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Abstract— This paper introduces a new approach aimed at
expediting the auto-tuning of PI controllers during the com-
missioning phase. This approach is based on the exploitation
of the process model knowledge and Bayesian optimization
capabilities. The process unfolds in a sequence of steps: initially,
the quality of the model is improved through the identifi-
cation of unknown or uncertain parameters of the model.
Subsequently, this refined model is used for searching the
optimal configuration of PI controller. The outcomes obtained,
encompassing the initial estimate, upper and lower bounds, and
the Gaussian process mean, are then harnessed to initiate the
Bayesian optimization process in the commissioning phase. By
initializing adequately the Bayesian optimization, a significant
reduction in the number of iterations required to reach the
optimizer’s optimal solution can be achieved. The approach
efficiency is demonstrated through its application to a thermal
plant.

I. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers are the
most commonly used controllers in industrial processes
despite the availability of huge advanced controllers variants
in academia. The interest to this kind of controllers
is explained by the simplicity, robustness, no model
knowledge required and easy to use of this kind of
controllers. Numerous manual tuning methods involve
monitoring the process response following adjustments to
the controller setpoint are proposed. However, the PID
tuning is still a tedious time consuming process and in
general very difficult to result in optimal performance
when it is done manually. Several auto-tuning approaches
are proposed in literature where the aim is to automate
the process of selecting appropriate controller parameters
(for instance [1], [2], [3]). Broadly speaking, one can
classify these methodologies into data-driven and model-
based approaches. For data-driven controller design (see
for instance [4]), it offers an advantage in that they do
not necessitate prior model knowledge. The reader can
refere to the works: Virtual Reference Feedback Tuning
(VRFT) [5], Fictitious Reference Iterative Tuning (FRIT)
[6], Iterative Feedback Tuning (IFT) [8], one-step tuning
scheme for a 2DOF control system [7] and step response-
based [11]. While data-driven PID tuning approaches offer
numerous advantages, they are not without their drawbacks.
These drawbacks encompass data dependency, limited
generalizability to diverse operating conditions, sensitivity
to noisy data, and the risk of overfitting when the process
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diverges from the data distribution.

The second category is the model-based approaches
where several techniques are proposed. For more detailed
information, readers may consult references like [9] and
its associated sources. Model-based methods exhibit their
full potential when precise models are at one’s disposal.
Nevertheless, in practice it is difficult to have accurate and
robust models because of the lack of adequate, practical
uncertainty descriptions [10]. Another possible solution is to
use a hybrid approach by combining data- and model-based
approaches as proposed in [12]. The approach is formulated
within the Bayesian optimization framework, utilizing the
model plant to establish the prior mean function. While the
approach holds promise, its effectiveness is contingent upon
the presence of an accurate model. Without such accuracy,
there is a risk of converging to a local minima, especially
if a preference for exploitation over exploration dominates
the optimization process. In our forthcoming paper, we will
introduce a similar approach with additional enhancements.

In [13], a hybrid multi-objective optimization design
method for tuning PI controllers is introduced, with
a specific emphasis on reliability-based optimization
scenarios. The study employs Montecarlo methods to
quantitatively assess controller performance degradation
resulting from unforeseen or unmodeled system dynamics.
The utilization of a multi-objective framework adds a
level of complexity for users, requiring proficiency in
multi-objective optimization techniques. Other auto-tuning
techniques have been proposed based on reinforcement
learning (LR) where the controller parameters are updated
using the training process (see for example [14], [15] ). In
contrast, [16] focuses on a training process that updates
combination of value and policy functions instead of directly
adjusting controller gains.

This paper introduces a Bayesian-based approach aimed
at expediting the auto-tuning process of a PI controller
during the commissioning phase. The approach is structured
into three distinct steps. In the initial step, the primary focus
lies in enhancing the quality of model predictions based on
a single set of measurements. The Bayesian optimization
approach (BO) is employed for the identification of
unknown parameters within the existing model, with the
objective of minimizing the discrepancy between real
measurements and model outputs. It’s worth noting that our
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approach doesn’t demand a perfect model; rather, it only
requires a reasonably accurate one. In the second step, the
identified model is integrated with a Bayesian optimization
(BO) approach to autonomously fine-tune the PI gains
within a simulation setting. The fundamental concept at
this stage is to capitalize on the optimal solution obtained
as an initial estimate for the next step. With a reliable
initial estimate in hand, it becomes unnecessary to retain
the original wide ranges (i.e., upper and lower bounds)
for the PI gains. Consequently, these ranges are refined,
although this adjustment necessitates careful consideration,
contingent upon the quality and accuracy of the identified
model. Moreover, the mean (µ) and covariance of the
Gaussian process identified at this stage are employed as
initial values for the mean and covariance in the third step
where the real plant commissioning is initiated. During this
phase, the BO approach is used again and leverages the
previously identified parameters (i.e, initial estimate, upper
and lower bounds of the decision variables (PI gains), and
the mean and covariance of the Gaussian process). This
purposeful utilization of prior information accelerates the
search for an optimal solution by ensuring a well-informed
and appropriate initialization of the BO optimization process.

