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Abstract— We consider a sequential stochastic multi-armed
bandit problem where the agent interacts with the bandit over
multiple episodes. The reward distribution of the arms remains
constant throughout an episode but can change over different
episodes. We propose an algorithm based on UCB to transfer
the reward samples from the previous episodes and improve the
cumulative regret performance over all the episodes. We provide
regret analysis and empirical results for our algorithm, which
show significant improvement over the standard UCB algorithm
without transfer.

I. INTRODUCTION
The Multi-armed Bandit (MAB) problem [1], [2], [3] is a

popular sequential decision-making problem where an agent
interacts with the environment by taking actions at every time
step and, in return, gets a random reward. The goal of the
agent is to maximize the average reward received. Recently,
there has been a lot of interest in applying the MAB problem
in the context of online advertisements and recommender
systems[4], [5]. One of the problems highlighted in [5] is
the user cold start problem, which is the inability of a
recommender system to make a good recommendation for
a new user in the absence of any prior information. In this
scenario, it is useful to transfer knowledge from other related
users in order to make better initial recommendations to the
new user. In the context of a MAB problem, transfer learning
uses knowledge from one bandit problem in order to improve
the performance of another related bandit problem [6], [7].
In particular, it helps to accelerate learning and make better
decisions quickly.

In this paper, we consider a sequential stochastic MAB
problem where the agent interacts with the environment
sequentially in episodes (similar to [6]), where different
episodes are synonymous with different tasks or differ-
ent bandit problems. The reward distributions of the arms
remain constant throughout the episode but change over
different episodes. This scenario is useful, for instance,
in recommender systems where the reward distributions of
recommended items change in order to capture the changing
user preferences over time. The goal is to leverage the
knowledge from previous episodes in order to improve the
performance in the current episode, thereby leading to an
overall performance improvement. Towards this, we use
reward samples from previous episodes to make decisions
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in the current episode. Our algorithm is based on the UCB
algorithm for bandits [8].
Related Work: In [6], the authors consider sequential trans-
fer when encountering a fixed number of tasks. In [9], the
sequential transfer of related tasks in linear bandits has
been studied. The authors have captured the relatedness of
tasks by the L2 distance of the parameter vectors of reward
functions. However, we consider the sequential transfer in
stochastic multi-armed bandits, similar to [6], for related
tasks captured by the L∞ distance of the means of the reward
functions. This notion is similar to [10], which studies the
transfer across multiple bandit tasks simultaneously, rather
than sequentially. Furthermore, paper [11] considers repre-
sentational transfer in sequential linear bandits. The other
related frameworks include meta-learning [12],[13], where
the algorithm learns to adapt to a new task after learning
from a few tasks drawn from the same task distribution.
The main contributions of the paper are:
(i) We develop an algorithm based on UCB to transfer knowl-
edge using the reward samples from the previous episodes
in a sequential stochastic MAB setting. Our algorithm has a
better performance compared to UCB with no transfer.
(ii) We provide the regret analysis for the proposed algo-
rithm, and our regret upper bound explicitly captures the
performance improvement due to transfer.
(iii) We show via numerical simulations that our algorithm
is able to effectively transfer knowledge from previous
episodes.
Notations: 1{E} denotes the indicator function whose value
is 1 if the event (condition) E is true, and 0 otherwise.
Similarly, for n events E1, E2, · · · , En, where n ∈ N, we
define 1{E1, E2, · · · , En} as the indicator function whose
value is 1 if all the events are true, and 0 otherwise. Further,
let ∅ denote the null set.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider the Multi-Armed Bandit problem with K
arms and J episodes. The length of each episode is n.
Define [K] ≜ {1, 2, · · · ,K} and [J ] ≜ {1, 2, · · · , J}. At
any given integer time t > 0, one among the K arms is
pulled, and a random reward is received. Let It ∈ [K] and
rIt , denote the arm pulled at time t and the corresponding
random reward, respectively. We assume that rIt ∈ [0, 1]
and the rewards are independent across time and across all
arms. In any given episode, the distributions of the arms do
not change. However, they are allowed to be different over
different episodes.

