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Abstract— The control strategy of complex engineering sys-
tems, e.g., in automotive, aeronautical and space applications,
are oftentimes well-established and there is limited space to
integrate major novelties in the design of control laws. As a con-
sequence, the problem of managing the system constraints is ad-
dressed with overconservative and sub-optimal solutions. With
a particular focus on satellite missions, this paper proposes a
Reference Governor-based approach to design the optimal safe
trajectory so as to exploit the full capabilities of an established
closed-loop Multi-Input Multi-Output (MIMO) system subject
to state and input constraints. While not interfering with its
stability properties, the Governor predicts the future evolution
of the closed-loop system and modifies the reference to track
in case constraints are at risk. The computationally attractive
Scalar Reference Governor is compared to the Vector Reference
Governor, which is optimal for MIMO systems. Finally, a sub-
optimal fast Governor is proposed for MIMO systems with
limited coupling. Numerical simulations are run on the CNES
high-fidelity simulator developed for the Microcarb mission and
illustrate the advantages of the proposed methodology.

I. INTRODUCTION

Complex engineered systems are typically asked to satisfy
several stringent requirements including fuel consumption,
emissions, handling qualities and performances. In addition,
the physical capabilities of the actuators and the external
environment define precise safety sets within which it is
imperative to operate. As a consequence, designing an
optimal strategy to enforce the system constraints is key.
Nevertheless, integrating major novelties in the control laws
of such established systems can be rare due to the cascade
of complexities that would arise following a change of
the dynamical behaviour of the system. For this reason,
unless a strategy is already included in the closed-loop
control framework, satisfying the system constraints for such
systems is often achieved introducing safety margins in the
trajectory design to guarantee the system to remain within
the safe operating region. With a particular focus on satellite
missions, these safe trajectories are usually computed on
ground and are not updated onboard in real-time, ending
up being sub-optimal, i.e., the system performance, agility,
and capabilities are not fully exploited. Motivated by im-
proving and simplifying the satellite guidance planning, in
this paper, we study the problem of constraints management
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for Multi-Input Multi-Output systems that present an estab-
lished controller proven to accomplish the desired closed-
loop behaviour in absence of constraints. The objective is to
propose a computationally cheap algorithm to add between
the desired target and the closed-loop system to compute safe
optimal commands in real-time. In particular, the proposed
solution focuses on MIMO systems that include a controller
that effectively decouples the input-output channels cross-
interaction.

Typically, handling constraints in MIMO systems is ad-
dressed via strategies that aim at resolving the tracking prob-
lem as well. Examples include constrained Linear Quadratic
Regulator, [1], 𝑙1-optimal control, [2], and Model Predictive
Control (MPC), [3], [4], [5]. Instead, few solutions focus on
the constraints management without redesigning the control
legacy. For this scope, nonlinear functions, 𝑒.𝑔., saturation
blocks, might help remaining within the safe operation
region, but are not desirable as they might compromise the
system stability. Another possibility consists of addressing
the constraints management problem via Reference Governor
(RG) techniques, [6]. Similar to MPC, RGs rely on solving
an online optimization problem to compute an optimal signal
according to the predicted system dynamics. While MPC
schemes act in the place of a controller and look for the op-
timal control input sequence, reference governors are added
between the reference signal and the closed-loop system and
filter the desired reference to generate a virtual one whenever
constraints violation is at risk. As a result, they do not operate
to resolve the system stability and do not interfere with the
closed-loop system dynamics. This feature makes RGs of
great interest for all applications for which an established
controller already exists, but no strategy to handle constraints
is available. In addition, thanks to the limited computational
effort required, reference governors, and in particular Scalar
Reference Governors (SRG), are attractive in applications
with relatively fast-dynamics and low computational capabil-
ity, such as automotive and aerospace applications. Indeed,
SRGs solve a linear programming problem and modify
the reference command via one single decision variable.
While this approach results optimal for Single-Input Single-
Output systems (SISO), modifying the reference channel
by using a unique parameter can result over conservative
for MIMO systems. To overcome this limitation and add
more flexibility, the optimization problem can be formulated
employing as many decision variables as the number of
reference inputs. As a result, this governor formulation, usu-
ally referred as Vector Reference Governors (VRG), solves
a Quadratic Program (QP) and overcomes the limit of the
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SRG at the price of an increased computational cost. A
recent solution merging the low computational effort of SRG
and the flexibility of VRG has been proposed in [7] and
[8], where it is referred as Decoupled Reference Governor
(DRG). Assuming the closed-loop system is square, 𝑖.𝑒.,
the number of constraints corresponds to the number of
reference input channels, invertible and with stable inverse,
the authors design a decoupling filter so that the RG problem
can be rewritten as a set of SRG problems. The required
assumptions limit the applicability of the method on non-
square systems since the filter cannot be computed. On a
similar fashion, we propose to overcome this limitation con-
sidering non-square closed-loop systems that already present
low coupling between different input-output channels. Then,
the system is considered as composed of a set of SISO
systems and constraints are enforced solving a set of Linear
programming (LP) problems, allowing the low computational
cost of SRG and the superior flexibility of VRG. In addition,
as discussed in Section IV, the simple design of the solution
makes it attractive for practical implementations.

