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Abstract— This paper deals with nonlinear observer design
for systems with delayed nonlinear outputs. The main idea be-
hind this work consists of using a dynamic extension technique
to transform a system with delayed nonlinear outputs into a
system with linear outputs and a delay-dependent integral term
in the dynamic process. First, a general result for arbitrary
nonlinear structures is proposed, and then further contributions
are provided for a specific family of systems, namely systems in
companion form for which we obtain novel high-gain observer
synthesis conditions.

Index Terms— Nonlinear systems; time-delay systems; ob-
server design; delayed outputs.

I. INTRODUCTION AND PROBLEM FORMULATION

A. Brief introduction

While observer design for nonlinear systems becomes
more and more a popular topic due to its important and
primordial role in control design schemes, diagnosis pro-
cedures, and health monitoring, the presence of delayed
outputs makes it highly more interesting and useful for
several modern applications. Indeed, delayed outputs are
naturally encountered in remote estimation [1], cyberattacks
detection [2], and multiagent systems in general [3]. On the
other hand, from a mathematical standpoint, the problem of
observer design with delayed outputs is highly more chal-
lenging than systems without delay. Without unnecessarily
expanding this brief introduction, to avoid repetition, the
following section I-B formulates the problem clearly and
provides the positioning of this paper in relation to the state
of the art in existing literature.

B. Problem Formulation

The motivation of the work consists of developing a
simple method to deal with nonlinear systems with delayed
nonlinear output measurements. The aim is to establish novel
design conditions allowing high values of the maximum
allowable delay in the output measurement while ensuring
the exponential convergence of the observer. We stand out
from the literature by proposing a simple but useful method.
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The class of systems we consider in this paper is described
by the following equations:{

ẋ(t) = f(x(t), u(t))
y(t) = h

(
x(t− τ(t))

) (1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm

is the control input, and y(t) ∈ Rp represents the output
measurements vector. The delay τ(t) ≥ 0 is assumed to be
known and bounded, i.e.: there exists a positive constant τ⋆

such that τ(t) ≤ τ⋆,∀t ≥ 0.
The main objective consists of estimating the system state,

x(t), in real-time from the delayed measurements y(t). While
the problem in the case of delay-free outputs, is relatively
easy to handle, however, the presence of the delay makes
the problem challenging. To cope with this issue, several
methods have been developed in the literature [4]–[11]. To
deal with arbitrarily long delay in the measurement, some
methods are based on the use of a chain of observers [4], [7]
while other methods exploit predictors-based observers [8].
For some families of systems, namely feed-forward sys-
tems, the problem may be solved by using the time-scaling
technique as in [10]. On the other hand, different methods
based on the high-gain observer methodology have been
proposed for systems in triangular form with some recent
improvements. However, these methods are valid for only
systems with small values of the upper bound of the delay,
τ⋆. The aim of this paper is to overcome this limitation
and propose a novel approach that will be both simple and
enhance the maximum allowable value of τ⋆.

C. Preliminary tools

Before stating the main results of the paper, we introduce
the following simple and well-known mathematical tools.

Lemma 1 ( [12], [13]): Consider a continuous, piece-
wise C1, and non-negative function ϑ defined in the interval
[−τ⋆,+∞) such that

ϑ̇(t) ≤ −c1ϑ(t) + c2 sup
s∈[t−τ⋆,t]

ϑ(s). (2)

Assume that c1 > c2 > 0. Then, there exist two scalars
α > 0 and β > 0 such that

ϑ(t) ≤ αe−βt sup
s∈[−τ⋆,0]

ϑ(s),∀t ≥ 0. (3)

Lemma 2 (The Differential Mean Value Theorem [14]):
Let Ψ : Rn 7→ Rq be a differentiable function and let
x ∈ Rn and y ∈ Rn be two vectors. Then, there exists

z ≜
[
z1 z2 . . . zq

]⊤ ∈ Rnq, zi ∈ Co(x, y) (4)
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where Co(x, y) stands for the convex hull of convex combi-
nations of x and y, such that

Ψ(x)−Ψ(y) = ∇Ψ
x (z)(x− y) (5)

where

∇Ψ
x (z) ≜

[
∂Ψ1(z

1)
∂x

∂Ψ2(z
2)

∂x . . .
∂Ψq(z

q)
∂x

]⊤
. (6)

Proof: The proof is omitted.

