
Gaussian-Process-Based Adaptive Trajectory Tracking Control for
Autonomous Ground Vehicles

Kristóf Floch1, Tamás Péni1 and Roland Tóth1,2

Abstract— This paper proposes an adaptive trajectory track-
ing control algorithm for autonomous ground vehicles. The
nonlinear vehicle dynamics are decoupled into two subsystems
corresponding to the longitudinal and lateral motions. Each
subsystem is augmented with a Gaussian Process to compensate
for modeling errors and external disturbances. Based on the
augmented subsystems, adaptive control algorithms are synthe-
sized. To give a mathematically correct performance measure,
the induced L2-gain of the nonlinear closed-loop system is
computed. The efficiency of the learning-based control method
is demonstrated on a high-fidelity physical simulator using a
digital twin model of the 1/10 scale F1TENTH vehicle platform.

I. INTRODUCTION

Nowadays, autonomous mobile robots, such as small-
scale car-like ground vehicles are starting to appear in
various industrial applications, hence, further improvement
of autonomous maneuvering capabilities that can exploit the
motion dynamics of these robots is a subject of scientific
research. An essential prerequisite for reaching general uti-
lization of these vehicles is the development of algorithms
that can cope with unknown variations in their dynamics and
to come up with simple control structures that can ensure
high-performance maneuvering.

The state-of-the-art trajectory tracking algorithms for car-
like ground vehicles are usually studied in the context of au-
tonomous racing and include model-based approaches such
as sliding mode control (SMC), nonlinear model predictive
control (NMPC), dynamic inversion, and also learning based
control solutions [1]. For model-based techniques, either first
principle modeling [2] or system identification [3] is required
to come up with a dynamic model of the vehicle. The main
advantage of first principle modeling is that the model states
and parameters have clear physical interpretations. However,
these physically derived vehicle models are highly nonlinear,
often cannot capture vehicle-specific effects like friction, and
are difficult to tune for the control design. On the other hand,

⋆

⋆
⋆⋆⋆

⋆

⋆

⋆
⋆ ⋆ ⋆

⋆

∗This project has received funding from the European Defence
Fund programme under grant agreement number No 101103386
and has also been supported by the Air Force Office of Scientific

Research under award number FA8655-23-1-7061 and also has been sup-
ported by the ÚNKP-23-2-I-BME-171 New National Excellence Program
of the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Commission. Neither the European
Union nor the granting authority can be held responsible for them.

1Systems and Control Lab, HUN-REN Inst. for Computer Science
and Control, Budapest, Hungary (e-mails: {kristof.floch,tamas.peni}
@sztaki.hu)

2Control Systems Group, Eindhoven University of Technology, Eind-
hoven, The Netherlands (e-mail: r.toth@tue.nl)

system identification techniques usually result in a black-box
representation and we lose the physical interpretation of the
states and parameters of the models.

To handle modeling uncertainties, adaptive control ap-
proaches have also been studied. These algorithms usually
either tune the underlying model parameters [4] or the
parameters of the control algorithms [5]. Other than that,
model augmentation has also been investigated with artificial
neural network (ANN) methods [6], and Gaussian process
(GP) based approaches [7], as these techniques are also
capable of handling variation in the model structure. The
GP augmentation has proven to be beneficial for a wide
range of mobile robotic applications [8] [9], due to its high
approximation capability and the uncertainty characterization
of the estimates. However, most of the introduced papers
rely on MPC algorithms for trajectory tracking, instead of
which, the less computationally demanding feedback-based
solutions are often favored [10].

Furthermore, previous papers mainly focused on racing
scenarios, while in mobile robotics, the importance of preci-
sion and robustness may supersede speed. However, stability
and robustness studies typically do not take into account
the full nonlinear vehicle dynamics; instead, they rely on
simplified, often linear decoupled models.

To summarize, the main expectations of control algorithms
for such vehicles are (a) adaptability to partly known dy-
namics and changing environmental conditions; (b) computa-
tionally efficient implementation; (c) guaranteed stability and
performance. The current adaptive approaches either have (a)
and (b), but lack (c), or they have (a) and (c), but lack (b). To
cope with the presented challenges, the main contributions
of this paper are as follows:

C1 We propose a computationally efficient learning-based
trajectory tracking solution for car-like mobile plat-
forms, capable of handling large model mismatch. The
controller relies on a first principle dynamic vehicle
model which is augmented with GP-based learning
components to estimate model uncertainties.

C2 We provide a computable performance metric for the
complete nonlinear closed-loop system by calculating
an upper bound for the induced L2 gain using an
iterative algorithm inspired by [11].

C3 We evaluate the efficiency of the developed algorithm
on the digital twin model of an F1TENTH vehicle [12],
implemented in a high-fidelity simulation environment.

The remainder of the paper is organized as follows.
Section II provides an overview of GP regression, followed
by the utilized vehicle model and the problem formulation in

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 464



Section III. Section IV presents the trajectory tracking algo-
rithm, with the performance analysis outlined in Section V.
Finally, the simulation study is presented in Section VI.

II. GAUSSIAN PROCESS REGRESSION

Gaussian processes (GPs) have been a popular choice
for model augmentation, see [7], [8], as their nonparametric
structure offers flexible utilization [13]. Furthermore, unlike
other learning approaches such as ANNs, GPs provide infor-
mation on the uncertainty of the approximation, which can
be employed for designing robust control algorithms [14].
Next, we briefly introduce GPs and sparse GPs as relevant
to our proposed control approach.

