
Stochastic ISS of Impulsive Evolution Equations with Randomly

Distributed Jump Instants

Patrick Bachmann Saeed Ahmed Naim Bajcinca

Abstract— This paper studies stochastic input-to-state stabil-

ity of impulsive evolution equations with randomly distributed

jump instants. We model these random jump instants via a

Poisson process. Our approach derives the stability conditions

by employing candidate Lyapunov functions parameterized by

nonlinear rates. We apply our results to the cooling mechanism

of a metal string modeled by a partial differential equation with

jumps.

Index Terms— Impulsive evolution equation, stochastic sta-

bility, ISS, Poisson process.

I. INTRODUCTION

Impulsive evolution equations offer the plausibility to
dynamically model various real-world phenomena due to
their combined continuous and discrete behavior, referred to
as flow and jump, respectively. The flow is thereby typically
described by a partial differential equation (PDE) interrupted
by state jumps at certain time instants. Impulsive evolution
can model quenching [1], population models [2], and neural
networks [3]. An essential property of these dynamical
models is their sensitivity to external perturbations. The
notion of input-to-state stability (ISS), introduced in [4], is
a useful tool for characterizing the system’s tolerance to
such perturbations. ISS was initially developed for systems
described by ordinary differential equations (ODEs). ISS of
ODEs has now evolved into a mature research area with
many significant applications.

The efficacy of the ISS theory for ODEs and the require-
ment of robust stability analysis tools for PDEs motivated
the study of ISS for impulsive evolution equations in [5].
However, it only covers impulsive systems with fixed jump
instants, and it does not apply to systems with state jumps
occurring at random time instants while, in practical sce-
narios, environmental factors may affect the instants of the
impulses [6]. Particularly, in wireless networks, because of
synchronisation routines, acknowledgement packets, waiting
times, etc., transmissions instants are naturally random [7].
This motivated us to study impulsive evolution equations
with random jump instants. For such systems, the difficulty
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arises from the random nature of jump instants. Due to
the influence of random jump instants, any solution of the
impulsive evolution equation with random jump instants is
a stochastic process. ISS framework for impulsive evolution
equations with fixed jump instants remains inconclusive for
impulsive evolution equations with random jump instants
as it does not support a direct extension of the notion of
convergence to a probabilistic setting. Therefore, it seems
inevitable to us to introduce a stochastic framework of ISS
(as in [8] and [9]) and use tools from stochastic theory to
conclude corresponding statements for impulsive evolution
equations with random jump instants. To the best of the
authors’ knowledge, stochastic input-to-state stability (SISS)
of impulsive evolution equations with random jump instants
has not been studied before.

In this paper, we focus on characterizing SISS of im-
pulsive evolution equations with random jump instants. We
model these random jump instants via a Poisson process,
i.e., the time between any two consecutive jump instants
is exponentially distributed. The motivation for studying
impulsive evolution equations with Poissonian jumps comes
from their flexibility in modeling biological systems such
as complex chemical reaction networks of a cell. In such
networks, Poisson process-induced genetic toggle happen
when a certain gene is expressed. This gene expression then
results in the transcription of a relevant mRNA that serves
as a template for producing certain proteins. The latter being
the functional units of a cell, consequently, triggers different
chemical pathways to become active. The jump dynamics of
such complex reaction networks of a cell can be modeled
using a Poisson process. Moreover, it is common to model
the transmissions instants in wireless networks by a Poisson
process [7]. To establish SISS, we employ candidate SISS-
Lyapunov functions parameterized by nonlinear rates, which
facilitates their construction. We investigate two cases: (i) the
discrete dynamics is ISS, but the flow may not be ISS, and
(ii) the continuous dynamics is ISS, but the jump sequence
may not be ISS.

The rest of the paper unfolds as follows. In Section II, we
provide the system description and the notion of SISS. In
Section III, we discuss our main results on SISS of impulsive
evolution equations with Poisson-distributed jump instants.
In Section IV, we apply our results to the cooling mechanism
of a metal spring modeled by a PDE with jumps.