Finally, we need the following Lemma 3.
Lemma 3: Let ϕ : I → R be a non-negative function,

where I is an interval of R. Then the following identity holds:[
sup
s∈I

(
ϕ(s)

)]2
= sup

s∈I

(
ϕ2(s)

)
. (7)

II. MAIN RESULTS

This section is devoted to the main contributions of this pa-
per. We, first, present a preliminary result on which the main
contributions are based. It will be used straightforwardly as
a tool to conclude the main results.

A. Preliminary result

Consider the class of systems described by the following
equations: ζ̇(t) = fζ (ζ(t), u(t)) +Bζ

∫ t

t−τ(t)

g(ζ(s), u(s))ds

yζ(t) = Cζ(t)
(8)

where ζ(t) ∈ Rnζ is the state of the system, u(t) ∈ Rm

is the control input, and yζ(t) ∈ Rpζ represents the output
measurements vector. The delay τ(t) ≥ 0 is assumed to be
known and bounded, i.e.: there exists a positive constant τ⋆

such that τ(t) ≤ τ⋆,∀t ≥ 0. Without loss of generality, we
assume that the functions fζ and g are γfζ−Lipschitz and
γg−Lipschitz, respectively, with respect to ζ uniformly on
u(t). Assume also that ζ(t) = ζ0,∀t ∈ [−τ⋆, 0].

As a preliminary result, we develop a simple state observer
design method for the system (8). To this end, we consider
the following state observer :

˙̂
ζ(t) = fζ

(
ζ̂(t), u(t)

)
+Bζ

∫ t

t−τ(t)

g(ζ̂(s), u(s))ds

+ L
(
yζ(t)− Cζ̂(t)

)
, (9)

where L ∈ Rnζ×pζ is the observer gain matrix to be
determined such that the estimation error ϵ(t) ≜ ζ(t)− ζ̂(t)
converges exponentially towards zero. Then, the estimation
error dynamics is given as:

ϵ̇(t) = ∆fζ

(
ζ(t), ζ̂(t), u(t)

)
− LCϵ(t)

+Bζ

∫ t

t−τ(t)

∆g
(
ζ(s), ζ̂(s), u(s)

)
ds. (10)

For the sake of obtaining convenient checkable stabil-
ity conditions, we have to transform the nonlinear term

∆fζ

(
ζ(t), ζ̂(t), u(t)

)
by using Lemma 2. Then, there exists

zt ∈ Co
(
ζ(t), ζ̂(t)

)
as in (4) such that

∆fζ

(
ζ(t), ζ̂(t), u(t)

)
= ∇fζ

ζ (zt)ϵ(t)

where ∇fζ
ζ is defined as in (6). Notice that here zt depends

on u(t) but for the sake of brevity, we use zt instead of
zt(u(t)). It follows that the error system (10) is under the
form:

ϵ̇(t) =
[
∇fζ

ζ (zt)− LC
]
ϵ(t)

+Bζ

∫ t

t−τ(t)

∆g
(
ζ(s), ζ̂(s), u(s)

)
ds. (11)

Since fζ is γfζ−Lipschitz, then there exist constant matrices
Aζ

j ∈ Rnζ×nζ and functions λj(zt), j = 1, . . . n̄ζ such
that the generalized Jacobian ∇fζ

ζ (zt) belongs to the convex
polytopic set defined as:

Hfζ ≜


n̄ζ∑
j=1

λj(zt)Aζ
j ,

n̄ζ∑
j=1

λj(zt) = 1, λj(zt) ≥ 0


(12)