A. Gaussian processes

Let DN = {XN , YN} be a dataset, where XN =
[x⊤1 · · · x⊤N ] ∈ RN×nx collects the inputs, YN =
[y1 · · · yN ]⊤ ∈ RN collects the scalar outputs generated
by the following model:

yi = f(xi) + ϵi, i ∈ IN1 , (1)

where f : Rnx → R is an unknown function, ϵi ∼ N (0, σ2
ϵ )

is an i.i.d. Gaussian noise and Iτ2τ1 = {i ∈ Z | τ1 ≤ i ≤ τ2}
is the corresponding index set. The core idea of GP-based
estimation of f is to consider that candidate estimates g
belong to a GP, seen as a prior distribution. Then, using DN

and this prior, a predictive GP distribution of g is computed
that provides an estimate of f in terms of its mean and
describes the uncertainty of this estimate by its variance.

In terms of definition, a scalar-valued Gaussian Process
GP : Rnx → R assigns to every point x ∈ Rnx a random
variable GP(x), such that, for any finite set {xi}Zi=1 ∈ Rnx ,
the joint probability distribution of GP(x1), · · · ,GP(xZ)
is Gaussian. Due to this property, g ∼ GP(m,κ) is fully
determined by its mean m and covariance κ expressed as

m(x) = E{g(x)}, (2a)

κ(x, x̃) = E{(g(x)−m(x))(g(x̃)−m(x̃))⊤}, (2b)

where x, x̃ ∈ Rnx . This distribution describes our prior belief
of the function space in which the estimate of the unknown
function f is searched for. We assume that the prior mean
is zero (m(x) = 0) and covariance of the distribution can
be well described by a squared exponential (SE) kernel, a
common choice for estimation of smooth functions:

κSE(x, x̃) = σ2
f exp

(
−1

2
(x− x̃)⊤Λ−1(x− x̃)

)
, (3)

where σf ∈ R is a scaling factor and Λ ∈ Rnx×nx is a
positive definite and symmetric matrix that determines the
smoothness of the candidate functions. Together, σf , Λ and
σϵ in (1) are the so-called hyperparameters of the GP that can
be tuned by maximizing the marginal likelihood computed
from observed data [13].

Based on DN and the prior g ∼ GP(m,κ), the predictive
distribution for g(x⋆) at a test point x⋆ is the posterior

p(g(x⋆)|DN , x⋆) = N (µ(x⋆),Σ(x⋆)) characterised by

µ(x⋆)=K
⊤
N (x⋆)(KNN + σ2

ϵ I)
−1Y, (4a)

Σ(x⋆)=κ(x⋆, x⋆)−K⊤
N (x⋆)(KNN+σ2

ϵ I)
−1KN (x⋆) (4b)

where [KN (x⋆)]i = κ(xi, x⋆), i ∈ IN1 and [KNN ]i,j =
κ(xi, xj), i ∈ IN1 , j ∈ IN1 . Eq. (4a) describes the mean
as the estimate of function f and (4b) is the variance,
which gives the uncertainty of the approximation. Although
the computation of (4) only requires elementary matrix
multiplications, every training point is required for making
predictions. Therefore in case of large training datasets, the
real-time implementation of GPs can be challenging.
B. Sparse Gaussian processes

One way to tackle the computational limitation of the
traditional GP regression is to use sparse Gaussian pro-
cesses (SGPs), where the number of data points used in
the evaluation is limited to a fixed number. The goal of
the SGP is to find a set of pseudo inputs and outputs
defined as DM = {XM , YM}, where XM = [x̂⊤1 · · · x̂⊤M ] and
YM = [ŷ1 · · · ŷM ]⊤ with M ≪ N such that DM sufficiently
describes DN . These points are also referred to as inducing
points in the literature. The core philosophy of the SGP is
to select the set DM in a manner that minimizes the KL
divergence between the GP trained on it and the GP trained
on the initial DN set. To find the proper DM set, [15]
proposes the variational free energy (VFE) concept, which
jointly selects the inducing inputs and the hyperparameters
of the GP by maximizing a lower bound to the marginalized
likelihood of the prediction. As a result, the pseudo outputs
are fully determined by the hyperparameters, hence they are
not part of the optimization. See [15] for the full derivation.

The resulting posterior distribution after the training at an
arbitrary test point x⋆ is N (µp(x⋆),Σp(x⋆)), where

µp(x⋆) = K⊤
M (x⋆)K

−1
MMmp, (5a)

Σp(x⋆) = κ(x⋆, x⋆)

+K⊤
M (x⋆)(K

−1
M −K−1

MMKpK
−1
MM )KM (x⋆),

(5b)

corresponding to a Nyström projection of the original
GP to the pseudo inputs XM , and where [KMN ]i,j =
κ(x̂i, xj), i ∈ IM1 , j ∈ IN1 is the covariance matrix between
the pseudo inputs and all training inputs, [KMM ]i,j , i, j ∈
IM1 is the covariance of the pseudo inputs and [KM (x⋆)]i =
κ(xi, x⋆). Furthermore, mp and Kp are the mean and covari-
ance of the approximation of the true posterior distribution,
calculated as

mp = σ−2
ϵ KpK

−1
MMKMNY, (6a)

Kp = KMM (KMM + σ−2
ϵ KMNKNM )−1KMM . (6b)

This formulation reduces the O(N3) computational com-
plexity of the training of the traditional GP to O(NM2).
Furthermore, it can also be recursively trained with high
efficiency [9].