II. SYSTEM DESCRIPTION AND SISS

We denote the set of natural numbers by N, the set of
non-negative integers by N0, the set of real numbers by
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R, and the set of non-negative real numbers by R+
0 . Let

(Y, k · k) be a Banach space representing the state space.
Let the Banach space (U, k · k) represent the input space.
Let t0 2 R be the initial time and I := [t0,1). By
Uc, we denote the space of bounded functions from I to
U with norm kuk1 := supt2I{ku(t)k}. By f�(t), we
denote the left limit of a function f at t. We denote the
space of continuous functions from X to Y by C(X,Y ).
By PC(I, Y ), we denote the space of piecewise continuous
functions from I to Y , which are right-continuous and the
left limit exists for all times t 2 I . Let S = (tn)n2N be
a strictly increasing sequence of random variables defined
on the complete probability space (⌦,F , P ) with ⌦ being a
sample space, F being the �-algebra, and P being a proba-
bility measure. The random variables tn : ⌦ ! (t0,1), for
all n 2 N, represent the random arrival times of the impulses.
Let (Nt)t�t0 be a homogeneous Poisson process with rate
parameter �, representing the counting process associated
with the sequence S, whose probability distribution is given
as

P{Nt �Nt0 = n}=P{Nt�t0 = n}=e��(t�t0) �
n(t�t0)

n

n!

for all t > t0 and n 2 N. The process Nt�t0 and the sequence
S are related as tn = inf{t > t0 : Nt�t0 = n} for all n 2 N.

Consider an impulsive evolution equation described by
interacting continuous and discontinuous evolution maps:

@ty(t) = Ay(t) + f(t, y(t), u(t)), t /2 S,

y(ti) = gi
�
y�(ti), u(ti)

�
, i 2 N,

(1)

where ti 2 S, u 2 Uc, and y(t) 2 Y . Here, A is a
closed linear operator and the infinitesimal generator of a C0-
semigroup on Y , f : I⇥Y ⇥U ! Y , and gi : Y ⇥U ! Y for
all i 2 N. The solution of equation (1) is a stochastic process
y := �!(t; t0, y0, u), where the !-parametrization indicates
the dependency of the solution on the sequence S of the
random impulse times tn, n 2 N. Thereby, we assume that
every realization y : ⌦ ! PC(I, Y ) is uniquely defined, i.e.
a unique forward global mild solution exists for every ! 2 ⌦,
initial condition y(t0) = y0, y0 2 Y and u 2 Uc. Sufficient
conditions for the existence and uniqueness of solutions of
equation (1) in Banach space can be obtained by applying
the technique of [10] in the pathwise sense.

Definition 1: We define the following function classes
also referred to as comparison functions:

1) Class P is the set of all continuous functions � :
[0,1) ! [0,1), which satisfy �(0) = 0 and �(r) > 0
for all r > 0.

2) Class K is the set of all continuous functions � :
[0,1) ! [0,1), which are strictly increasing and
�(0) = 0. Class K1 is the subset of class K for which
additionally �(s) ! 1 as s ! 1.

3) Class KL is the set of all continuous functions � :
[0,1)⇥ [0,1) ! [0,1) for which �(s, r) is class K
for every fixed r � 0, and for each fixed s > 0, the
mapping �(s, r) is strictly decreasing with respect to
r and �(s, r) ! 0 as r ! 1.

We next introduce the notion of SISS (as in [8]) and
candidate SISS-Lyapunov function.

Definition 2: Given an impulsive time sequence S, the
impulsive evolution equation (1) is SISS, if for any " 2 (0, 1),
there exist � 2 KL, � 2 K1 such that for every initial values
(t0, y0) 2 I ⇥ Y , every bounded input function u,

P{k�!(t; t0, y0, u)k  �(ky0k , t� t0) + �(kuk1)}
� 1� " (2)

for all t 2 [t0,1).
Definition 3: We call a function V 2 C

�
Y,R+

0

�
, a candi-

date SISS-Lyapunov function for system (1) if, for all ! 2 ⌦,
it fulfills the following conditions:

1) There exist functions ↵1,↵2 2 K1 such that

↵1(kyk)V (y)↵2(kyk) . (3)

2) There exist functions � 2 K1,  2 P and ' 2
C([0,1),R) with '(0) = 0 such that for every u 2 Uc,
whenever V (y) � �(kuk1) , the differential and jump
inequalities

d

dt
V (y) '(V (y)) , t /2 S,

V (gi(y, u(ti)))   (V (y)) , ti 2 S, i 2 N

hold true. Here, d
dtV (y) defines the pathwise Dini-

derivative:
d

dt
V (y) = lim sup

s&0

1

s
(V (�c(s; 0, y, u))� V (y)) ,

where �c is a transition map that corresponds to the
continuous part of system (1), i.e., �c(t; t0, y, u) is the
state of system (1) at time t if the state at time t0 := 0
was y and no impulses occur.