Let µj
k be the mean reward of arm k in episode j. Let

µj ≜ [µj
1, µ

j
2, · · · , µ

j
K ]T denote the vector containing the
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mean rewards of all arms for episode j. Further, let kj∗ ∈
Aj ≜ argmax

k∈[K]

{µj
k} and µj

∗ = max
k∈[K]

{µj
k} denote an optimal

arm1 in episode j and it’s mean reward, respectively. Define
∆j

k = µj
∗−µj

k > 0 as the sub-optimality gap of arm k /∈ Aj

in episode j. Note that the mean rewards of the arms are
unknown.

We assume that the episodes in the MAB problem are
related in the sense that the mean rewards of the arms across
episodes do not change considerably. We capture this by the
following assumption.

Assumption 1. We assume that ||µj1 − µj2 ||∞ ≤ ϵ for any
j1, j2 ∈ [J ], where the parameter 0 < ϵ < 1 is assumed to
be known.

This assumption implies that for each arm, the mean
rewards across all episodes do not differ by more than ϵ. In
applications like online advertising and recommender sys-
tems, the user preferences change over time only gradually,
and therefore, the parameter ϵ can be used to capture this
behaviour.

Let N j
k(t) denote the number of pulls of arm k in the time

interval [(j − 1)n+1, t]. Thus, N j
k(t) counts the number of

times arm k is pulled from the beginning of episode j until
time t. Note that for episode j, the allowable values of t in
N j

k(t) are [(j − 1)n + 1, nj]. Further, let Sk(t) denote the
number of pulls of arm k in the time interval [1, t]. Thus,
Sk(t) counts the number of times arm k is pulled from the
beginning of episode 1 until time t. For example, if n = 5
and j = 2, then N2

k (8) counts the number of times arm k is
pulled in time instants 6, 7, and 8. Further, Sk(8) counts the
number of times arm k is pulled in the interval [1, 8].

The goal of the agent is to decide which arm to pull (what
should be the value of It) at any given time t based on the
information {rI1 , rI2 , · · · , rIt−1

} in order to maximize the
average reward over all episodes. This is captured by the
pseudo-regret RJ of the MAB problem over J episodes:

RJ =

J∑
j=1

E

 jn∑
t=(j−1)n+1

(rkj
∗
− rIt)


=

J∑
j=1

nµj
∗ − E

 jn∑
t=(j−1)n+1

µj
It


=

J∑
j=1

K∑
k=1

∆j
kE[N

j
k(jn)], (1)

where the last equality follows since
∑K

k=1 N
j
k(jn) = n for

any j ∈ [J ]. Thus, the goal is to make decisions {It : 1 ≤
t ≤ nJ} to minimize the regret in (1).

In this paper, we exploit the relation among the mean
rewards of arms in different episodes (c.f. Assumption 1)
in order to minimize the regret RJ . This is achieved by
reusing (transferring) reward samples from previous episodes

1There may be more than one optimal arms which have equal maximum
mean rewards.

to make decisions in the current episode. We describe the
approach and the proposed algorithm in detail in the next
section.

III. ALL SAMPLE TRANSFER UCB (AST-UCB)

Our approach of reusing samples from previous episodes
builds on the standard UCB algorithm for bandits. In this
section, we first describe the UCB algorithm and then our
proposed algorithm, which we call All Sample Transfer UCB
(AST-UCB).

A. UCB Algorithm [8]

Intuitively, the arm-pulling decisions should be made on
the reward samples obtained from each arm. Since the
mean rewards of the arms are unknown, the UCB algorithm
computes their sample-average estimates and the correspond-
ing confidence intervals. Then, based on the principle of
optimism in the face of uncertainty, the upper (maximum)
value in the confidence interval of each arm is treated as the
optimistic mean reward of that arm. Then, the arm with the
highest optimistic mean reward is pulled.