In the following, SGPs will be utilized as the learning
component of the proposed trajectory tracking approach,
which provides efficient adaptation to modeling uncertainties
and external disturbances.

465



Fig. 1: Single-track vehicle model and reference trajectory.

III. VEHICLE MODEL & TRAJECTORY TRACKING
PROBLEM

A. First principle model

The baseline vehicle model relies on a dynamic single-
track representation, which has been commonly used for
describing the behavior of small-scale car-like vehicles, see
[16], [17], as it can capture the primary characteristics of the
motion. The modelling concept is depicted in Fig. 1 and the
resulting model is described as

ẋ = vξ cos(φ)− vη sin(φ), (7a)
ẏ = vξ sin(φ) + vη cos(φ), (7b)
φ̇ = ω, (7c)

v̇ξ =
1

m
(Fξ + Fξ cos(δ)− Ff,η sin(δ) +mvηω) , (7d)

v̇η =
1

m
(Fr,η + Fξ sin(δ) + Ff,η cos(δ)−mvξω) , (7e)

ω̇ =
1

Iz
(Ff,ηlf cos(δ) + Ff,ξlf sin(δ)− Fr,ηlr) , (7f)

where (x, y) is the position and φ is the orientation of the
vehicle in the global coordinate frame. The states vξ and vη
denote the longitudinal and lateral velocity of the vehicle in
a body fixed frame and ω is the yaw rate. The parameters of
the model are the distance of the front and rear axis from the
center of mass, denoted as lf and lr, the mass of the vehicle
m and the inertia along the vertical axis Iz .

The longitudinal tire force Fξ is determined by a drivetrain
model, which assumes a first-order connection between the
motor input and the velocity of the vehicle. This modeling
technique has been successfully utilized previously in [16]
and [17] for electric vehicles, hence, we adopted the follow-
ing variant:

Fξ = Cm1d− Cm2vξ − Cm3, (8)

where Cm1, Cm2, Cm3 are lumped drivetrain parameters and
d ∈ [0, 1] is the motor input. Lastly, the lateral tire forces
are often calculated using a simplified linear tire model as

Fr,η = Cr arctan

(−vη + lrω

vξ

)
, (9a)

Ff,η = Cf arctan

(
δ − vη + lfω

vξ

)
, (9b)

where Cf and Cr are cornering stiffness values of the front
and rear tire respectively. Finally, the control inputs of the

vehicle are the steering angle δ and the motor input d, which
a controller can directly actuate.
B. Trajectory tracking problem

To outline the trajectory tracking problem, we first need
to define the reference trajectories for the vehicle. The path
of the desired trajectory is expressed as a two-dimensional
spline curve ψ(sref(t)), defined by coordinate functions
(x(sref(t)), y(sref(t)), where sref is a time domain signal
defined as sref : R → [0, L]. The arc length of the full
path is denoted as L, hence sref(t) describes the desired
vehicle position along the path at t. Both x(sref(t)), and
y(sref(t)) are monotonic in sref(t), furthermore (x(0), y(0))
and (x(L), y(L)) assign the endpoints of the curve. The
speed reference vref(sref(t)) = vref(t) along the trajectory is
also given. These types of reference motion trajectories can
be obtained by regular path planning algorithms.

With the trajectory known, we can transform (7) into a
curvilinear coordinate frame (depicted in Fig. 1 as F) that is
parameterized by the position along the reference path [16]:

ṡ = (vξ cos(θe)− vη sin(θe))/(1− c(s)es), (10a)
ės = vξ sin(θe) + vη cos(θe), (10b)

θ̇e = ω − c(s)ṡ, (10c)

where the newly introduced states are the position along the
path s, the lateral deviation es and the heading error θe,
while the lateral (vη) longitudinal (vξ) and angular velocities
(ω) are the same as in (7). Furthermore, c(s) describes the
curvature of the reference path at s.

The main advantage of this model is that the tracking
errors explicitly appear in (10). Furthermore, due to the
physics-inspired model description, all the states can be
easily determined from measurements, which allows the
design of a full state-feedback controller for the vehicle.

IV. GP-BASED ADAPTIVE CONTROL

A. Control architecture

Based on the trajectory tracking model (10), we propose
a computationally efficient feedforward-feedback control al-
gorithm. As (10) is a complex nonlinear system for which
efficient control laws are hard to derive, we decouple the
nonlinear vehicle dynamics into two subsystems, which
correspond to the longitudinal and lateral motion of the
vehicle. Then, to adapt to modeling uncertainties and external
disturbances, we augment each subsystem with a GP-based
learning component to capture the model mismatch and
compensate for it via feedforward. Finally, based on the
remaining nominal model structure, we synthesize LQ state-
feedback controllers to track the given reference. The overall
architecture is depicted in Fig. 2.
B. Decoupling

We decouple (10) into a lateral and longitudinal subsystem
for individual control design. The longitudinal controller is
responsible for tracking the reference velocity and position
along the path and the lateral controller is used for path
tracking.

466



Vehicle modelController

Ref.

Scheduling variables

LongitudinalVelocity
reference
generator

GP compensator

Lateral

GP compensator
LPV controller

LPV controller
Longitudinal GP

Lateral LPV

Longitudinal LPV

Lateral GP

Vehicle state

GP means

Fig. 2: Proposed control architecture for trajectory tracking.

