed formation controller can
be implemented in any arbitrarily oriented local coordinate
frame. Refer to [22] for more details.

Theorem 1: Consider a group of n agents with dynamics
(1) in a 3D space. Let the desired formation be defined
by a directed graph G = (V, E) under Assumption 1
along with the sets of desired formation parameters d∗21,
ξ∗m, η∗m, m ≥ 3, and φ∗

m, m ≥ 4. The decentralized control
protocol (17) ensures ∥pji∥ ̸= 0,∀(j, i) ∈ E ,∀t ≥ 0, and
renders the formation errors in (15) and (16) almost globally
asymptotically stable, which gurantees the satisfaction of the
desired objectives in (11).

Proof: The proof has been omitted due to lack of space
and can be found in [22].

V. SIMULATION RESULTS

Consider six agents that are distributed at random
positions (leader is in origo.) in a 3D workspace at t = 0.
The objective is to form a unit octahedron until t = 10
seconds and then double up its scale until t = 20 seconds
under control law (17). The edge set of the directed
sensing graph (obeying Assumption 1) is considered as E =
{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4),
(6, 3), (6, 4), (6, 5)}. The sensing graph among the agents
is depicted in 5(a). The desired shape is characterized by
setting all of the desired lengths in the edge set equal to 1
except for d∗32 = d∗64 =

√
2
2 . The desired signed volumes are

assumed to be V ∗
1234 = V ∗

2345 = −V ∗
3456 =

√
2

12 . To realize
the formation scaling the desired distance between agents 1

1899



(a) (b)

Fig. 4. (a) Trajectory of agents until t = 10. (b) Scaling simulation: agents
scaling up after t = 10 because of a change in d∗21.

(a)

0 10 20

t(sec)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

e d

ed

0 10 20

t(sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

e 2
l

e23
e24
e25
e26

0 10 20

t(sec),

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

e 9
l

e93
e94
e95
e96

0 10 20

t(sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

e '
l

e'4

e'5

e'6

(b)

Fig. 5. (a) Sensing graph among agents. (b) Formation errors vs time.

and 2 is initially set to d∗21 = 1 until t = 10 and then it is
changed to d∗21 = 2. The control gains in (17a),(17b), and
(17c) are all set to 2. The trajectory of each agent during
t ∈ [0, 10], where the desired formation scale is equal to 1 is
shown in Fig. 4(a). Fig. 4(b) shows the final scaled-up shape
as well as the trajectories of the agents during t ∈ [10, 20].

The evolution of squared distance error and bispherical
formation errors, defined in (14), (15), and (16), are shown
in Fig. 5(b). The results show that the agents successfully
converge to the desired formation after approximately 10
units of time despite their random initial positions. Moreover,
after the step shift in agent 2’s desired distance at t = 10s,
which induces a sudden increase in the follower’s formation
errors (see Fig. 5(b)), the formation eventually scales up as
soon as the follower’s formation errors converge back to zero.

VI. CONCLUSION

We introduced a novel 3D formation control scheme,
with (almost) global convergence to the desired shape under
acyclic triangulated directed sensing topologies. We utilized
orthogonal bispherical coordinates to uniquely characterize
the desired formation shape and effectively avoid undesired
equilibria imposed by the controller design. Our proposed
control scheme also allows for formation scaling through
adjustments of the distance between agents 1 and 2. Ap-
plying the stability theory of cascade-connected systems, we
established that the proposed decentralized controllers make
the closed-loop system almost globally asymptotically stable.
Furthermore, we reasoned that the proposed control scheme
can be readily implemented in arbitrarily oriented local

coordinate frames of the (follower) agents using onboard
vision sensors.
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