Notice that the matrices Aζ
j ∈ Rnζ×nζ , represent the vertices

of the polytope Hfζ . Also, the jacobian ∇fζ
ζ (zt) is affine on

the variables λj(zt), j = 1, . . . n̄ζ .
Before stating the preliminary proposition, notice that

since the function g is γg−Lipschitz with respect to ζ, then
we have ∥∥∥∆g (ζ(s), ζ̂(s), u(s))∥∥∥ ≤ γg∥ϵ(s)∥. (13)

Now we are ready to state the main theorem based on
the use of the standard quadratic Lyapunov function, i.e.:
ϑ(ϵ(t)) ≜ ϵ⊤(t)Pϵ(t), where P = P⊤ > 0. We can use
a more general Lyapunov function with a matrix P(ϵ(t))
depending on ϵ(t), however, we obtain non-constructive con-
ditions difficult to deal with using numerical software algo-
rithms. The second objective of using the standard quadratic
Lyapunov function is to compare with available methods in
the literature based on the same Lyapunov function.

Theorem 1: Assume that there exist a symmetric positive
definite matrix P ∈ Rnζ×nζ , a matrix R ∈ Rpζ×nζ , and a
positive scalar µ such that the following conditions hold:(

Aζ
j

)⊤
P + PAζ

j − C⊤R−R⊤C + µP ≤ 0,

j = 1, . . . , n̄ζ (14a)

τ⋆ <
µλmin(P)

2γg∥PBζ∥
(14b)

Then the observer (9), with L = P−1R⊤, converges expo-
nentially.

Proof: By computing the derivative of the Lyapunov
function ϑ(ϵ(t)) ≜ ϵ⊤(t)Pϵ(t) along the trajectories of (11),
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we obtain

ϑ̇(ϵ(t)) = ϵ⊤(t)

[(
∇fζ

ζ (zt)− LC
)⊤

P + P
(
∇fζ

ζ (zt)− LC
)]

ϵ(t)

+ 2ϵ⊤(t)PBζ

∫ t

t−τ(t)

∆g
(
ζ(s), ζ̂(s), u(s)

)
ds

≤ ϵ⊤(t)

[(
∇fζ

ζ (zt)− LC
)⊤

P + P
(
∇fζ

ζ (zt)− LC
)]

ϵ(t)

+ 2γg∥PBζ∥∥ϵ(t)∥
∫ t

t−τ⋆

∥ϵ(s)∥ds (15)

Conditions (14a) and the convexity principle lead to

(
∇fζ

ζ (zt)− LC
)⊤

P+P
(
∇fζ

ζ (zt)− LC
)
≤ −µP. (16)

On the other hand, from Lemma 3, we get

∥ϵ(t)∥
∫ t

t−τ⋆

∥ϵ(s)∥ds ≤ τ⋆∥ϵ(t)∥ sup
s∈[t−τ⋆,t]

∥ϵ(s)∥

≤ τ⋆

(
sup

s∈[t−τ⋆,t]

∥ϵ(s)∥

)2

= τ⋆ sup
s∈[t−τ⋆,t]

∥ϵ(s)∥2

≤ τ⋆

λmin(P)
sup

s∈[t−τ⋆,t]

ϑ(ϵ(s)).

(17)

Hence, from (16) and (17), we deduce that

ϑ̇(ϵ(t)) ≤ −µϑ(ϵ(t)) + 2γg∥PBζ∥
λmin(P)

τ⋆ sup
s∈[t−τ⋆,t]

ϑ(ϵ(s)).

(18)
Consequently, from (14b) and Lemma 1, there exist two
positive scalars α abd β such that

ϑ(t) ≤ αe−βt sup
s∈[−τ⋆,0]

ϑ(s),∀t ≥ 0, (19)

which means that the estimation error ϵ(t) is exponentially
stable. This completes the proof.