From (10), the longitudinal model becomes

ṡ =
vξ cos(θe)− vη sin(θe)

1− c(s)es
, (11a)

v̇ξ =
1

m

(
(1 + cos(δ))(Cm1d− Cm2vξ − Cm3)

− Ff,η sin(δ) +mvηω
)
,

(11b)

where the state vector xlo = [s vξ]
⊤ describes the position

along the path and the longitudinal velocity, while d is the
actuated control input. Furthermore, the heading error θe,
lateral deviation es, lateral velocity vη , steering angle δ and
Ff,η are considered as external varying parameters depending
on the lateral subsystem. The reference input of the system
is xreflo = [sref vref ]⊤ defined by the trajectory. To simplify
the control design and analysis, we separate the position and
velocity states by introducing a virtual velocity generator
that provides a position-adjusted virtual reference velocity as
vr = vref −kv(s− sref). This results in the modified control
objective vξ → vr, and the system dimensions are reduced,
as only the dynamics of vξ are needed to be considered.
Therefore, the system can be expressed as:

v̇ξ︸︷︷︸
χ̇

lo

=
−Cm2(1 + cos(δ))

m︸ ︷︷ ︸
Alo(δ)

vξ︸︷︷︸
χ

lo

+
Cm1(1 + cos(δ))

m︸ ︷︷ ︸
Blo(δ)

d︸︷︷︸
ulo

+
−Cm3(1 + cos(δ))

m︸ ︷︷ ︸
B0(δ)

sign(vξ)︸ ︷︷ ︸
w0

+
−Ff,η sin(δ)

m
+ vηω︸ ︷︷ ︸

w1

(12)

where Alo(δ) and Blo(δ) can be considered as parameter-
varying state-transition and input matrices with scheduling
variable δ, resulting in a linear parameter-varying (LPV)
representation [18]. Furthermore, w0 is a nonlinearity intro-
duced by the dry friction of the drivetrain and w1 lumps
together the effects of the lateral subsystem.

Next, we consider the lateral model. The lateral behavior
of the vehicle is described as

ės = vξ sin(θe) + vη cos(θe), (13a)

θ̇e = ω − c(s)ṡ, (13b)

v̇η =
1

m
(Fr,η + Fξ sin(δ) + Ff,η cos(δ)−mvξω) , (13c)

ω̇ =
1

Iz
(Ff,ηlf cos(δ) + Ff,ξlf sin(δ)− Fr,ηlr) , (13d)

where the state vector xla = [es θe vη ω]
⊤ consists of the

lateral error es, heading error θe, lateral velocity vη and yaw
rate ω, while vξ is considered a scheduling variable with the
steering angle δ as the actuated input. To simplify the model,
we first substitute the lateral tire models into (13), use small
angle approximations (sin(α) ≈ α, cos(α) ≈ 1), neglect the
longitudinal tire force (Fξ ≈ 0) and approximate the velocity
along the path as ṡ ≈ vξ which leads to the model [19]:
ės
v̇η
θ̇e
ω̇

 =


0 1 vξ 0

0 −Cf+Cr

mvξ
0 −vξ − lfCf−lrCr

mvξ

0 0 0 1

0 lrCr−lfCf

Izvξ
0 − l2f Cf+l2rCr

Izvξ



es
vη
θe
ω



+


0
Cf

m
0

lfCf

Iz

 δ +

0
0
vξ
0

 c(s),
(14)

where the path curvature is regarded as an external distur-
bance. Further simplification can be achieved by expressing
the lateral model only in terms of the error variables and
their derivatives. Let the second derivative of the (already
linearized) lateral error be expressed as ës = v̇η+vξ θ̇e. Then,
as proposed in [20], the error dynamics have the form:

ės
ës
θ̇e
θ̈e

 =


0 1 0 0

0 −Cf+Cr

mvξ

Cf+Cr

m − lfCf+lrCr

mvξ

0 0 0 1

0 lrCr−lfCf

Izvξ
lfCf−lrCr

Iz
− l2f Cf+l2rCr

Izvξ



es
ės
θe
θ̇e



+


0
Cf

m
0

lfCf

Iz

 δ +


0
lrCr−lfCf

m − 1
0

− l2f Cf+l2rCr

Izvξ

 c(s).
(15)

As discussed in [21], regulating both the heading and the
lateral error to the origin results in poor tracking perfor-
mance, as the two quantities cannot be simultaneously zero
along the path if we assume perfect tracking. Therefore, we
separate the lateral and the heading dynamics for the control
design. We use the lateral error dynamics for feedback
control design, and only regulate the heading error with a
feedforward, as proposed in the so-called Stanley controller
[22]. Furthermore, we also introduce a new state as the inte-
gral of the lateral error, i.e. q =

∫ t

0
esdt to assure asymptotic

convergence of es without offset. The final control-oriented
lateral model can be expressed as q̇ės
ës


︸ ︷︷ ︸
χ̇

la

=

0 1 0
0 0 1

0 0 −Cf+Cr

mvξ


︸ ︷︷ ︸

Ala(vξ)

 qes
ės


︸ ︷︷ ︸
χ

la

+

 0
0
Cf

m


︸ ︷︷ ︸
Bla

δ (16)

+

 0
0

lrCr−lfCf

m − 1


︸ ︷︷ ︸

Bc

c(s)︸︷︷︸
wc

+

 0 0
0 0

Cr+Cf

m − l2f Cf+l2rCr

Izvξ


︸ ︷︷ ︸

B2(vξ)

[
θe
θ̇e

]
,︸ ︷︷ ︸

w2

467



where the state vector χla = [q es ės]
⊤ now only contains

the lateral error, its integral and derivative, while Ala(vξ) is
the parameter varying state-transition matrix with scheduling
signal vξ and Bla is the input matrix. Moreover, wc is
the path curvature and w2 is used to lump together the
unmodeled path and heading dynamics.