The paper is organized as follows: Section II formally
states the problem and clarifies the objectives. Section III
describes the reference governor strategies. In Section IV,
the proposed governors are added to the CNES Microcarb
mission simulator and results are provided. Finally, in Sec-
tion V conclusions and future perspectives are provided.

II. PROBLEM STATEMENT

Consider a closed-loop linear MIMO system for which an
established control law guarantees the desired performance
and stability properties. In particular, the system measured
output 𝑦(𝑡) ∈ R𝑚 is proven to be capable of tracking the
desired reference 𝑟 (𝑡) ∈ R𝑚 in absence of state and input
constraints. In addition, let the control law guarantee a low
coupling between the several input-output channels. The
closed-loop dynamics are then represented by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑟 (𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑟 (𝑡), 𝑥(0) = 𝑥0, 𝑡 ≥ 0,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and is assumed available
for feedback, 𝑥(0) ∈ R𝑛 is the initial state vector, and the
matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑚×𝑛, and 𝐷 ∈ R𝑚×𝑚

describe the linear time-invariant dynamics of the closed-
loop system. The system state and input constraints are
gathered in the variable 𝑦𝑐 ∈ R𝑐, where the subscript 𝑐 refers
to constraints, note that 𝑐 can differ from 𝑚. Its evolution
is assumed to be modelled via the matrices 𝐶𝑐 ∈ R𝑐×𝑛, and
𝐷𝑐 ∈ R𝑐×𝑚 as

𝑦𝑐 (𝑡) = 𝐶𝑐𝑥(𝑡) + 𝐷𝑐𝑟 (𝑡). (2)

Constraints are enforced if

𝑦𝑐 (𝑡) ∈ Y, ∀𝑡 ≥ 0, (3)

where Y ⊂ R𝑐 is a prescribed compact set defined by a set
of linear inequalities, with 0 ∈ intY.
Problem: Design a computationally cheap strategy that does
not interfere with the closed-loop stability properties and is

capable of enforcing system state and input constraints, such
that (3) is satisfied.

III. PROPOSED SOLUTION

In this section, the scalar reference governor and the
vector reference governor are reviewed, and their key feature
that well apply to the considered scenario are highlighted.
Next, the proposed strategy for loosely cross-coupled MIMO
systems is detailed.

A. Scalar Reference Governor

A reference governor is an add-on control block that acts
as a pre-filter between an input reference signal 𝑟 (𝑡) and
a closed-loop system that is proven to ensure the required
performance in the absence of constraints. The scope of
the governor block is to monitor the system state and input
constraints and to act in case they are at risk. The general
governor-based control scheme is illustrated in Fig. 1. In this
paper, we assume the state 𝑥(𝑡) to be available for feedback,
𝑥(𝑡) = 𝑥(𝑡), and the uncertainties or system perturbations
are set to zero, 𝑤(𝑡) = 0. Simple extensions on systems
with limited knowledge of the full state, and subject to
uncertainties are possible.

Reference
Governor

Closed-loop
System yc(t) ∈ Y

r(t) v(t) y(t)

x̂(t)

w(t)

Fig. 1. Reference Governor Scheme.