B. Main result

In this section, we propose a simple observer design
method for the class of systems (1) with nonlinear delayed-
output measurement, which is the main motivation of this
paper. As stated in Section I-B, to handle the delay in the
output measurements, several techniques have been proposed
in the literature. In this paper, we propose a novel and
different observer design technique. To this end, we, first,
introduce the new state variable, z(t) ∈ Rnz×nz , defined by:{

ż(t) = fz(z(t), u(t)) + Yzy(t)
z(0) = z0,

(20)

where fz is a known globally Lipschitz function, the matrix
Yz ∈ Rnz×p is known and constant, and z0 ∈ Rnz is a known
constant vector. The idea consists in using a state augmenta-
tion approach to get a new system for which the created z(t)
is the output measurement. Indeed, since fz, u(t), Yz , and z0
are all known, then the state z(t) is known in real-time from

the measured output y(t) of the original system (1). Before
introducing the main transformation, notice that from the
Newton-Leibniz formula, y(t) can be written under the form:

y(t) = h(x(t))−
∫ t

t−τ(t)

∂h

∂x

(
x(s)

)
f
(
x(s), u(s)

)
ds. (21)

By exploiting (20) and (21), the system (1) can be trans-
formed into the form (8) with

ζ(t) ≜

[
z(t)
x(t)

]
, yζ ≜ z(t), C ≜

[
Inz 0

]
, (22)

fζ
(
ζ(t), u(t)

)
≜

fz(z(t), u(t)) + Yzh(x(t))

f(x(t), u(t))

 , (23)

g
(
ζ(t), u(t)

)
≜
∂h

∂x

(
x(t)

)
f
(
x(t), u(t)

)
, Bζ ≜

[
−Yz
0

]
(24)

Then, we propose the following generalized state observer:

˙̂
ζ(t) = fζ

(
ζ̂(t), u(t)

)
+Bζ

∫ t

t−τ(t)

g(ζ̂(s), u(s))ds

+ L
(
yζ(t)− Cζ̂(t)

)
(25a)

x̂(t) =
[
0 In

]
ζ̂(t). (25b)

Before summarizing the result in a corollary, we need the
following assumption.

Assumption 1: The function g defined in (24) is
γg−Lipschitz with respect to x(t), uniformly on u(t).

Now all the conditions to apply Theorem 1 are satisfied,
we can summarize the result.

Corollary 1: Consider the system (8) with the parameters
and functions given in (22)–(24). Assume that Assumption 1
is satisfied and there exist a symmetric positive definite
matrix P ∈ Rnζ×nζ , a matrix R ∈ Rpζ×nζ , and a positive
scalar µ such that the conditions (14a)–(14b) hold. Let
L = P−1R⊤ be the gain matrix of (25a). Then, the estimated
state x̂(t) given by (40b) converges exponentially to the state
x(t) of the original system (1).

Remark 1: Without loss of generality, we consider
in (20) a linear function fz depending on z(t) only, i.e:
fz(z(t), u(t)) = Azz(t). Even, for simplification, we can
take fz(z(t), u(t)) ≡ 0. In addition, these considerations
allow reducing the dimension of the corresponding polytopic
set Hfζ , which reduces then the number of LMIs (14a) to
solve.

III. FURTHER RESULTS: A PARTICULAR FAMILY OF
SYSTEMS

This section considers the high-gain observer and its
robustness with respect to the delay in the output measure-
ment. Although several techniques have been proposed in
the literature for this class of systems, we show that our
method is simple and applies straightforwardly to this class
of systems under the companion form.
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A. System description and assumptions

Without loss of generality, we consider the family of
systems described by (1) with

f(x(t), u(t)) = Ax(t) +Bfx
(
x(t)

)
h
(
x(t− τ(t))

)
= hx

(
Cxx(t− τ(t))

)
(A)ij =

{
1 if j = i+ 1
0 if j ̸= i+ 1

Cx =
[
1 0 . . . 0

]
B =

[
0 0 . . . 1

]⊤
. (26)

where fx and hx are γfx−Lipschitz and γhx−Lipschitz,
respectively, with respect to their arguments.

For the sake of observability, the following assumption is
necessary.