As time progresses and more reward samples are received,
the estimates become better, and the confidence intervals
become smaller. Thus, the upper value in the confidence
interval approaches the true mean. Eventually, the optimistic
mean reward of the optimal arm becomes larger than all
other sub-optimal arms, and thereafter, only the optimal arm
is pulled.

The standard UCB algorithm is used when the arm distri-
butions are assumed to be the same at all times. However, in
our setting, the distributions change over episodes. Therefore,
one approach would be to implement the UCB algorithm
separately in each episode by using only the samples of
that particular episode. In other words, the UCB algorithm
is restarted at the beginning of every episode and it uses
only the reward samples received during the current episode.
We call this approach the No Transfer UCB (NT-UCB)
algorithm. Next, we explain the NT-UCB algorithm for
episode j.

Let µ̂j
1k(t) denote the sample-average estimate of the mean

reward of arm k at time t, and is computed as:

µ̂j
1k(t) =

t∑
τ=(j−1)n+1

rIτ1{Iτ = k}

N j
k(t)

, (2)

where N j
k(t) denotes the number of times arm k is pulled

until time t since the beginning of episode j. Next, we
compute the optimistic mean reward corresponding to µ̂j

1k(t).
For this, we require the following result.

Lemma 1. Let α > 2. For a given N j
k(t), with probability

at least 1− 2
(t−(j−1)n)α , the following equation is satisfied

|µ̂j
1k(t)− µj

k| ≤ pj1k(t) ≜

√
α log (t− (j − 1)n)

2N j
k(t)

. (3)

Proof. Follows from Hoeffding’s inequality [14].
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Using Lemma 1, we form a confidence interval for mean
reward µj

k using the estimate µ̂j
1k(t) at time t in episode j

as

Dj
1(t) = [µ̂j

1k(t)− pj1k(t), µ̂
j
1k(t) + pj1k(t)].

Next, the NT-UCB algorithm pulls the arm with maximum
optimistic reward:

It = argmax
k∈[K]

{
µ̂j
1k(t− 1) + pj1k(t− 1)

}
.

The above steps are repeated until the end of episode j.
Next, we provide an upper bound on the pseudo-regret of
the NT-UCB algorithm.

Lemma 2. Let α > 2. The pseudo-regret of NT-UCB satisfies

RJ ≤
K∑

k=1

2α log (n)

( J∑
j=1

∆j
k>0

1

∆j
k

)
+

α

α− 2

( J∑
j=1

∆j
k

) .

(4)

Proof. Follows from the per episode regret bound of the
standard UCB algorithm [1].

B. AST-UCB Algorithm

For any particular episode, the NT-UCB algorithm men-
tioned above uses samples only in that episode to compute
the estimates. However, as per Assumption 1, the mean
rewards across the episodes are related, and therefore, reward
samples in previous episodes carry information about the
mean reward in the current episode. In order to capture this
information, we construct an auxiliary estimate (in addition
to the UCB estimate) that uses the reward samples from
the beginning of the first episode. Then, we combine these
two estimates to make the decisions. Next, we describe this
approach for episode j.

Let µ̂2k(t) denote the auxiliary sample-average estimate
of the mean reward of arm k at time t, computed as:

µ̂2k(t) =

t∑
τ=1

rIτ1{Iτ = k}

Sk(t)
, (5)

where Sk(t) denotes the number of times arm k is pulled
until time t since the beginning of episode 1. Note that
estimate µ̂2k(t) captures the information of reward samples
of arm k from all previous episodes 2. Next, we compute the
optimistic mean reward corresponding to µ̂2k(t). For this, we
require the following result.

Lemma 3. Let α > 2. For a given N j
k(t) and Sk(t), with

probability at least 1− 2
(t(t−(j−1)n))α , the following equation

2An alternate strategy would be to construct the auxiliary estimate from
a fixed number of previous episodes. However, our strategy is better since
the confidence interval corresponding to estimate (5) is always better than
this alternate strategy.

is satisfied

|µ̂2k(t)−µj
k|≤ pj2k(t)≜

√
α log (t(t− (j − 1)n))

2Sk(t)
+U j

k(t)ϵ,

(6)

where U j
k(t) =

Sk(t)−N j
k(t)

Sk(t)
.