The constraints enforcement is accomplished by predicting
the closed-loop system trajectories on a predefined horizon
and, accordingly, by modifying the current reference to track.
Assuming a model for the discrete closed-loop system dy-
namics is available, the future system evolution is predicted
employing the current reference 𝑟 (𝑡) and the current state
𝑥(𝑡) as

𝑥𝑑 (𝑘 + 1) = 𝐴𝑑𝑥𝑑 (𝑘) + 𝐵𝑑𝑣(𝑘),
𝑦𝑐𝑑 (𝑘) = 𝐶𝑐𝑑𝑥𝑑 (𝑘) + 𝐷𝑐𝑑𝑣(𝑘),

(4)

where 𝑥𝑑 (𝑡) ∈ R𝑛 is the discrete state vector and 𝑥𝑑 (𝑘 =

0) = 𝑥(𝑡), 𝑣(𝑘) ∈ R𝑚 is the modified reference assumed
to be constant along the prediction horizon, 𝑦𝑐𝑑 (𝑘) ∈ R𝑐
gathers the state and input constraints specified by 𝑦𝑐 in
continuous time, and the matrices 𝐴𝑑 ∈ R𝑛×𝑛, 𝐵𝑑 ∈ R𝑛×𝑚,
𝐶𝑐𝑑 ∈ R𝑐×𝑛, 𝐷𝑐𝑑 ∈ R𝑐×𝑚 model the closed-loop system
evolution specified by (2) in continous time. State and input
constraints, must be satisfied all along the prediction, i.e.,

𝑦𝑐𝑑 (𝑘) ∈ Y, ∀ 𝑘 ∈ Z+. (5)

Then, based on the predicted trajectory, the reference gover-
nor selects the best approximation 𝑣 of the desired reference
𝑟 (𝑡) such that, if maintained constant, constraints are ensured
to be enforced from time 𝑡 onward. Assuming there exists
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an initial signal 𝑣(0) satisfying constraints all along the
system evolution, the scalar reference governor criteria for
the selection of the signal 𝑣(𝑡) is formulated using the scalar
parameter 𝜅(𝑡):

𝑣(𝑡) = 𝑣(𝑡 − 1) + 𝜅(𝑡) (𝑟 (𝑡) − 𝑣(𝑡 − 1)) (6)

where 0 ≤ 𝜅(𝑡) ≤ 1. If the RG predicts that the reference
𝑟 (𝑡) does not lead to constraints violation, then 𝜅(𝑡) = 1,
and 𝑣(𝑡) = 𝑟 (𝑡). Otherwise, if constraints might be at
risk, the governor selects the highest value of 𝜅(𝑡) that
allows constraints enforcement. According to (6), the re-
sulting current modified reference 𝑣(𝑡) will be such that
𝑣(𝑡) ∈ [𝑣(𝑡 − 1), 𝑟 (𝑡)]. In the extreme case, 𝜅(𝑡) = 0 and
𝑣(𝑡) = 𝑣(𝑡−1). In this event, the system applies the reference
𝑣(𝑡−1), computed at the previous time step, which proved to
ensure constraints enforcement from time 𝑡−1 onward. Safety
and recursive feasibility are therefore intuitively guaranteed.
To formally describe the governor problem, we introduce the
maximal admissible set 𝑂∞:

𝑂∞ = {(𝑣̄, 𝑥(𝑡)) : 𝑦𝑐𝑑 (𝑘 |𝑣̄, 𝑥(𝑡)) ∈ Y, ∀ 𝑘 ∈ Z+}. (7)

Then, RG computes 𝑣(𝑡) such that (𝑣(𝑡), 𝑥(𝑡)) ∈ 𝑃, with
𝑃 ⊆ 𝑂∞ ⊂ R𝑚 × R𝑛. The set 𝑂∞ gathers the current
state 𝑥(𝑡) and all constant inputs, 𝑣(𝑡 + 𝑘) = 𝑣(𝑡) = 𝑣̄,
such that constraints are ensured to be satisfied in the future
evolution of the system. 𝑃 can coincide with 𝑂∞, but for
computational reasons a tightened version 𝑂̃∞ of the set 𝑂∞
is generally adopted so that the associated steady-state output
(𝐷𝑐𝑑+𝐶𝑐𝑑 (𝐼−𝐴𝑑)−1𝐵𝑑)𝑣̄ respects constraints with a nonzero
margin 1 ≫ 𝜀 > 0. 𝑂̃∞ is then defined as 𝑂̃∞ = 𝑂∞ ∩ 𝑂 𝜀 ,
where 𝑂 𝜀 = {(𝑣̄, 𝑥(𝑡)) :