Assumption 2: There exists δh > 0, δh ≤ γhx such that

δh ≤ ∂hx
∂v

(v) ≤ γhx
, ∀v ∈ R. (27)

Without loss of generality, for the sake of simplification,
we assume that

γhx
≜ sup

v∈R

(
∂hx
∂v

(v)

)
= 1. (28)

Otherwise, we use for the observer the output

ynew(t) ≜
y(t)

sup
v∈R

(
∂hx

∂v (v)
) . (29)

As in the previous section, we create the following new
variable, z(t) ∈ R, as in (20):{

ż(t) = γy(t)
z(t) = z(0) = z0,∀t ∈ [−t⋆, 0]. (30)

where γ > 0 is a constant scalar, which is considered a
tuning parameter. Also, in this case, from the Newton-Leibniz
formula, (21) is reduced to

y(t) = h(x(t))−
∫ t

t−τ(t)

∂hx
∂x1

(
x1(s)

)
x2(s)ds. (31)

It is quite clear that the function

ϕ(x1, x2) ≜
∂hx
∂x1

(
x1
)
x2 (32)

is globally Lipschitz with respect to x2 because hx is
γhx

−Lipschitz, and then ∂hx

∂x1
(x1) is bounded. However, it

is not globally Lipschitz with respect to x1. Then, we need
an additional assumption on x2.

As in the previous section, we consider the transformed
system (8) with the parameters (22)–(24) with Yz = γ, and
according to (26) as follows: ζ̇(t) = fζ (ζ(t)) +Bζ

∫ t

t−τ(t)

g(ζ(s))ds

yζ(t) = Cζ(t)

(33)

where g(ζ) = ϕ(ζ2, ζ3).

B. System transformation: High-gain observer

By construction of the corresponding augmented sys-
tem (33), without the integral term, the triangular companion
form is preserved. Then, we can apply the high-gain observer
methodology. To this end, we perform a second transfor-
mation, which is usual in this context, although it is often
applied to the error system. Let us introduce the following
linear transformation:

ξ = Tθζ, where Tθ ≜ diag

(
1

θ
, . . . ,

1

θn+1

)
(34)

which transforms (33) into ξ̇(t) = Tθfζ

(
T 1

θ
ξ(t)

)
+Bζ

∫ t

t−τ(t)

g
(
T 1

θ
ξ(s)

)
ds

yζ(t) = CT 1
θ
ξ(t)

(35)
To make the developments easy to follow and for any
convenience, we express the system (35) in the following
detailed form:

ξ̇(t) =

 γ
θ
hx(θ

2ξ2(t))

θ[0 A]ξ(t)

+
1

θn+1

[
0
B

]
fx

(
[0 In]T 1

θ
ξ(t)

)
+
1

θ
Bζ

∫ t

t−τ(t)

ϕ
(
θ2ξ2(s), θ

3ξ3(s)
)
ds

yζ(t) = θCξ(t) = θξ1(t)
(36)

Before summarizing the result, let us define the function
ǧ as the Lipschitz extension of ϕ introduced in (32):

ǧ(z1, z2) = ϕ
(
z1, πI(z2)

)
(37)

where πI(z2) stands for the Hilbert projection of z2 on I
for any closed interval I ⊂ R. Define the matrix Aγ (.) as

Aγ (v) ≜

[
0

[
γv 01×n−1

]
0n×1 A

]
, ∀v ∈ R. (38)

Theorem 2: Assume that the component x2(t) of the
system (1), with (26), belongs to a compact interval I ⊂ R
and that the function ϕ defined in (32) is Lipschitz in R×I.
Assume there exist a symmetric positive definite matrix
P ∈ Rnζ×nζ , a matrix R ∈ Rp×n+1, and positive scalars
µ and γ such that the following conditions hold:

(Aγ (ℓ))
⊤ P + PAγ (ℓ)− C⊤R−R⊤C + µIn+1 ≤ 0,

ℓ ∈ {δh, 1} (39a)

θ > max

(
1,

2κfλmax(P)

µ

)
(39b)

τ⋆ <
λmin(P)

[
µθ − 2κfλmax(P)

]
2θ2γκgλmax(P)∥PBζ∥

(39c)

Then the output x̂(t) of the following observer

˙̂
ξ(t) = Tθfζ

(
T 1

θ
ξ̂(t)

)
+Bζ

∫ t

t−τ(t)

ǧ
(
T 1

θ
ξ̂(t)

)
ds

+ L
(
yζ(t)− CT 1

θ
ξ̂(t)

)
(40a)

x̂(t) =
[
0n×1 In

]
T 1

θ
ξ̂(t) (40b)
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with L = P−1R⊤, converges exponentially to the state x(t)
of the original system (1) with the particular parameters
in (26).