C. GP-based model augmentation

Note that during the derivation of (7d) and (16), we have
made simplifications. Furthermore, in case of changing en-
vironmental conditions or modeling uncertainties, the model
mismatch between the control-oriented model and the true
vehicle can reach a point where the tracking performance
significantly decreases. Therefore, to capture this model
mismatch, we augment the nominal (12) and (16) with GPs:

χ̇la =Ala(vξ)χla +Blaδ +Bcwc +BGPGP la(zla), (17a)
χ̇
lo =Alo(δ)χlo +Blo(δ) +B0(δ)w0 + GP lo(zlo), (17b)

where GP lo(zlo) and GP la(zla) denote the GPs linked to
the lateral and longitudinal subsystems, respectively. Based
on the structure of the nominal path following model (10),
we can observe that the first three equations only capture
kinematic relationships. Therefore, we assume that modeling
uncertainties only affect the velocity states vξ, vη , ω, as
proposed in [8]. Furthermore, we can also note that BGP =
[0 0 1]⊤ as uncertain dynamic effects only affect ės.

Observing the original vehicle model (7), we can also note
that any change in the environmental conditions affects the
dynamics through the acting wheel forces. As these models
depend on the velocity states (vξ, vη , ω), we choose these
variables to construct the GPs. Furthermore, in the lateral
case, the path curvature c(s) is also added as a variable
because of its effect on the lateral dynamics. Therefore, the
GP inputs are zlo = [vξ vη ω]

⊤ and zla = [vξ vη ω]
⊤.

As we previously assumed that all the vehicle states
are available, training inputs can be collected from the
logged measurement data of driving experiments with the
vehicle. By numerical differentiation, we can obtain the state
derivatives and the outputs for the GPs can be expressed from
(17) to generate the training dataset.

Because of the large number of training points in the
dataset, utilization of SGPs is necessary to reduce the
computation complexity of the evaluation. The resulting
GP components are taken into consideration during control
synthesis as follows. The means µlo and µla are cancelled
by introducing the following feedforward terms:

dGP = 1/Blo(δ)µlo(zlo), (18a)

δGP = B†
laBGPµla(zla), (18b)

while the remaining zero-mean Gaussian random variables
characterized by the variances Σlo, Σla are considered as
external disturbances to reject. Furthermore, we can utilize
the variances for fine-tuning the GPs, by collecting additional
training data in regions where the uncertainty is high [23].

D. LQ state feedback design

Assuming that the feedforward terms (18) can efficiently
eliminate the model mismatch, we stabilize the subsystems
by the following control laws:

δnom =Kla(vξ)χla − θe −B†
laBcwc, (19a)

dnom =Klo(δ)(vξ − vr) + 1/Blo(δ)Alo(δ)v
r

− 1/Blo(δ)Bw0
(δ)w0,

(19b)

where Kla(vξ) and Klo(δ) are parameter-dependent feed-
back matrices and the additional terms are used to achieve
reference tracking and to cancel out known disturbances. The
feedback matrices are obtained using the nominal subsystems
(12) (16) with the LPV-LQR synthesis proposed in [24].

Consider an LPV system in the general form as χ̇ =
A(ρ)χ + B(ρ)u + BΣn, where n is a zero-mean white
noise acting on the system, characterized by its variance
Σ. The optimal parameter dependent feedback matrix K(ρ)
that minimizes the quadratic cost JLQ =

∫∞
0
χ⊤(t)Qχ(t) +

u⊤(t)Ru(t) dt with Q ∈ Rnx×nx and R ∈ Rnu×nu can be
obtained by solving the convex optimization problem:

max
K,X,Y

trace(X), (20a)

s.t. X ≻ 0, (20b)
M(X,Y,Q,R, ρ) ≻ 0 ∀ρ ∈ G, (20c)

where X ∈ Rnx×nx , and the linear matrix inequality (LMI)
constraint M(X,Y,Q,R, ρ) is defined as[

−He(A(ρ)X+B(ρ)Y (ρ)) (QX +RY (ρ))⊤

(QX +RY (ρ)) I

]
(21)

where the gain matrices of the quadratic cost are encoded in
Q = [Q

1
2 0]⊤ and R = [0 R

1
2 ]⊤ and He(X) = X⊤ + X .

Furthermore, Y (ρ) ∈ Rnu×nx is parameterized as follows:

Y (ρ) = Y0 + ρY1 + ρ2Y2 + · · ·+ ρnYn (22)

and G ⊂ Γ is a discrete grid, used to relax the infinite num-
ber of LMI constraints. After solving (20), the parameter-
dependent feedback matrix is obtained as K(ρ) = Y (ρ)X−1.