(
𝐷𝑐𝑑 + 𝐶𝑐𝑑 (𝐼 − 𝐴𝑑)−1𝐵𝑑

)
𝑣̄ ∈ (1 −

𝜺)Y}. Hence, the governor computes the signal 𝑣(𝑡) such
that (𝑣(𝑡), 𝑥(𝑡)) ∈ 𝑂̃∞. Assuming that Y is compact, 𝐴𝑑 is
Schur, and the pair (𝐴𝑑 , 𝐶𝑐𝑑 ) is observable, then 𝑂̃∞ is a
finitely determined polytope. In other words, there exists a
finite index 𝑘∗ such that

𝑂̃∞ = {(𝑣̄, 𝑥(𝑡)) : 𝑦𝑐𝑑 (𝑘 |𝑣̄, 𝑥(𝑡)) ∈ Y, 𝑘 = 0, ..., 𝑘∗} ∩𝑂 𝜀 .

(8)
In addition, it can be shown that 𝑂̃∞ is non-empty and
positively invariant, which means that if (𝑣(𝑡), 𝑥(𝑡)) ∈ 𝑂̃∞,
when applying 𝑣(𝑡) to the system, then also (𝑣(𝑡), 𝑥(𝑡+1)) ∈
𝑂̃∞. Thanks to the positive invariance of 𝑂̃∞, 𝑣(𝑡) = 𝑣(𝑡−1)
always satisfies constraints and hence recursive feasibility is
proven under the condition that there exist a known signal
𝑣(0) such that (𝑣(0), 𝑥(0)) ∈ 𝑂̃∞. See [9] for details. Then,
the governor solves the following optimization problem at
each time step:

𝜅(𝑡) = maximize
𝜅∈[0,1]

𝜅

subject to (𝑣(𝑡), 𝑥(𝑡)) ∈ 𝑂̃∞.
(9)

In this notation, the property of recursive feasibility guaran-
tees that the value of 𝜅(𝑡) = 0 remains a feasible solution
of the optimization problem in (9) provided it is feasible
at the initial time. Since only the scalar parameter 𝜅(𝑡)
is optimized online, the computational complexity of this

approach is minimal. The reduced computational cost is a key
feature of the scalar governor and makes it very interesting as
compared to other predictive control techniques that might
result heavier and not implementable in real-time, such as
MPC schemes. In addition, the governor acts as a pre-filter
between the desired set-point and the closed-loop system and
does not interfere with the system stability properties. As a
result, governors are particularly interesting for application
that already implement an established controller but lack of
an optimal technique to monitor state and input constraints.
Finally, for additional computational cost reduction, under
the specified conditions, the scalar reference governor opti-
mization problem can be easily formulated to be explicitly
solvable. To do so, we remark that if Y is a polytope, then
it can be written as Y = {𝑦𝑐𝑑 : 𝐻𝑦𝑐𝑑 ≤ ℎ}, ℎ > 0. It follows
that, considering a constant 𝑣 along the 𝑘∗ time steps of
the prediction horizon, 𝑦𝑐𝑑 (𝑘) can be predicted as 𝑦𝑐𝑑 (𝑘) =
𝐶𝑐𝑑 𝐴

𝑘
𝑑
𝑥(0)+𝐶𝑐𝑑 (𝐼−𝐴𝑘

𝑑
) (𝐼−𝐴𝑑)−1𝐵𝑑𝑣+𝐷𝑐𝑑𝑣, 𝑘 = 0, ..., 𝑘∗,

where 𝑥(0) is updated at each time step as 𝑥(0) = 𝑥(𝑡).
Hence, including (6), 𝑂̃∞ can be expressed as

𝑂̃∞ =
{
(𝑣̄, 𝑥(0)) : 𝑎 + 𝑏𝜅 ≤ 𝑐

}
(10)

with
𝑎 =

𝐻𝐷𝑐𝑑 𝐻𝐶𝑐𝑑
𝐻𝐶𝑐𝑑𝐵𝑑 + 𝐻𝐷𝑐𝑑 𝐻𝐶𝑐𝑑 𝐴𝑑

.

.