Proof. The rewards are independent random variables with
support [0, 1]. Using McDiarmid’s inequality[15] for estimate
µ̂2k(t), we get

Pr{|µ̂2k(t)− E[µ̂2k(t)]| ≥ δ} ≤ 2 exp(−2Sk(t)δ
2).

Setting δ =
√

α log(t(t−(j−1)n))
2Sk(t)

for Sk(t) ≥ 1, we get

Pr

{
|µ̂2k(t)− E[µ̂2k(t)]| ≥

√
α log(t(t− (j − 1)n))

2Sk(t)

}
≤ 2

(t(t− (j − 1)n))α
.

Hence, with probability at least 1 − 2
(t(t−(j−1)n))α , the

following holds

|µ̂2k(t)− E[µ̂2k(t)]| ≤

√
α log(t(t− (j − 1)n))

2Sk(t)
. (7)

Next, we bound E[µ̂2k(t)] for Sk(t) ≥ 1, t ∈ [(j − 1)n +
1, jn]:

E[µ̂2k(t)] =

j−1∑
l=1

N l
k(ln)µ

l
k +N j

k(t)µ
j
k

Sk(t)

= µj
k +

j−1∑
l=1

N l
k(ln)(µ

l
k − µj

k)

Sk(t)

≤ µj
k +

(Sk(t)−N j
k(t))ϵ

Sk(t)

= µj
k + U j

k(t)ϵ, (8)

where the inequality follows from µl
k−µj

k ≤ ϵ (Asssumption
1). Similarly, using µl

k − µj
k ≥ −ϵ (Asssumption 1), we get

E[µ̂2k(t)] ≥ µj
k − U j

k(t)ϵ. (9)

Conditions (8) and (9) yield |E[µ̂2k(t)]| ≤ µj
k+U j

k(t)ϵ. Using
this in (7), we get the result in (6).

Using Lemma 3, we form a confidence interval for mean
reward µj

k using the estimate µ̂2k(t) at time step t in episode
j as

Dj
2(t) = [µ̂2k(t)− pj2k(t), µ̂2k(t) + pj2k(t)].

Next, we present two key steps of the AST-UCB algo-
rithm.

(i) Combine the optimistic rewards of the two estimates
µ̂j
1k(t) and µ̂2k(t) given in (2) and (5) as:

qjk(t) = min{µ̂j
1k(t) + pj1k(t), µ̂2k(t) + pj2k(t)}. (10)
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(ii) Pull arm

It = argmax
k∈[K]

{qjk(t− 1)}.

The above steps are repeated until the end of episode j. All
the steps of AST-UCB are given below in Algorithm 1.

Algorithm 1 AST-UCB

Require: Episode length n, Number of episodes J , Param-
eters α, ϵ and Number of arms K

1: for episode j = 1, 2, ..., J do
2: for t = (j − 1)n+ 1, · · · , (j − 1)n+K do
3: It = t− (j − 1)n (Pull each arm once)
4: end for
5: for t = (j − 1)n+K + 1, · · · , jn do
6: compute µ̂j

1k(t− 1), pj1k(t− 1) using (2), (3)
7: compute µ̂2k(t− 1), pj2k(t− 1) using (5), (6)
8: compute optimistic reward qjk(t− 1) using (10)
9: select arm It = argmax

k∈[K]

{qjk(t− 1)}

10: update number of pulls N j
k(t) and Sk(t)

11: end for
12: end for

Next, we explain the motivation for Step (i). We combine
the confidence intervals Dj

1k(t) and Dj
2k(t) by taking their

intersection to get a better confidence interval. Note that by
taking the intersection, the new confidence interval Dj

1k(t)∩
Dj

2k(t) is always smaller than the original two confidence
intervals, as illustrated in Figure 1. This smaller interval
results in a better estimate of µj

k. We then pick the optimistic
reward in the new confidence interval3. Further, Step (ii) is
similar to the UCB algorithm, where we pull the arm with
the maximum optimistic reward. The next result presents a
bound on the probability of µj

k lying in the new confidence
interval (the new confidence interval being non-empty).