Furthermore, [24] also defines a performance measure for
the state-feedback controller, which describes the effect of
the Gaussian white noise on the LQ cost:

σ∞ ≤ lim
T→∞

sup
ρ∈Γ

E

{
1

T

∫ T

0

χ⊤(t)Qχ(t)+u⊤(t)Ru(t)dt

}
= trace(BΣΣB

⊤
ΣX

−1). (23)

The calculated upper bound on σ∞ quantifies the degradation
of the control performance that originates from the Gaussian
noise, i.e., the remnant uncertainty of the GP.

The parameter-dependent state-feedback gains Klo and
Kla for the longitudinal and lateral subsystems have been
obtained using the outlined LPV-LQR synthesis with aprioi
fixed weighting matrices Qlo, Qla, Rlo, Rla. The perfor-
mance of the controller can be improved by reducing the
uncertainty of the GP approximation. This can be achieved
by collecting more training data based on the variance of the

468



posterior distribution of the GP. This concept is implemented
in Section VI, where the covariance of the GP is used to
construct specific training trajectories.

V. L2-GAIN ANALYSIS

To analyze stability and performance of the proposed
control approach, we perform an L2-gain analysis on the
nonlinear model (10) with the two independently designed
controllers (19) in closed-loop. Since the mean of the GP
is canceled by a feedforward term, the nonlinear closed-loop
system has 4 external inputs: two zero mean Gaussian noises
from the GP, the velocity reference vr and the curvature c of
the path. In the following analysis, we focus on how vr and
c affect the tracking performance, so we analyze the L2-gain
w.r.t. to these channels.

For analysis, consider the closed loop in the form of

S
{

ẋ = fcl(x,w)

z = h(x,w)
(24)

where fcl : X × W → X corresponds to (10) with
the lateral and longitudinal control laws (19), while x =
[q, es, θe, ṽξ, vη, ω]⊤ ∈ X is the state vector, w =
[ṽr, c] ∈ W is the generalized disturbance signal and z is
the generalized performance signal that contains the tracking
errors as z = h(x,w) = [vξ − vr, es]

⊤ ∈ Z . Note that both
the state and the disturbance input are centered such that
ṽξ = vξ − vrcent and ṽr = vr − vrcent in order to achieve
w ∈ L2 and 0 = fcl(x,w) equilibrium. Furthermore, to
characterize that vr is only active in the low-frequency range,
we augment the system with a first-order low-pass filter. By
determining the L2-gain of the resulting system from w to
z, we can provide a quantitative measure for the reference
tracking performance of the proposed algorithm.

The calculation of the L2-gain relies on the theory of
dissipative dynamical systems [25]. A system is said to
be dissipative w.r.t a quadratic supply rate in the form of
s(w, z) = γ2w⊤w − z⊤z if there exists a non-negative
storage function V : X → R such that, in case V is
differentiable, the differential dissipation inequality

V̇ (x) ≤ γ2w⊤w − z⊤z (25)

is satisfied for all (x, z, w) trajectories of S. If w is restricted
to squared integrable signals, i.e., L2, then the induced
L2-gain is the smallest γ for which (25) holds, formally:
supw∈L2

{∥z∥2/∥w∥2} ≤ γ. A finite L2-gain also proves
the stability of the corresponding system.

To estimate γ, we propose an iterative, optimization-
based approach, inspired by [11], which consists of two
components: a learner and a verifier. First, the learner is
responsible for finding a storage function candidate V and
corresponding L2-gain γ by solving a convex optimization
problem. To formulate the learner, we restrict ourselves to
quadratic supply function candidates in the form of V (x) =
x⊤P (x)x, where P (x) = P0 + P1x1 + · · · + P6x6 ≻ 0.
By substituting the storage function and (24) into (25), we
obtain

J(x,w, {Pi}6i=1, γ
2) = x⊤P (x)fcl(x,w)+f

⊤
cl (x,w)P (x)x

+ x⊤
dP (x)

dt
x− γ2w⊤w + h⊤(x,w)h(x,w) ≤ 0. (26)

Note that if x and w are fixed at constant values, (26) is
linear in the unknown variables Pi and γ2. Therefore, by
introducing X ⊂ X and W ⊂ W , we propose the following
convex optimization as the learner:

min
P0,··· ,P6,γ2

γ2 (27a)

s.t. P (x) ≻ 0, (27b)

J(x,w, {Pi}6i=1, γ
2)≤ 0, (27c)

∀(x,w) ∈ X×W

where X and W are discrete grids, constructed by sampling
the compact sets such that the sample points sufficiently
cover X×W . As (27c) is linear in the optimization variables,
we can utilize this gridding approach even up to the case
of 6 dimensions, as state-of-the-art numerical solvers can
efficiently handle even a large number of linear constraints.

Note that the learner only guarantees that the differential
dissipation inequality is satisfied at the discrete grid points.
Therefore, the verifier is introduced, which essentially tries to
find counterexamples where (27c) does not hold in X×W for
the previously obtained γ2 and V . For a fixed {Pi}6i=1 and
γ2, the verifier is formulated as the nonlinear optimization:

max
x,w

J(x,w, {Pi}6i=1, γ
2) (28a)

s.t. x ∈ X , w ∈ W. (28b)

As (28) is a small dimensional problem, numerical solvers
are capable of handling it. If a positive J is obtained by (28),
the corresponding x and w variables are added to the discrete
sets X, W and the iteration is repeated until either (27)
becomes infeasible which means that the we cannot obtain a
bound for the induced L2-gain with the proposed storage
function structure or the optimal value of (28a) remains
negative which means that an upper bound for L2-gain is
found with the storage function V , also showing stability.