.
.
.
.

𝐻𝐶𝑐𝑑 (𝐼 − 𝐴𝑘
∗

𝑑
) (𝐼 − 𝐴𝑑)−1𝐵𝑑 + 𝐻𝐷𝑐𝑑 𝐻𝐶𝑐𝑑 𝐴

𝑘∗
𝑑

𝐻𝐶𝑐𝑑 (𝐼 − 𝐴𝑑)−1𝐵𝑑 + 𝐻𝐷𝑐𝑑 0


[
𝑣(𝑡 − 1)
𝑥(𝑡)

]
,

𝑏 =



𝐻𝐷𝑐𝑑
𝐻𝐵𝑑𝐶𝑐𝑑 + 𝐻𝐷𝑐𝑑

.

.

.

𝐻𝐶𝑐𝑑 (𝐼 − 𝐴𝑘
∗

𝑑
) (𝐼 − 𝐴𝑑)−1𝐵𝑑 + 𝐻𝐷𝑐𝑑

𝐻𝐶𝑐𝑑 (𝐼 − 𝐴𝑑)−1𝐵𝑑 + 𝐻𝐷𝑐𝑑


(𝑟 (𝑡) − 𝑣(𝑡 − 1)),

𝑐 =


ℎ

ℎ

.

.

.

ℎ

(1 − 𝜀)ℎ


.

(11)
Then, the SRG solution for 𝜅 is explicitly found setting

𝜅𝑈 = min{ min
𝑖:𝑏𝑖>0

{ 𝑐𝑖 − 𝑎𝑖
𝑏𝑖

}, 1}

𝜅𝐿 = max{ max
𝑖:𝑏𝑖<0

{ 𝑐𝑖 − 𝑎𝑖
𝑏𝑖

}, 0}

𝜅 =


𝜅𝑈 if 𝜅𝐿 ≤ 𝜅𝑈 and 𝑎𝑖 ≤ 𝑐𝑖

for all 𝑖 such that 𝑏𝑖 = 0
0 otherwise

(12)

where the subscript 𝑖 denotes the 𝑖𝑡ℎ row of the corresponding
matrix, 𝑖 = 1, ..., 𝑘∗.

B. Vector Reference Governor

Since (9) works with a single optimization variable, the
SRG is ideal for SISO systems, 𝑚 = 1. In the case of MIMO
systems, 𝑚 > 1, SRG might be sub-optimal as all the 𝑚
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references would be simultaneously modified by the same
scaling factor 𝜅 at each time step. To overcome this limitation
and introduce more degrees of freedom for the optimization
problem solution, Vector Reference Governors are designed.
Equation (6) is rewritten as

𝑣(𝑡) = 𝑣(𝑡 − 1) + 𝐾 (𝑡) (𝑟 (𝑡) − 𝑣(𝑡 − 1)) (13)

where 𝐾 (𝑡) = diag(𝜅𝑖 (𝑡)), with 𝑖 = 1, ..., 𝑚. The 𝑚 optimiza-
tion variables are selected by solving a Quadratic Program
(QP):

minimize
𝜅𝑖∈[0,1]

(𝑣(𝑡) − 𝑟 (𝑡))𝑇𝑄(𝑣(𝑡) − 𝑟 (𝑡))

subject to
𝑣(𝑡) = 𝑣(𝑡 − 1) + 𝐾 (𝑡) (𝑟 (𝑡) − 𝑣(𝑡 − 1))
(𝑣(𝑡), 𝑥(𝑡)) ∈ 𝑂̃∞,

(14)

with 𝑄 = 𝑄𝑇 ≻ 0. Thanks to its superior flexibility in
the choice of the modified reference 𝑣(𝑡) over the SRG,
the VRG leads MIMO system to a faster convergence to
the set-point 𝑟 . However, despite explicit multi-parametric
quadratic programming may fasten the optimization process,
because of the inherently higher number of variables and the
QP formulation itself, VRG remains computationally heavier
than SRG. This can be critical when dealing with large-
dimension systems.