Proof: It is sufficient to show that ξ̃(t) ≜ ξ(t) − ξ̂(t)
is exponentially stable. Then, the dynamics of the estimation
error is given by:

˙̃
ξ(t) = θ

[
Aγ

(
∂hx
∂x1

(w(t))

)
− LC

]
ξ̃(t)

+
(
ψ(ξ(t))− ψ(ξ̂(t))

)
+Bζ

∫ t

t−τ(t)

[
g
(
T 1

θ
ξ(t)

)
− ǧ

(
T 1

θ
ξ̂(t)

)]
ds (41)

where

ψ(ξ(t)) ≜
1

θn+1

[
0
B

]
fx

(
[0 In]T 1

θ
ξ(t)

)
(42)

and hx(θ2ξ2(t))−hx(θ2ξ̂2(t)) = θ2
∂hx
∂v

(w(t))ξ̃2(t), w(t) ∈

Co
(
θ2ξ2(t), θ

2ξ̂2(t)
)

, from the differential mean value the-
orem in Lemma 2 applied to the scalar function hx.
In addition, since fx is γfx−Lipschitz and from the structure
of ψ in (42), there exists a constant κf ≥ γfx , independent
from θ, such that∥∥∥ψ(ξ(t))− ψ(ξ̂(t))

∥∥∥ ≤ κf∥ξ̃(t)∥. (43)

Since θ3ξ3(t) = x2(t) ∈ I and the Hilbert projection
preserves the Lipchitz constant in R2 and from the structure
of g in (36), there exists κg ≥ γg such that∥∥∥g (T 1

θ
ξ(t)

)
− ǧ

(
T 1

θ
ξ̂(t)

)∥∥∥ ≤ κgθ
2∥ξ̃(t)∥. (44)

Now, after computing the derivative of ϑ(ξ̃(t)) ≜
ξ̃⊤(t)P ξ̃(t) along the trajectories of (41), and by considering
the bounds (43)-(44), we get

ϑ̇(ξ̃(t)) ≤ ξ̃⊤(t)

[(
Aγ

(
∂hx
∂x1

(w(t))

)
− LC

)⊤

P

+ P
(
Aγ

(
∂hx
∂x1

(w(t))

)
− LC

)]
ξ̃(t)

+ 2θ2γκg∥PBζ∥∥ξ̃(t)∥
∫ t

t−τ⋆

∥ξ̃(s)∥ds

+ 2κfλmax(P)∥ξ̃(t)∥2. (45)

It follows from (39a) and the convexity principle that

ϑ̇(ξ̃(t)) ≤ −

(
µθ − 2κfλmax(P)

)
λmax(P)

ϑ(ξ̃(t))

+ τ⋆
2θ2γκg∥PBζ∥
λmin(P)

sup
s∈[t−τ⋆,t]

ϑ(ξ̃(s)) (46)

Then, according to Lemma 1 and θ ≥ 1, the exponential
convergence of ξ̃(t) is inferred if

µθ − 2κfλmax(P) > 0

and (
µθ − 2κfλmax(P)

)
λmax(P)

> τ⋆
2θ2γκg∥PBζ∥
λmin(P)

which are equivalent to (39b) and (39c), respectively.

IV. CONCLUSION

In this paper, we proposed several observer design tech-
niques for nonlinear systems in the presence of delayed and
nonlinear outputs. Through a state augmentation technique
and output transformation, the problem of the presence of
delay and nonlinearities in the output measurement is easily
solved by transferring the delay and the nonlinearities to the
dynamic process. Such a transfer is achieved by creating a
new output measurement and extending the dynamics of the
system. For the specific class of systems considered in this
paper, namely systems in companion form, novel synthesis
conditions are proposed, which are less conservative than
those existing in the literature.
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