The paper is structured as follows: Section II introduces
preliminary concepts and problem formulation. Section III
outlines an approach for expediting PI tuning during the
commissioning phase. Section IV details the application of
this approach to auto-tuning a PI controller for a thermal
plant. Finally, Section V offers the concluding remarks.

II. PRELIMINARY AND PROBLEM FORMULATION

In this paper, we focus on the auto tuning of PID
controllers for real plants (Fig. 2). The signal yref is the
reference or set point to be tracked. u and y are respectively
the input and output of the process. ω represents the
process perturbation and ν denotes the measurement noise.
e = yref − y is the tracking error.

Fig. 1. PI controller

The PI controller has the following structure:

ut=Kpe(t) +KI

∫
e(t) dt (1)

where Kp and Ki represents the proportional and integral
gains. An anti-windup measure is also considered to ensure
the actuator constraints.

To tune the controller gains (Kp and Ki ), we need to
define a cost function based on the desired tracking perfor-
mances of PI controller (i.e, Overshoot, settling time, Integral

absolute error (IAE), Integral time absolute error (ITAE),
etc.). In this paper, a linear combination of standardly used
control key performance indicators (KPI): settling time,
overshoot and IAE as defined in following equations:

Jθ=a1Osh(θ) + a2St(θ) + a3IAE(θ) (2)

where ai, i = 1 : 3 are known and constant weights. θ is a
vector contains the control parameters. Osh and St are the
overshoot and settling time. IAE represents the Integrated
Absolute Error and given by: IAE =

∫∞
0
| e(t) | dt.

This previous specific set of KPIs are picked to cover
typical dynamic responses of interest such as settling when
changing references (settling time), minimize error to ref-
erence(IAE) and limit overshoot as many thermal plants
considered are particularly sensitive to very low overshoot.
The weights are selected to give a quantifiable performance
from step resonse, based on qualitative evaluation by plant
expert.

The Auto-tuning PI controller is formulated now as black-
box multi-objective optimization problem given by:

min
θ

Jθ

s.t. θ = [Kp,KI ], θ
up ≤ θ ≤ θlp

(3)

θup and θlp are respectively the upper and lower bound of
each element in the vector θ. The primary objective at this
juncture is to find the optimal solution for the challenging
optimization problem (3). Given the absence of a closed-
form expression for the objective function and its expensive
evaluation (or sampling), the Bayesian optimization approach
emerges as the most appropriate choice. The costly nature
of objective function evaluation is attributed to the intended
tuning on the actual process during the commissioning phase.
In Figure 2, we illustrate the execution of the optimization
framework using BO approach. Due to space limitations, we
refrain from providing in-depth technical details about the
BO optimization approach. Readers seeking a comprehensive
explanation are encouraged to refer to the relevant literature,
such as [17], for a more detailed understanding.

Fig. 2. BO-based PI controller auto-tuning, where i indicates a closed-loop
experiment with controller parameters θi

Unfortunately, even if the BO approach is a promising
technique its performance depends also on the tuning of some
parameters such as the initial guess and the upper and lower
bounds of the decision variables. But not only, it depends also
on the initialization of the Gaussian process built inside the
Bayesian approach. To overcome this last issue, one might
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initialize the mean of the Gaussian process using a mean
calculated from simulation data obtained from available
models as shown in [12]. However, this can accelerate the
Bayesian concept only in the case of having an accurate
model which is not the case in general. Besides, the authors
in [12] did not tackle the issues with the initial guess and
the upper and lower bounds of the decision variables where
they have more impact on the acceleration of the BO. In the
next section, we will propose an approach to accelerate the
Bayesian optimization framework by solving all the issues
mentioned above.