3) There exists a function ↵3 2 K such that for every
u 2 Uc whenever V (y) < �(kuk1), the following
jump inequality holds true:

V (gi(y, u(ti)))  ↵3(ku(ti)k) , ti 2 S, i 2 N. (4)
III. MAIN RESULTS

In this section, we provide sufficient conditions for SISS
of system (1).

A. Input-to-state stable discrete dynamics

We derive SISS conditions for system (1) when the dis-
crete dynamics is ISS, but the continuous dynamics may not
be ISS.

Theorem 1: Consider system (1) with a rate parameter
� > 0. Assume that there exists a candidate SISS-Lyapunov
function V 2 C

�
Y,R+

0

�
for system (1) with rates ', 2 P

as in Definition 3. Let there exist a constant � > 0 such that
Z a

 (a)

1

'(s)
ds � 1

�
+ � (5)

holds for all a > 0. Then, system (1) is SISS.
Proof: See Appendix A for the proof.

Note that the right hand side of inequality (5) is always
greater than zero as � and � are positive constants. Moreover,

3280



the integrand on the left hand side of the inequality (5) is
always positive by the definition of '. Therefore, the integral
in the inequality (5) can only be positive if  (a) < a for all
a 2 R+, which implies that the discrete dynamics is ISS.
The flow, however, may not be ISS.

B. Input-to-state stable continuous dynamics

We now discuss SISS of system (1) when the flow is ISS,
but the jumps possibly not.

Theorem 2: Consider system (1) with a rate parameter
� > 0. Assume that there exists a candidate SISS-Lyapunov
function for system (1) with rates �', 2 P as in Definition
3. Let there exist constants � > 0 such that the inequality

Z a

 (a)

1

'(s)
ds  1

�
� � (6)

holds for all a > 0. Then, system (1) is SISS.
Proof: See Appendix B for the proof.

The restriction that the flow must be ISS in Theorem 2
is given explicitly by our choice �' 2 P . This implies that
the Lyapunov value of the continuous dynamics has to be
decreasing along the trajectories as long as it is outside the
perturbation radius �(kuk1), i.e., it must be ISS. However,
in this case, the jumps may not be ISS.

IV. APPLICATION: COOLING MECHANISM OF A METAL
STRING

Consider a metal string spanned vertically with ther-
mal diffusivity 1

⇡2 and external heat source tanh(|u(t,x)|)
2y(t,x) +

1
⇡2 y(t, x). The water drops, running down the string and
simultaneously cooling it, are assumed to induce jumps in
temperature distribution y(t, x), which are modelled using
a Poisson process with parameter �. This system can be
described by an inhomogeneous heat equation with jumps
y : I ! L2([0, 1]),

@

@t
y(t, x) =

1

⇡2
�y(t, x) +

tanh(|u(t, x)|)
2y(t, x)

+
1

⇡2
y(t, x), t /2 S,

y(ti, x) =

8
<

:

1
2

y�(ti,x)p
ky�(ti,x)k

, ky�(ti, x)k > 1,

1
2y

�(ti, x) · ky�(ti, x)k , else,
(7)

for ti 2 S, i 2 N, with boundary conditions y(t, 0) =
y(t, 1) = 0, where � is the Laplace Operator �y(t, x) =
@2

@x2 y(t, x). Let us consider the input u : I ! L2([0, 1]) and
choose rate functions as

'(s) = tanh(s),  (s) =

(
1
2

p
s, s > 1,

1
2s

2, else,

and the candidate Lyapunov function as

V (y) = kyk2

with perturbation radius �(s) = s. Note that the discrete
dynamics is ISS in this example, which is evident from our
choice of the function  .

We next show that V is indeed a candidate Lyapunov
function as given in Definition 3 with according rates:

1) Condition (1) in Definition 3 can be verified trivially.