VI. SIMULATION STUDY

A. Simulation Environment

The proposed GP-based learning control approach is eval-
uated in a high-fidelity simulation environment, where real-
world scenarios can be efficiently emulated. The simulator is
based on the open-source MuJoCo physics engine [26] and
incorporates a digital twin model of a real 1/10 scale electric
F1TENTH car. The parameters of the dynamic vehicle model
used for the control design have been identified as described
in [16], where the obtained numerical values are reported. To
artificially generate a large model mismatch, the parameters
of the simulated vehicle model have been heavily modified.
The friction coefficients between the wheels and the ground
have been reduced, while their radius and the overall inertia
of the vehicle have been increased. The original and altered
model parameters are displayed in Tab I.

469



−6 −4 −2 0 2 4 6

X (s)

−4

−2

0

2

4
Y

(m
)

Scen. 1

Scen. 2

Scen. 3

Ref.

5 10 15 20 25 30
0.0

0.1

0.2

|e s
|(

m
)

Scen. 1

Scen. 2

Scen. 3

5 10 15 20 25 30

t (s)

0.0

0.5

1.0

1.5

|v
er

r |
(m
/s

) Scen. 1

Scen. 2

Scen. 3

−6 −4 −2 0 2 4

X (m)

−6

−4

−2

0

2

4

6

Y
(m

)

Initial

Fine− tuning

Fig. 3: Simulation results, with the comparison between the realized and the reference trajectories (a), the tracking errors
(b) of the three scenarios, and the training trajectories (c)

TABLE I: Initial and altered model parameters

Parameter Initial Altered
Friction coefficients 2.5 0.5

Inertia (kgm2) 0.078 0.090
Wheel radius (m) 0.052 0.072

B. Trajectory tracking simulations

Since the LPV-LQR synthesis (20) does not require the
GPs to be trained, we can construct a nominal LPV feed-
back controller without the adaptive terms. The parameter-
dependent feedback matrices are obtained by solving (20),
which has been implemented in Python with CVXPY [27]
and solved with Mosek. The weighting matrices of the
LQR have been tuned using numerical simulations with the
nominal dynamic model resulting in Qla = diag(1, 80, 0),
Rla = 500 and Qlo = 1, Rlo = 100 for the lateral and
longitudinal controller, respectively. Furthermore, the gain
of the virtual velocity reference generator is kv = 0.1.

To demonstrate adaptability of the proposed control al-
gorithm, we compare three scenarios, where the vehicle is
required to track the same predefined lemniscate trajectory.

• In Scenario 1, we show that the nominal controller can
track the predefined reference precisely if there is no
significant model mismatch.

• Next, in Scenario 2, we present that changing the model
parameters can lead to a significant degradation in the
tracking performance.

• Finally, Scenario 3 demonstrates the improved tracking
accuracy of the learning-based controller.

All three scenarios are depicted in Fig.3.
The training of the learning components has been carried

out in a two-step process. First, an initial training round is
performed on a manually designed reference trajectory. Then,
we evaluate the trained GPs on a grid defined by the training
input to obtain the variance for each point. Based on this vari-
ance, we design a second training trajectory which includes
the state points characterized by the highest uncertainty to
provide additional training data for fine tuning. This two-step
approach is proven to be beneficial as the maximal variance
has successfully been decreased from Σ̄

(1)
lo = 0.8497 and

Σ̄
(1)
la = 2.0858 to Σ̄

(2)
lo = 0.4178 and Σ̄

(2)
la = 0.5916.

The learning components have been implemented using the
SGP regression outlined in Section II-B. For the training,

we have utilized the GPyTorch [28] package with M = 20
inducing points, while the total size of the training set has
been N = 3500.

As depicted in Fig. 3 the learning-based adaptive con-
troller has been successful in compensating for the unknown
dynamics between the nominal and the altered models.
Furthermore, we can also highlight that the GP augmentation
has been capable of capturing the model mismatch between
the nonlinear and the simplified control-oriented model,
so Scenario 3 outperforms even Scenario 1. Overall, the
obtained results suggest that the proposed method is suitable
for hardware implementation.

C. L2-gain performance analysis

To give a quantifiable measure of performance, we have
performed the iterative L2 gain calculation method of Sec-
tion V. For the analysis, we have used the following bounds
for X and W:

x1 ∈ [−0.2, 0.2], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.5, 0.5],

x4 ∈ [−0.5, 0.5], x5 ∈ [−0.75, 0.75], x6 ∈ [−3.5, 3.5],

w1 ∈ [−1.44, 1.44], w2 ∈ [−0.75, 0.75],

which were selected such that they contain all state trajecto-
ries obtained from the simulations. Furthermore, 10 Hz has
been selected as the cutoff frequency of the low-pass shaping
filter, and vrcent = 1.25 m/s has been chosen as the central
velocity for the equilibrium calculation.

The overall algorithm has been implemented in Python.
The convex problem of the learner has been formulated
with CVXPY [27] and solved with Mosek. The verifier
nonlinear program has been implemented and solved using
CasADi [29]. X and W have been considered with an intial
equidistant grid of 5 points along each dimension. After 73
iterations, we have obtained a valid V storage function and
the corresponding upper bound for the induced L2 gain:

γ = 0.104. (30)

Finite L2-gain implies stability and bounded tracking errors
in the operating region X × W . Furthermore, given the
small magnitude of the gain, the controllers are capable of
practically rejecting the external disturbance, which implies
adequate tracking performance.