Fig. 1: The blue and green intervals represent confidence
intervals Dj

1k(t) and Dj
2k(t) for mean µj

k, respectively. The
orange interval is the intersection of the two intervals, which
is clearly smaller (and hence better). The optimistic reward
of the orange interval is given by qjk(t).

3Note that the Step (i) is valid even when Dj
1k(t) and Dj

2k(t) do not
intersect.

Lemma 4. For episode j, time t ∈ [(j−1)n+1, jn] and arm
k, with probability at least 1−

(
2

(t−(j−1)n)α+
2

(t(t−(j−1)n))α

)
,

the following equations are satisfied

(i) µj
k ∈ Dj

1k(t) ∩Dj
2k(t). (11)

(ii) Dj
1k(t) ∩Dj

2k(t) = ∅. (12)

Proof. Define events E1 = {µj
k /∈ Dj

1k(t)} and E2 = {µj
k /∈

Dj
2k(t)}. Then we have

Pr{µj
k /∈ Dj

1k(t) ∩Dj
2k(t)} = Pr{E1 ∪ E2}

≤ Pr{E1}+ Pr{E2}

≤ 2

(t− (j − 1)n)α
+

2

(t(t− (j − 1)n))α
,

where the last inequality follows from Lemmas 1 and 3.
Hence, condition (i) in the lemma follows. Same arguments
are valid for condition (ii) as well.

Note that although the new confidence interval is smaller,
Lemma 4 shows that the probability bound of the mean
reward belonging to this new interval has reduced as com-
pared to that in (3) or (6). However, we show in Theorem 1
that the negative effect of the reduction of the probability is
not significant, and the smaller interval leads to an overall
reduction in the regret.

IV. REGRET ANALYSIS
In this section, we derive the regret of the AST-UCB

algorithm and then provide the analysis of the result.

Theorem 1. Let ∆max
k ≜ max

j∈[J]
{∆j

k} and ∆min
k ≜

min
j∈[J],∆j

k>2ϵ
{∆j

k}. The pseudo-regret of AST-UCB with α > 2

satisfies

RJ ≤
K∑

k=1

∆max
k

[
min

{ J∑
j=1

∆j
k>2ϵ

2α log (n)

(∆j
k)

2
,
2α log (Jn2)

(∆min
k − 2ϵ)2

}

+

J∑
j=1

∆j
k≤2ϵ

2α log (n)

(∆j
k)

2
+ J

(
α

α− 2
+

2

2α− 3

)]
. (13)

Proof. Refer to the appendix.

Next, we compare the regret bounds of our algorithm (13)
and NT-UCB (4), and highlight the benefit of transfer. The
transfer happens due to the first and second terms in (13).
Hence, we compare the first and second terms of (13) with
the first term of (4). To this end, we define the following
terms that capture the dependence on J :

AJ
k =

J∑
j=1

∆j
k>2ϵ

∆max
k log (n)

(∆j
k)

2
, BJ

k =
∆max

k log (Jn2)

(∆min
k − 2ϵ)2

,

CJ
k =

J∑
j=1

∆j
k≤2ϵ

∆max
k log (n)

(∆j
k)

2
, DJ

k =

J∑
j=1

∆j
k>0

log (n)

∆j
k

.
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Several comments are in order. First, observe that, for
transfer to be beneficial, we need min{AJ

k , B
J
k }+CJ

k < DJ
k .