2) We choose y 2 Y and u 2 Uc such that

V (y) � kuk1 , (8)

and calculate
d

dt
V (y) =

d

dt

Z 1

0
(y(t, x))2 dx

=

Z 1

0
2y(t, x)

✓
1

⇡2
�y(t, x)

+
tanh(|u(t, x)|)

2y(t, x)
+

1

⇡2
y(t, x)

◆
dx


Z 1

0
tanh(|u(t, x)|) dx

 tanh

✓Z 1

0
|u(t, x)| dx

◆

 tanh(ku(t, · )k)  tanh(V (y)) ,

where we used
Z 1

0
y(t, x)�y(t, x) dx =

Z 1

0
�ry(t, x)ry(t, x) dx

 �
Z 1

0
y2(t, x) dx

in the third step, which follows from Green’s first
identity and Friedrichs’s inequality. In the fourth step,
we applied Jensen’s inequality and in the fifth step
Hölder’s inequality. The rest follows from (8).
Similarly, for kyk > 1, it follows that

V (gi(y, u(ti))) =
1
4 kyk = 1

4

p
V (y),

and for kyk  1,

V (gi(y, u(ti))) =
1
4 kyk

4 = 1
4V

2(y) (9)

holds.

3) Condition (9) holds independently of u and together
with V (y) � kuk1, it can be seen that

V (gi(y, u)) 
(

1
4

p
V (y) = 1

4

p
kuk1, kyk > 1,

1
4V

2(y) = 1
4 kuk

2
1 , else,

gives us the necessary bounds.
It remains to show that (5) holds true. Indeed, we have

Z a

 (a)

1

'(s)
ds = ln

 
sinh(a)

sinh
�
1
4

p
a
�
!

= ln
⇣
1 +

p
e+ e+ e

3
2

⌘
� 3

4 ,

for a > 1 and
Z a

 (a)

1

'(s)
ds = ln

 
sinh(a)

sinh
�
1
4a

2
�
!

= ln
⇣
1 +

p
e+ e+ e

3
2

⌘
� 3

4 ,
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Fig. 1. Simulation of the heat equation (7) for a single realization of
the Poisson-distributed jumps with rate parameter � = 0.64. In the upper
graph, a three dimensional plot of the system behavior with time is depicted.
Below, the corresponding candidate Lyapunov function is illustrated.

for a  1, respectively. Therefore, for all � and � which
satisfy ln

⇣
1 +

p
e+ e+ e

3
2

⌘
� 3

4 � 1
� + �, i.e., � < 0.650,

system (7) is SISS.
In Fig. 1, simulation of system (7) with initial condition

y(0, x) = 2 sin(⇡x) and input u(t, x) ⌘ 1 is shown for
a single realization of the Poisson-distributed jumps with
rate parameter � = 0.64. In the upper graph, the system
state is plotted in a three dimensional graph. In the lower
graph, the development of the candidate Lyapunov function
V (y(t)) = ky(t)k with time is plotted. It can be seen that
the system state varies in such a manner that it stays within
the perturbation radius �(kuk) = 1.

V. CONCLUSIONS

We provided sufficient conditions for SISS via candidate
SISS-Lyapunov functions for impulsive evolution equations
with Poisson-distributed jumps. To this end, we employed
Lyapunov functions with nonlinear rates ' and  , which
facilitated their construction. We illustrated the efficacy of
our result by applying it to cooling mechanism of a metal
string. A possible future research direction is to consider
generic Lévy process to model the random jump instants of
the impulsive evolution equations as in [11].
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APPENDIX

A. Proof of Theorem 1

Without loss of generality, we can assume that � <
1
2�

p
3� 1

2� . The proof can be divided in two steps.
Step 1: We define the set A1 := {y 2 Y : V (y) <

�(kuk1)}. We first assume that y /2 A1 i.e. V (y) �
�(kuk1). Then, by Definition 3, the candidate Lyapunov
function V satisfies the inequalities:

d

dt
(V (y))  '(V (y)) , t /2 S, (10)

V (gi(y, u(ti)))   (V (y)) , ti 2 S, i 2 N. (11)

We define a function F : (0,1) ! R as F (q) :=
R q
1

1
'(s) ds.