C. SRG Bank for MIMO systems with low coupling

A solution merging the low computational complexity of
SRG and the attractive performance of VRG is discussed
for MIMO systems with low coupling effects between the
input-output channels. Considering a linear MIMO system
as in (1), to quantify the coupling between the input-output
channels, one can rewrite the system in the form of a transfer
function as 𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵 + 𝐷; then, determining
the input-output interactions can be achieved computing the
Relative Gain Array (𝑅𝐺𝐴), [10], and normalizing along its
rows to infer about how each input influences each output
with respect to the other inputs. For non-square systems,
𝑅𝐺𝐴 can be computed as:

𝑅𝐺𝐴 = (𝐺𝑇
𝑠𝑠)+.𝐺𝑠𝑠 , (15)

where 𝐺𝑠𝑠 is the steady-state gain matrix associated to
𝐺 (𝑠), ”.” defines an element-wise multiplication, and the
superscript ”+” indicates the Moore–Penrose inverse. If there
is a clear match between one input and one output, then,
the corresponding element of 𝑅𝐺𝐴 with normalized rows is
close to 1 and the influence of the other inputs on that output
is minimal. Alternatively, one can compute the infinite norm
of the difference between 𝐺 (𝑠) and the matrix 𝑊 (𝑠):

𝛾 = ∥𝐺 (𝑠) −𝑊 (𝑠)∥∞ , (16)

with 𝑊 (𝑠) = 𝐺 (𝑠), except on the terms supposed to be
subject to low input-output interaction, which are set to
zero. If 𝛾 is sufficiently small, then the coupling interactions
can be considered negligible. The following RG strategy is
proposed for closed-loop systems with very low coupling
effects. For control purposes, such configuration is often

achieved thanks to a pre-compensator that defines or en-
hances a dominant input-output interaction. Neglecting the
coupling interactions, a MIMO system is then considered as
composed of a set of SISO systems. In other words, 𝐺 (𝑠) is
approximated by 𝑊 (𝑠). By extending this reasoning to the
RG problem, enforcing the system constraints can reduce to
solving a bank of 𝑚 indipendent LP problems, as in (6), by
means of 𝑚 SRGs. Each SRG predicts the trajectories of
the constrained states of the associated 𝑖𝑡ℎ SISO system and
modifies one single reference 𝑟𝑖 into 𝑣𝑖 , with 𝑖 = 1, ...𝑚. The
proposed methodology is schematically represented in Fig.
2.

SRG1

...

SRGm

...
Closed-loop
System yc(t) ∈ Y

r1(t)

rm(t)

v1(t)

...
vm(t)

y(t)

x̂(t)

w(t)

Fig. 2. Proposed Reference Governor.

IV. NUMERICAL SIMULATION

Prime examples of Multi-Input Multi-Output systems sub-
ject to performance requirements and actuators’ constraints
are found in satellite applications. Due to the complexity of
designing the numerous and diverse subsystems composing
a spacecraft, satellite missions are oftentimes conceived by
re-utilizing existing satellite platforms. The great industrial
advantage of ’recycling’ old working designs can leave lim-
ited space for major novelties that would improve the overall
system. In this context, reference governors can optimize
the process of designing the missions’ guidance profile that
is typically more prone to introduce novelties as compared
to the onboard controller. The proposed methodology is
here applied on the Microcarb attitude simulator. The CNES
mission Microcarb will offer a global monitoring of the
CO2 surface fluxes, which will provide an insight onto
the mechanisms governing exchanges between CO2 sources
and sinks, their seasonal variability, and their evolution in
response to climate change, [11]. The Microcarb Attitude and
Orbit Control System employs the well-established control
laws designed for the Myriad platform, on which the mission
is conceived, and employs magnetorquers and up to four
reaction wheels, [12]. The governor approach proposed in
this paper is employed on the Microcarb attitude simulator
with the scope of optimizing the guidance design so as to
enforce the actuator constraints during manoeuvres while
exploiting the full capabilities of the satellite. In particular,
the reaction wheels are physically limited in speed and accel-
eration, and it is required to avoid approaching these limits
to avoid their saturation and possible nonlinear undesired
effects. The wheels limited capabilities are expressed in the

2681



form of hard constraints on the angular momentum ℎ𝑅𝑊 (𝑡)
and torque 𝑡𝑅𝑊 (𝑡) that can be provided to the satellite in
the 𝑥, 𝑦, 𝑧 directions, 𝑖.𝑒., |ℎ𝑅𝑊 (𝑡) | < 0.138 kgm2s−1 and
|𝑡𝑅𝑊 (𝑡) | < 0.0048 Nm. Assuming a linear model of the
transfer between the attitude set-points and the constrained
states is available, the normalized 𝑅𝐺𝐴 (𝑁𝑅𝐺𝐴) matrix is
computed following (15) and normalizing along the rows:

𝑁𝑅𝐺𝐴𝑟→[ℎ𝑅𝑊 ,𝑡𝑅𝑊 ] =



0.9995 −0.0283 −0.0166
−0.0281 0.9996 −0.0023
−0.0177 −0.0017 0.9998
0.9995 −0.0283 −0.0166
−0.0281 0.9996 −0.0023
−0.0177 −0.0017 0.9998


.

(17)
In (17), the three columns correspond to the three attitude
angle set-points defined by 𝑟 (𝑡) = [𝜙𝑟 (𝑡) 𝜃𝑟 (𝑡) 𝜓𝑟 (𝑡)], while
the rows are related to the six constraints on ℎ𝑅𝑊 and 𝑡𝑅𝑊
in the three directions. The 𝑁𝑅𝐺𝐴 matrix shows that the
coupling effects are limited. Following (16), this result is
confirmed computing 𝛾 = 7 × 10−25. Then, the SRG bank
method can be applied. Results compare the SRG and VRG
with the proposed SRG bank on a simulation of 1500s.
The manoeuvre considered is a large-angle slew maneuver,
typically employed for reorienting sensors, antennas, and
solar arrays. While essential, slew manoeuvres entail a time
loss from actively fulfilling mission objectives. Reference
governors offer a solution by computing online the optimal
guidance that safely ensures the full utilization of actuators’
capabilities, thereby minimizing slew times. Starting from
[𝜙(0) 𝜃 (0) 𝜓(0)] = [0 0 0], the attitude to reach is
specified by the reference 𝑟 (𝑡) = [𝜙𝑟 (𝑡) 𝜃𝑟 (𝑡) 𝜓𝑟 (𝑡)] =

[0.16 −0.49 2.18]rad ≈ [9 28 124]deg. The RG optimization
problem is solved every time step, 𝑑𝑡 = 0.25s. Due to its
QP problem, the VRG is implemented using the MATLAB
toolbox YALMIP, [13], while the output of the SRG and SRG
bank algorithms are analytically computed following (12).
The prediction horizon of the RG problems is set to be 𝑘∗ =
100 time steps, hence the prediction horizon is 𝑇 = 25𝑠, and
the modified reference is initialized to 𝑣(0) = [0 0 0]. Figure
3 shows the phase portrait of the six constrained variables
on the constraint set Y. The three solutions appropriately
modify the reference so as to guarantee safe trajectories, 𝑖.𝑒.,
(3) is satisfied. Figures 4 and 5 show the realized attitude and
the evolution of the decision variables 𝜅, respectively. All
the three governors safely slow down the satellite dynamics,
that eventually reaches the reference 𝑟 (𝑡). As the SRG only
utilizes one decision variable 𝜅, the three input channels are
modified by the same rate. As shown, the SRG’s 𝜅 reaches
𝜅 = 1 after about 1310𝑠 and the satellite converges to desired
set-points after about 1320𝑠 for all the three axes. Instead,
the VRG and the SRG bank benefit of a superior flexibility as
the references on the three axes are modified by independent
parameters. As a result, the convergence to the three set-
points happen at different times during the simulations. The
results underline the conservatism of the SRG. Indeed, the
manoeuvre on the third axis is the most demanding in terms

of torque and angular momentum since the satellite set-point
on 𝜓 is wider than on 𝜙 and 𝜃. As a consequence, more
torque and angular momentum are required by the wheels
to rotate in this direction, and the SRG has to ’wait’ 1310𝑠
before allowing the parameter 𝜅 to converge to 𝜅 = 1. As also
evident in Figure 3, in the simulation where the SRG has
been employed, the capabilities of the wheels are not fully
exploited to rotate in the direction of 𝜙 and 𝜃 as two of the
red trajectories remain far from the bounds of the constraint
set Y. Finally, the simulations are compared in terms of
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Fig. 3. Constraints evolution over Y. Comparison of SRG, VRG, SRG
Bank.
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Fig. 4. Satellite Attitude. Comparison of SRG, VRG, SRG Bank.

execution time on the same hardware. Table I demonstrates
how SRG Bank outperforms both SRG and VRG. While
superiority against VRG is obvious, it is worth noticing that
solving 𝑚 smaller problems results to be more efficient than
finding a single 𝜅 for the complete system.
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TABLE I
COMPUTATION TIME. COMPARISON OF SRG, VRG, SRG BANK.