Since AJ
k +CJ

k ≥ DJ
k , this can happen only if BJ

k +CJ
k <

DJ
k . Next, consider the case CJ

k = 0 (which happens when
∆j

k > 2ϵ, ∀j ∈ [J ], k ∈ [K]), and since the term BJ
k

has logarithmic dependence with number of episodes J ,
for some large enough Jm(ϵ), we get BJ

k < DJ
k which

leads to the maximum decrease in the regret (in other words
maximum transfer) as compared to NT-UCB. Further, as the
sub-optimality gap ∆j

k decreases, i.e., ∆j
k ≤ 2ϵ is satisfied

for some episodes, the term CJ
k increases. As a result, the

large enough Jm(ϵ) required to get BJ
k + CJ

k < DJ
k also

increases. Note that when the sub-optimality gaps are small,
i.e., when the condition ∆j

k ≤ 2ϵ,∀j ∈ [J ], k ∈ [K] is
satisfied, then we get CJ

k > DJ
k which means there is no

decrease in the regret and hence no transfer. Second, the
dependence of ϵ on BJ

k + CJ
k < DJ

k is analyzed similarly
as above, and we get maximum decrease in the regret when
ϵ = 0, the large enough Jm(ϵ) required for BJ

k +CJ
k < DJ

k

increases as ϵ increases, and no decrease in regret for ϵ ≥ 0.5.
Third, we have a logarithmic dependence of episode length
n on the regret (which is the case with NT-UCB). Fourth,
the third term in the regret bound of AST-UCB (13) is
higher than the second term in NT-UCB bound (4) due to
the decreased probability bound in Lemma 4 as compared to
Lemmas 1 and 3.

V. NUMERICAL SIMULATIONS

In this section, we present the numerical results for AST-
UCB algorithm.

(a) Regret as function of episode length n, with constant J = 50.

(b) Regret as function of total number of episodes J , with constant
n = 500.

Fig. 2: Empirical regret of NT-UCB and AST-UCB for
different values of ϵ for Case I.

We consider K = 4 armed bandit problem. In numerical
simulations, we need to select the mean reward (µj

k) of each
arm for each episode which should satisfy Assumption 1.
Towards this end, we fix a seed interval of length ϵ for each

arm. Then, at the beginning of each episode, we uniformly
sample the value of µj

k from this seed interval. This ensures
that Assumption 1 is satisfied. Once the mean reward value
µj
k is obtained, we construct a uniform distribution with mean

µj
k and width d = 0.2. In case the support of this uniform

distribution lies outside the interval [0, 1], we reduce d to
avoid this. The reward samples are then generated from the
uniform distribution. For each scenario, we compute the re-
gret RJ by taking an empirical average over 30 independent
realizations of that scenario.

We simulate AST-UCB and NT-UCB for two cases (two
sets of seed intervals). Note that the seed intervals for each
arm are of length ϵ. The mid-points of the seed intervals of
the four arms for Case I and Case II are (0.4, 0.6, 0.6, 0.4)
and (0.35, 0.7, 0.3, 0.4), respectively.

(a) Regret as function of episode length n, with constant J = 50.

(b) Regret as function of total number of episodes J , with constant
n = 500.

Fig. 3: Empirical regret of NT-UCB and AST-UCB for
different values of ϵ for Case II.

In Figure 2a, we observe that the regret of AST-UCB
is considerably smaller as compared to NT-UCB. This is
particularly true for smaller values of ϵ. As ϵ increases , the
regret of AST-UCB approaches to that of NT-UCB. This is in
accordance with the fact that when ϵ is large, the confidence
interval of the auxiliary estimate in (6) is large and transfer
is not much beneficial. Further, we observe a logarithmic
dependence of the regret on n, as quantified by the regret
bounds in (4) and (13).

In Figure 2b, we again observe that AST-UCB performs
better than NT-UCB, particularly for small values of ϵ.
We also observe that the regret has a “approximate” linear
dependence on J . The plots in Figures 2 show that for any
value of ϵ the difference between the regret of NT-UCB and
AST-UCB increases with episode length (n) or total number
of episodes (J). This is because a larger number of reward
samples from previous episodes become available, thereby
increasing the transfer.

Similar observations can be seen in Figures 3a and 3b for
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Case II. However, the improvement of AST-UCB over NT-
UCB in terms of regret is more in Case II as compared to
Case I. This happens because the seed intervals in Case II
are farther apart, which helps in distinguishing the best arm
more quickly using the samples of previous episodes.