Note that F is strictly increasing for all q 2 (0,1) because
' is positive. The image of F is an open interval of the form
(�1,M) for some constant M 2 R [ {1} since

lim
q!0

Z q

1

1

'(s)
ds=

Z  (1)

1

1

'(s)
ds+

Z  2(1)

 (1)

1

'(s)
ds+ . . .

=
1X

k=0

Z  k+1(1)

 k(1)

1

'(s)
ds  �

1X

k=0

✓
1

�
+ �

◆
! �1.

Above, we used the fact that a >  (a) > 0 for all a > 0
as  is a P-function in the first equation. Here, by  k, we
mean the k-times composition  � · · ·� , where  0(a) = a.
im(F ) is right-open as F is a strictly increasing function.
Therefore, F is invertible and F�1 : (�1,M) ! (0,1) is
also strictly increasing.

Until further notice, the analysis focuses on the evolution
of V with respect to time along a single realization, i.e. with
! 2 ⌦ kept fixed. Thus, for the sake of brevity, we define
v(t) := V (�!(t; t0, y0, u)). Based on the arrival sequence S
of the impulses, F (v(t))�F (v(t0)), for all t 2 [t0,1), can
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be written as

F (v(t))� F (v(t0)) =

Z v(t)

v(t0)

1

'(s)
ds

=

Nt�t0X

k=1

0

B@

v�(tk)Z

v(tk�1)

1

'(s)
ds+

 (v�(tk))Z

v�(tk)

1

'(s)
ds

1

CA+

v(t)Z

v(tNt�t0
)

1

'(s)
ds.

(12)

The first integral appearing in the sum in the above equation
can be upper bounded as follows: since (10) holds for every
t /2 S, in particular for t 2 (tk�1, tk), for arbitrary k 2 N ,
we have

Z tk

tk�1

d
dtv(t)

'(v(t))
dt 

Z tk

tk�1

'(v(t))

'(v(t))
dt = tk � tk�1. (13)

Note that v(t) can be equal to zero for some t, however, this
is not an issue, since lims!0

'(s)
'(s) = 1 by l’Hôpital’s rule.

Substituting s := v(t), we get
Z v�(tk)

v(tk�1)

1

'(s)
ds  tk � tk�1. (14)

Plugging (14) and (5) in (12), we obtain for every t 2 I ,

F (v(t))� F (v(t0))


Nt�t0X

k=1

✓
tk � tk�1 �

✓
1

�
+ �

◆◆
+ (t� tNt�t0

)

= t� t0 �Nt�t0

�
1
� + �

�
. (15)

Multiplying both sides of the above equation by �2� and
taking the exponential, we obtain

e�
2�F (v(t))  e�

2�F (v(t0))e�
2�(t�t0)��2�Nt�t0( 1

�+�). (16)

Taking expectation on both sides of (16) for all possible
realizations of jump time sequence S yields

E
h
e�

2�F (v(t))
i
 e�

2�F (v(t0))E
h
e�

2�(t�t0)�Nt�t0( 1
�+�)

i
,

where we can upper-bound the expectation on the right hand
side of the above inequality as

E
h
e�

2�(t�t0)��2�Nt�t0( 1
�+�)

i

=
1X

n=0

e�
2�(t�t0)�n��(1+��)e��(t�t0) �

n(t�t0)
n

n!

=
1X

n=0

e(�
2���)(t�t0)

⇣
e���(1+��)

⌘n
�n(t�t0)

n

n!


1X

n=0

e(�
2���)(t�t0)

⇥
�
1� ��(1 + ��) + 1

2�
2�2(1 + ��)2

�n �n(t�t0)
n

n!