III. ACCELERATE THE PI TUNING IN COMMISSIONING
PHASE

In this section, we propose a Bayesian-based approach
for accelerating the auto-tuning of a PI controller in the
commissioning phase. The approach is depicted in Fig. 3
and is structured into three distinct steps. In the first step,
the main idea is to enhance the model prediction by trying to
identify as accurately as possible the unknown parameters. It
is both reasonable and non-limiting to assume that the model
parameters are identifiable. Alternatively, it may be feasible
to downsize the model, retaining only the identifiable sub-
system whenever applicable. At this point, the acquisition of
experimental data is needed to grasp the real dynamics of the
plant. The specific quantity of experiments required is neither
predetermined nor fixed; however, in most cases, a single
experiment proves sufficient. In the context of this paper,
we exclusively relied on a single experiment to identify the
thermal plant model, as detailed in the subsequent section.
The BO approach is used to identify the model parameters
where the error between the real measurement and model
output is minimized. Certainly, it’s evident that alternative
optimization solvers, such as NOMAD, or parameter esti-
mation techniques, can also be employed in lieu of BO.
Furthermore, there is no requirement for specific selections
of PI gains (Kp0, Ki0), as long as they fall within the
acceptable range. It is worth noting that the objective is not
to get an exceedingly precise model, but rather to achieve a
model of satisfactory accuracy, suitable for utilization in the
subsequent phase involving the search for optimal PI gains
through the application of the BO approach. In the second

Fig. 3. PI tuning in commissioning phase

step, the identified model is combined with a BO approach

to autonomously fine-tune the PI gains in simulation. The
underlying concept at this stage is to leverage the optimal
solution acquired as an initial estimate for the subsequent
step. Given the availability of a reliable initial estimate,
there is no necessity to retain the original broad ranges
(i.e., upper and lower bounds) for PI gains. Consequently,
these ranges are narrowed. However, this adjustment must be
executed cautiously, contingent on the quality and accuracy
of the identified model. In the event that the ranges become
excessively narrow, and the model is not highly accurate,
there is a risk that the optimal PI gains in the third step
(commissioning) will fall outside the range boundaries and
remain beyond the reach of the optimization approach.
To address this concern, one can redefine the new ranges
centered around the obtained optimal solutions by applying
a percentage criterion, such as: 0.5K∗p0 < Kp < 1.5K∗p0.
Furthermore, the identified mean (µ) and covariance of the
Gaussian process at this stage can serve as initial values for
the mean and covariance in the subsequent step, respectively.
The real plant commissioning is initiated in the third step,
where the primary aim is to autonomously fine-tune the
PI controller for the physical plant. At this stage, the BO
approach is once again deployed and benefits from the
previously identified parameters, including the initial guess,
upper and lower bounds of the decision variables (PI gains),
mean, and covariance of the Gaussian process. This strategic
utilization of prior information expedites the quest for an
optimal solution by ensuring a suitable and well-informed
initialization of the BO optimization process.

The approach presented in this paper operates under the
assumption that a reasonably and descent model is at one’s
disposal. It is worth noting that the model’s predictive quality
can be enhanced by incorporating additional experimental
data and employing domain randomization techniques for
a more robust initialization of BO approach. However, it’s
important to recognize that this approach does entail a
trade-off, as it necessitates conducting more experiments
and investing additional efforts. It is understood that many
industrial enterprises may be hesitant to allocate additional
resources to modelling and simulation efforts due to associ-
ated costs and uncertain added value.

IV. AUTO-TUNING PI CONTROLLER FOR A THERMAL
PLANT

A. Set-up

As a practical use case a thermal plant setup has been used
to demonstrate and validate the tuning methods in a realistic
environment, resembling on one end cooling of powertrain
components, and on the other typical industrial plastic curing,
and drying applications.

The setup shown in figure 4, consists of an aluminum plate
split into five distinct zones each heated by a cartridge heater
of 113W, which is in turn powered by a solid-state relay
(SSR) applying a PWM 0-220 V DC. Next to the heating,
each of the zones is also actively cooled on the back end by
liquid cooling through a cooling channel using water-glycol.
The valves on the entry of each of the five cooling channels
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allows for opening and closing, while the speed controllable
pump, enables flow control through the opened channels.

Fig. 4. Experimental setup : thermal plant

The thermal measurements are recorded by a total of nine
(9) thermocouples, glued into each of the five aluminum
zones, but also the boundary between each two zones. The
thermocouples are calibrated to +-1C accuracy. The fluid
temperature are measured by Pt100 sensors on input/output
coolant lines. Additionally, pressure across the setup and the
flow rate of the water glycol are measured, both for safety
and for validation purposes.