VI. CONCLUSION

We analyzed the transfer of reward samples in a sequential
stochastic multi-armed bandit setting. We proposed a transfer
algorithm based on UCB and showed that its regret is
lower than UCB with no transfer. We provide regret analysis
of our algorithm and validate our approach via numerical
experiments. Future research directions include extending
the work to the case when the parameter ϵ is unknown,
and studying a similar transfer problem in the context of
reinforcement learning.

APPENDIX: PROOF OF THEOREM 1

To simplify the notation, we re-denote several variables
as µ = µj

k, µ∗ = µj
∗, µ̂1 = µ̂j

1k(t − 1), µ̂1∗ = µ̂j

1kj
∗
(t − 1),

µ̂2 = µ̂2k(t− 1), µ̂2∗ = µ̂2kj
∗
(t− 1), tnj = (j − 1)n+ 1,

p1 =

√
α log (t− tnj )

2N j
k(t− 1)

, p1∗ =

√√√√α log (t− tnj )

2N j

kj
∗
(t− 1)

,

p2 =

√
α log ((t− 1)(t− tnj ))

2Sk(t− 1)
+ U j

k(t− 1)ϵ,

p2∗ =

√
α log ((t− 1)(t− tnj ))

2Skj
∗
(t− 1)

+ U j
k∗
(t− 1)ϵ,

uj
1k =

2α log (n)

(∆j
k)

2
, uj

2k =
2α log (Jn2)

(∆j
k − 2ϵ)2

.

For arm k to be pulled at time t (It = k), at least one of the
following five conditions should be true:

µ̂1 − p1 > µ, (14)
µ̂1∗ + p1∗ ≤ µ∗, (15)
µ̂2∗ + p2∗ ≤ µ∗, (16)
µ̂2 − p2 > µ, (17)

√
α log n

2N j
k(t− 1)

>
∆j

k

2
and

√
α log (Jn2)

2Sk(t− 1)
+ ϵ >

∆j
k

2
.

(18)

We show this by contradiction. Assume that none of the
conditions in (14)-(17) is true and the first condition in (18)
is false. Then, using the fact that p1 <

√
α logn

2Nj
k(t−1)

, we have

µ̂1∗ + p1∗ > µ∗ = ∆j
k + µ ≥ 2p1 + µ ≥ µ̂1 + p1, (19)

µ̂2∗ + p2∗ > µ∗ = ∆j
k + µ ≥ 2p1 + µ ≥ µ̂1 + p1. (20)

Conditions in (19) and (20) imply

min{µ̂1∗ + p1∗, µ̂2∗ + p2∗} > µ̂1 + p1. (21)

Similarly, when none of the conditions in (14)-(17) is true
and the second condition in (18) is false, we get

min{µ̂1∗ + p1∗, µ̂2∗ + p2∗} > µ̂2 + p2. (22)

Thus, at least one of the conditions in (21) and (22) is true,
and this yields

min{µ̂1∗ + p1∗,µ̂2∗ + p2∗} > min{µ̂1 + p1, µ̂2 + p2}.

The above condition implies that the AST-UCB algorithm
will not pull arm k, and hence, we have a contradiction. The
cumulative regret after J episodes (each with length n) is
given by

RJ =

J∑
j=1

K∑
k=1

∆j
kE[N

j
k(jn)] ≤

K∑
k=1

∆max
k E[S̃k(Jn)],

where S̃k(Jn) is the total number of sub-optimal pulls
to arm k over all episodes. Next, we bound the regret by
bounding the term E[S̃k(Jn)]. For an arbitrary sequence It,
t = 1, 2, · · · , Jn, we have

S̃k(Jn) =

J∑
j=1

jn∑
t=tnj

1{It = k, k ̸= kj∗}

=

J∑
j=1

(
1{k ̸= kj∗}+

jn∑
t=tnj +K

1{It = k, k ̸= kj∗}
)