= e(�
2���)(t�t0)e(1���(1+��)+

1
2�

2�2(1+��)2)�(t�t0)

= e�
3�2(� 1

2+��+�
2�2)(t�t0)

= e�c(t�t0),

where we set c := �3�2
�
1
2 � �� � �2�2

�
. By the initial

assumption � < 1
2�

p
3� 1

2� , the bound c > 0 holds true. For
the inequality appearing in the third step of above equation,
we used that e�z  1 � z + 1

2z
2 for z � 0. Furthermore,

we employed the Taylor series of the exponential function
ez =

P1
n=0

zn

n! to obtain the third last equality. Now we can
define the KL-function

�̃(v(t0) , t� t0) := e�
2�F (v(t0))�c(t�t0)

such that

E
h
e�

2�F (v(t))
i
 �̃(v(t0) , t� t0)

is satisfied as long as V (y(t, · )) � �(kuk1). We define the
KL-function

�(r, s) := ↵�1
1

✓
F�1

✓
1

�2�
ln

✓
1

"
· �̃(↵2(r), s)

◆◆◆

for an arbitrarily small parameter " 2 (0, 1). Then, it follows
that

P{ky(t)k  �(ky0k , t� t0)}

� P

⇢
v(t)  F�1

✓
1

�2�
ln

✓
1

"
· �̃(v(t0), t� t0)

◆◆�

= 1� P

⇢
e�

2�F (v(t)) >
1

"
· �̃(v(t0), t� t0)

�

� 1�
E
h
e�

2�F (v(t))
i

1
" · �̃ (v(t0), t� t0)

� 1� ", (17)

where we used (3) to obtain the first inequality and for the
bound in the second last inequality, we applied Markov’s
inequality (cf. [12], Chapter II, Lemma 18.1).

Step 2: We now investigate the case that V (y) < �(kuk1)
or y(t) 2 A1. Therefore, we investigate the behavior when
an arbitrarily chosen realization of the trajectory leaves A1.
We fix an initial condition (t0, y0). By construction, (17)
holds for all t, which satisfy y(t) /2 A1. So, we define t⇤ :=
inf{t 2 [t0,1] | y(t) 2 A1}. Then,

P{ky(t; t0, y0, u)k  � (ky0k , t� t0)} � 1� " (18)

for t 2 [t0, t⇤]. In the case t⇤ = 1, inequality (18) holds for
t 2 I . It follows y(t) ! 0 almost surely as t ! 1.

We further define

A2 := {y 2 Y |V (y)  �1(kuk1)} ,
A3 := {y 2 Y |V (y)  �2(kuk1)} ,

where �1, �2 2 K1, and

�1(s) := max{↵3(s) ,�(s)} ,
�2(s) := max

�
↵3(s) ,�(s) ,↵2

�
�
�
↵�1
1 (�1(s), 0)

�� 
.

We show that every trajectory starting in A1 remains in A3

with probability 1� ". By definition A1 ⇢ A2 ⇢ A3 holds.
All trajectories that leave A1 by a jump remain in A2 due
to (4). On the other hand, the trajectories that leave A1 by
flow, have to cross the boundary @A1.

In both cases, there must be a t0 2 I such that y(t0, · ) ⇢
A2\A1. We can apply (17) with t = t0 = t0. As ↵�1

2 (v(t)) 
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ky(t)k and ky(t0)k  ↵�1
1 (v(t0))  ↵�1

1 (�1(kuk1)) by
(3), all the trajectories that leave A1 will stay in A3 with
probability greater than 1� ". So for all y(t0) 2 A1, it holds

P{v(t)  �2(kuk1)} � 1� ".

Finally, by defining � 2 K1, � := ↵�1
1 � �2, we obtain

P{ky(t; t0, y0, u)k  �(kuk1)} � 1� " (19)

for all t > t⇤. Combining (18) and (19) then yields the
desired result

P{ky(t)k  � (ky0k , t� t0) + �(kuk1)} � 1� "

for all t � t0 as in (2). This completes the proof.

B. Proof of Theorem 2

Analogously to the proof of Theorem 1, we partition the
proof into two steps.

Step 1: Let us fix a realization y and define a function
F : (0,1) ! R as F (q) :=

R q
1 � 1

'(s) ds, which is strictly
increasing for all q 2 (0,1), because ' is strictly negative
for all s > 0. The image of F is an open interval of the
form (m,M) for some constants m 2 {�1}[R and M 2
R [ {1}. F is strictly increasing which means that im(F )
is indeed open. Furthermore, F can be inverted and F�1 :
(m,M) ! (0,1) is also a strictly increasing function.