Simulation Time
SRG VRG SRG Bank
40 s 8701 s 13 s

V. CONCLUSIONS

In this paper, a solution to improve the constraints man-
agement of decoupled Multi-Input Multi-Output systems is
proposed. Assuming available a control strategy that guaran-
tees the desired closed-loop system performance in absence
of constraints and a low cross-interaction between the input-
output channels, a set of scalar reference governors predict
the closed-loop system trajectories and modifies the current
set-points in case the system state and input constraints are
at risk. The proposed solution merges the attractive low
computational cost of the scalar reference governor with
the better convergence performances of the vector reference
governor. Numerical simulations have been performed on
the CNES high-fidelity Microcarb attitude simulator. Future
works will include robustness to external perturbations and
uncertainties.

REFERENCES

[1] P.O.M. Scokaert and J.B. Rawlings. “Constrained lin-
ear quadratic regulation”. In: IEEE Transactions on
Automatic Control 43.8 (1998), pp. 1163–1169. DOI:
10.1109/9.704994.

[2] JS McDonald and JB Pearson. “𝑙1-optimal control of
multivariable systems with output norm constraints”.
In: Automatica (1991), 27(2):317–329. DOI: https:
/ / doi . org / 10 . 1016 / 0005 - 1098(91 )
90080-L.

[3] Carlos E. Garcia, David M. Prett, and Manfred Morari.
“Model predictive control: Theory and practice - A
survey”. In: Autom. 25 (1989), pp. 335–348. URL:
https : / / api . semanticscholar . org /
CorpusID:3443742.

[4] Marko Tanaskovic et al. “Adaptive model predictive
control for constrained MIMO systems”. In: IFAC
Proceedings Volumes 46.11 (2013), pp. 39–44. DOI:
https://doi.org/10.3182/20130703-3-
FR-4038.00083.

[5] Sohaib Aslam et al. “Performance Analysis of MPC
for MIMO System in Presence of Hard Constraints”.
In: 2019 International Conference on Electrical, Com-
munication, and Computer Engineering (ICECCE).
2019, pp. 1–7. DOI: 10.1109/ICECCE47252.
2019.8940698.

[6] Ilya Kolmanovsky, Emanuele Garone, and Stefano Di
Cairano. “Reference and command governors: A tuto-
rial on their theory and automotive applications”. In:
2014 American Control Conference. 2014, pp. 226–
241. DOI: 10.1109/ACC.2014.6859176.

[7] Yudan Liu, Joycer Osorio, and Hamid Ossareh. “De-
coupled Reference Governors for Multi-Input Multi-
Output Systems”. In: 2018 IEEE Conference on Deci-
sion and Control (CDC). 2018, pp. 1839–1846. DOI:
10.1109/CDC.2018.8619592.

[8] Joycer Osorio Yudan Liu and Hamid R. Ossareh.
“Decoupled reference governors: a constraint manage-
ment technique for MIMO systems”. In: International
Journal of Control 95.11 (2022), pp. 3050–3069. DOI:
10.1080/00207179.2021.1951845.

[9] E.G. Gilbert and K.T. Tan. “Linear systems with state
and control constraints: the theory and application of
maximal output admissible sets”. In: IEEE Transac-
tions on Automatic Control 36.9 (1991), pp. 1008–
1020. DOI: 10.1109/9.83532.

[10] Sigurd Skogestad and Ian Postlethwaite. Multivariable
Feedback Control: Analysis and Design. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2005. ISBN:
0470011688.

[11] F. Bermudo et al. “MicroCarb A Carbon Dioxide
(CO2) Measurement Mission on Myriade Evolutions”.
In: Proceedings of the 4S (Small Satellites Systems and
Services) Symposium. 2012, Portoroz, Slovenia.

[12] H. J. Kramer. Observation of the Earth and Its En-
vironment: Survey of Missions and Sensors. Springer
Berlin Heidelberg, 2002.
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