=

J∑
j=1

jn∑
t=tnj +K

1{It = k, k ̸= kj∗, (18) is True}

+

J∑
j=1

(
1{k ̸= kj∗}+

jn∑
t=tnj +K

1{It = k, k ̸= kj∗,

(18) is False}
)
. (23)

First term in (23) =
J∑

j=1

( jn∑
t=tnj +K

∆j
k>2ϵ

1{It = k, k ̸= kj∗,

N j
k(t− 1) < uj

1k, Sk(t− 1) < uj
2k}+

jn∑
t=tnj +K

∆j
k≤ 2ϵ

1{It = k, k ̸= kj∗, N
j
k(t− 1) < uj

1k}
)

=

J∑
j=1

( jn∑
t=tnj +K

∆j
k>2ϵ

min

{
1{It = k, k ̸= kt∗, N

j
k(t− 1) <

uj
1k},1{It = k, k ̸= kt∗, Sk(t− 1) < uj

2k}
}

+

jn∑
t=tnj +K

∆j
k≤2ϵ

1{It = k, k ̸= kj∗, N
j
k(t− 1) < uj

1k}
)
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≤ min

{ J∑
j=1

jn∑
t=tnj +K

∆j
k>2ϵ

1{It = k, k ̸= kt∗, N
j
k(t− 1) < uj

1k},

J∑
j=1

jn∑
t=tnj +K

∆j
k>2ϵ

1{It = k, k ̸= kt∗, Sk(t− 1) < uj
2k}
}
+

J∑
j=1

jn∑
t=tnj +K

∆j
k≤2ϵ

1{It = k, k ̸= kj∗, N
j
k(t− 1) < uj

1k}

≤ min

{
J∑

j=1

∆j
k>2ϵ

2α log (n)

(∆j
k)

2
,

Jn∑
t=1

1

{
It = k, k ̸= kt∗,

Sk(t− 1) < max
{j∈[J]:∆j

k>2ϵ}

{
2α log (Jn2)

(∆j
k − 2ϵ)2

}}}
+

J∑
j=1

∆j
k≤2ϵ

2α log (n)

(∆j
k)

2

≤ min

{ J∑
j=1

∆j
k>2ϵ

2α log (n)

(∆j
k)

2
,
2α log (Jn2)

(∆min
k − 2ϵ)2

}
+

J∑
j=1

∆j
k≤2ϵ

2α log (n)

(∆j
k)

2

︸ ︷︷ ︸
≜WJ

k

(24)

Second term of (23) ≤
J∑

j=1

(
1 +

jn∑
t=tnj +K

1{(14) or (15)

or (16) or (17) is True}
)
. (25)

Using (23), (24), (25) and taking expectation, we get

E[S̃k(Jn)] ≤ W J
k +

J∑
j=1

(
1 +

jn∑
t=tnj +K

Pr{(14) or

(15) or (16) or (17) is True}
)
. (26)

Next, we bound the probability of the event that at least
one of (14) or (15) or (16) or (17) is true. We use the union
bound, followed by the application of one-sided Hoeffding’s
inequality (steps are similar to the proof of Lemma 1 and 3)
to get,

Pr{(14) or (15) or (16) or (17) is True}
≤ Pr{(14) is True}+ Pr{(15) is True}+ Pr{(16) is True}

+ Pr{(17) is True}

≤ 2

(t− tnj )
α−1

+
2

(t− tnj )
2(α−1)

. (27)

Using (26) and (27), we have

E[S̃k(Jn)] ≤ W J
k +

J∑
j=1

(
1 +

jn∑
t=tnj +K

2

(t− tnj )
α−1

+

2

(t− tnj )
2(α−1)

)

≤ W J
k +

J∑
j=1

(
1 +

∞∫
s=(j−1)n+K

(
2

(s− tnj )
α−1

+

2

(s− tnj )
2(α−1)

)
ds

)

≤ W J
k + J

(
α

α− 2
+

2

2α− 3

)
.

Hence, the theorem follows.
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