By analogous reasoning as in the proof of Theorem 1, we
obtain the bound for all t 2 I ,

F (v(t))� F (v(t0)) = �
Z v(t)

v(t0)

1

'(s)
ds

=�
Nt�t0X

k=1

0

B@

v�(tk)Z

v(tk�1)

1

'(s)
ds+

 (v�(tk))Z

v�(tk)

1

'(s)
ds

1

CA�
v(t)Z

v(tNt�t0
)

1

'(s)
ds

 �
Nt�t0X

k=1

✓
tk � tk�1 �

✓
1

�
� �

◆◆
� (t� tNt�t0

)

= �(t� t0) +Nt�t0

�
1
� � �

�
. (20)

Note that the inequality (20) loses validity when the right
hand side equals to m � F (v(t0)) because (13) does not
hold anymore. Therefore, we set

F (v(t))� F (v(t0))

 max
�
�(t� t0) +Nt�t0

�
1
� � �

�
,m� F (v(t0))

 
.

Applying the transformation e�
2�F (v(t0))e�

2�( · ) to the above
inequality yields

e�
2�F (v(t))  e�

2�max{F (v(t0))�(t�t0)+Nt�t0( 1
���),m}

 max
n
e�

2�(F (v(t0))�(t�t0)+Nt�t0( 1
���)), e�

2�m
o

 e�
2�(F (v(t0))�(t�t0)+Nt�t0( 1

���)) + e�
2�m,

where we defined e�
2�m := 0 in case m = �1. From this,

we obtain the upper-bound

e�
2�F (v(t)) � e�

2�m

 e�
2�F (v(t0))e��

2�(t�t0)+�
2�Nt�t0( 1

���). (21)

Taking expectation on both sides of (21) for all possible
realizations of jump time sequences yields

E
h
e�

2�F (v(t)) � e�
2�m

i

 e�
2�F (v(t0))E

h
e��

2�(t�t0)+�
2�Nt�t0( 1

���)
i
,

where we can upper bound the expectation on the right hand
side of the above inequality as

E
h
e��

2�(t�t0)+�
2�Nt�t0( 1

���)
i

=
1X

n=0

e��
2�(t�t0)+n��(1���)e��(t�t0) �

n(t�t0)
n

n!

=
1X

n=0

e(��
2���)(t�t0)

⇣
e��(1���)

⌘n
�n(t�t0)

n

n!

 e(��
2���)(t�t0)

⇥
 1X

n=0

�
1 + ��(1� ��) + 3

4�
2�2(1� ��)2

�n �n(t�t0)
n

n!

!

= e(��
2���)(t�t0)e(�+�

2�(1���)+ 3
4�

3�2(1���)2)(t�t0)

= e
1
4�

3�2(�1�6��+3�2�2)(t�t0)

= e�c(t�t0).

Here, we defined c := 1
4�

3�2
�
1 + 6�� � 3�2�2

�
. Without

loss of generality, we assume that � is small enough to fulfill
� < 1

� + 2
3�

p
3 such that we can bound c > 0. For the

inequality appearing in the third step of the above equation,
we used ez  1 + z + 3

4z
2 for z 2 [0, 1]. In the third last

step, we applied Taylor series of the exponential function.
Now we have

E
h
e�

2�F (v(t)) � e�
2�m

i
 e�

2�F (v(t0))�c(t�t0)

=: �̃(v(t0) , t� t0)

for all y, which satisfy V (y(t)) � �(kuk1). Here, we
defined the KL-function �̃.

For an arbitrary but fixed parameter " 2 (0, 1), we define
the KL-function

�(r, s) := ↵�1
1

⇣
F�1

⇣
1
�2� ln

⇣
1
" �̃(↵2(r), s) + e↵m

⌘⌘⌘

such that

P{ky(t)k  �(ky0k , t� t0)}

� P
n
v(t)  F�1

⇣
1
�2� ln

⇣
1
" �̃(v(t0), t� t0) + e�

2�m
⌘⌘o

= 1� P
n
e�

2�F (v(t)) � e�
2�m > 1

" �̃(v(t0), t� t0)
o

� 1�
E
h
e�

2�F (v(t)) � e�
2�m

i

1
" �̃ (v(t0), t� t0)

� 1� "

holds true. Here, we applied (3) in the first inequality and
Markov’s inequality in the second last inequality.

Step 2: The second step proceeds completely analogous
to the Step 2 in the proof of Theorem 1. Therefore, we omit
it here.
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