470



VII. CONCLUSION

In this paper, a learning-based trajectory tracking approach
has been proposed to reliably track reference motion trajecto-
ries with autonomous car-like mobile robots. By decoupling
the nonlinear vehicle dynamics and augmenting the subsys-
tems with GPs, we have been able to efficiently capture and
compensate large modeling uncertainties. As a result, com-
pared to the state-of-the-art MPC methods, our feedforward-
feedback algorithm offers computational efficiency and easy
integration, as it does not require online optimization in the
control loop. Furthermore, we provided an estimate for the
upper bound of the induced L2-gain of the nonlinear closed-
loop system to give global performance guarantees.

In the future, we aim to further enhance the performance
of our controllers with systematically designed learning
trajectories based on the uncertainty of the GPs. Furthermore,
we plan to increase the adaptability of our algorithm by
recursive update of the SGPs.

REFERENCES

[1] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous vehicles on the edge: A survey
on autonomous vehicle racing,” IEEE Open Journal of Intelligent
Transportation Systems, vol. 3, pp. 458–488, 2022.

[2] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in Proc. of IEEE Intelligent
Vehicles Symposium (IV), 2017, pp. 719–726.

[3] B. A. H. Vicente, S. S. James, and S. R. Anderson, “Linear system
identification versus physical modeling of lateral–longitudinal vehicle
dynamics,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 1380–1387, 2021.

[4] S. Vaskov, R. Quirynen, M. Menner, and K. Berntorp, “Friction-
adaptive stochastic predictive control for trajectory tracking of au-
tonomous vehicles,” in Proc. of the American Control Conference,
2022, pp. 1970–1975.

[5] Y. Kebbati, V. Puig, N. Ait-Oufroukh, V. Vigneron, and D. Ichalal,
“Optimized adaptive mpc for lateral control of autonomous vehicles,”
in Proc. of 9th International Conference on Control, Mechatronics and
Automation, 2021, pp. 95–103.

[6] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, “Adaptive-neural-network-
based robust lateral motion control for autonomous vehicle at driving
limits,” Control Engineering Practice, vol. 76, pp. 41–53, 2018.

[7] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[8] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with
gaussian process dynamics for autonomous miniature race cars,” in
Proc. of the European Control Conference, 2018, pp. 1341–1348.

[9] Y. Liu, P. Wang, and R. Tóth, “Learning for predictive control: A dual
gaussian process approach,” arXiv preprint arXiv:2211.03699, 2022.

[10] J. Becker, N. Imholz, L. Schwarzenbach, E. Ghignone, N. Baumann,
and M. Magno, “Model- and acceleration-based pursuit controller for
high-performance autonomous racing,” in Proc. of IEEE International
Conference on Robotics and Automation, 2023, pp. 5276–5283.

[11] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning lyapunov functions for hybrid systems,” in Proc. of the
24th International Conference on Hybrid Systems: Computation and
Control, New York, NY, USA, 2021.

[12] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” in Prof. of the NeurIPS 2019 Competition and
Demonstration Track, ser. Proceedings of Machine Learning Research,
vol. 123. PMLR, 08–14 Dec 2020, pp. 77–89.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 11 2005.

[14] P. Antal, T. Péni, and R. Tóth, “Backflipping with miniature quad-
copters by gaussian-process-based control and planning,” IEEE Trans-
actions on Control Systems Technology, pp. 1–12, 2023.

[15] M. Titsias, “Variational learning of inducing variables in sparse
gaussian processes,” in Proc. of the 12th International Conference on
Artificial Intelligence and Statistics, vol. 5. PMLR, Apr 2009, pp.
567–574.

[16] K. Floch, “Model-based motion control of the f1tenth
autonomous electrical vehicle,” Bachelor’s thesis, Budapest
University of Technology and Economics, 2022. [Online]. Available:
https://eprints.sztaki.hu/10544/

[17] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[18] R. Tóth, Modeling and Identification of Linear Parameter-Varying
Systems. Springer Berlin, Heidelberg, 2010.

[19] A. Gupta, M. Nilsson, P. Falcone, E. Klintberg, and L. J. Mårdh, “A
framework for vehicle lateral motion control with guaranteed tracking
and performance,” in Proc. of the IEEE Intelligent Transportation
Systems Conference, 2019, pp. 3607–3612.

[20] J. M. Snider, “Automatic steering methods for autonomous automobile
path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep., 2009.

[21] C. Hu, R. Wang, F. Yan, and N. Chen, “Should the desired heading
in path following of autonomous vehicles be the tangent direction of
the desired path?” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 6, pp. 3084–3094, 2015.

[22] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in Proc. of the
American Control Conference, 2007, pp. 2296–2301.

[23] D. Gángó, T. Péni, and R. Tóth, “Learning based approximate model
predictive control for nonlinear systems,” IFAC-PapersOnLine, vol. 52,
no. 28, pp. 152–157, 2019.

[24] F. Wu, “Control of linear parameter varying systems,” Ph.D. disserta-
tion, University of California at Berkeley, 1995.

[25] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control. Springer Cham, 2017.

[26] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 5026–5033.

[27] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[28] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wil-
son, “Gpytorch: Blackbox matrix-matrix gaussian process inference
with gpu acceleration,” in Advances in Neural Information Processing
Systems, 2018.

[29] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

471