All the controls and measurements are interfaced to a
Beckhoff I/O stack connected over EtherCAT to a Xenomai
Triphase real-time target. The base sampling time of the
control loop is Ts = 1ms while the sensor measurements
are logged at Tmeas = 100ms, which is deemed sufficient
for a rather slow thermal process. This allows for rapid
prototyping of control code in Simulink and easy integration
to test environment in MATLAB.

B. Thermal plant model

As mentioned in III, a model is needed for calculating
the initial condition and the upper and lower bounds of the
controller gains before running the BO with the real plant
in the commissioning phase. The used model is a physics-
based white box model with dynamic of heat dissipation,
convection losses and heat exchange between different com-
ponents. This plant model is excited by multiple disturbances
and evaluated in a closed loop simulation with a feedback
controller (PI).

1) Thermal Model assumptions: The thermal plant model
is a second order model, consisting of two connected metal
masses. The model buildup and numerical evaluation was
performed in python. The thermal model under investigation
includes the main modes of heat exchange between and
within the components:
• One block, ”mass 1 (copper)” is heated internally,

through direct heat injection. this is equivalent to heat-
ing by an electric resistor inserted in this volume.

• A second block, ”mass 2 (aluminium)” is cooled inter-
nally, driven by a cooling temperature and given transfer
area and heat transfer coefficient. This is equivalent to

cooling through a glycol-water mixture, circulating at
high throughput rate through pipes in the volume).

• The two metal blocks (aluminium and copper) are con-
nected and do exchange (when at different temperatures)
heat by conduction through an area of contact.

• Also, both blocks are in contact with surrounding air
and lose or gain thermal energy through convection.

2) Model structure: The model structure is as follows:
Two states are defined, representing the bulk copper tem-
perature (Tnode,Cu) and the bulk aluminum temperature
(Tnode,Alu). Heat injection and loss (through cooling and
resistive heating) and heat losses or gains are injected directly
into these states.

The node temperatures are updated every time step using
a backward Euler scheme, with the combined energy inputs
of each of the heat losses and gains.

The heat gains and losses from heating dTH and cooling
dTH are a defined as:

dTH,t−1→t = QH/m/cp ∗ dt

and
dTC,t−1→t = QC/m/cp ∗ dt

whereby the heat gain QH is driven directly by the PI-
controller, and

QC = −(halu,C ∗Aalu,C ∗ Ualu,C ∗ (TC,t − Talu) ∗ dt)

As the two blocks have a different temperature and are
physically connected along area A, a heat flow through
conduction dTothermat will be induced. The flux qAlu,Cu
is a function of their respective temperatures and distance
of bulk temperature nodes. The joint temperature is defined
as a function of to the perpendicular distances between the
cooling and heating nodes and the joint:

Tjoint,t =
Tcu ∗ kalu ∗ Lnode,alu + TAlu ∗ kcu ∗ Lnode,cu

kalu ∗ Lnode,alu + kcu ∗ Lnode,cu
The resulting heat flow QAlu,Cu depends on the contact

area and mass of the materials(s):

Aalu,cu ∗ qAlu,Cu = −Aalu,cu ∗ qCu,Alu
= (Tnode,Alu − Tjoint,t) ∗ cpalu ∗malu ∗ dt

On the other hand, heat loss to the environment is mod-
elled using conduction through a given surface Aair with
thermal transmittance Uair and Text the exterior temperature:

dTair,t−1→t = −(Tnode,t−1− Text) ∗Aair ∗Uair/m/cp ∗ dt

The numerical values for the model parameters and state
initialisation are summarised in table I. For this analysis,
they are mostly kept constant, but can be made variable, and
noise can be injected in the disturbance, input and output
signals.
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TABLE I
TABLE WITH THERMAL MODEL PARAMETERS

Symbol Name Unit Default
value

cpcu spec. heat capac. (copper) J/kg/K 3.8E2
[18]

cpalu spec. heat capac. (alu-
minum)

J/kg/K 8.97E2

kcu thermal conductivity (cop-
per)

W/mK 4.95E2

kalu thermal conductivity (alu-
minum)

W/mK 2.40E2

halu,C heat transfer coefficient
(cooling to aluminum)

W/m2/K 0.05

mnode,cu mass 1 (copper) kg unknown

mnode,alu mass 2 (aluminum) kg unknown

Lnode,cu distance (copper node to
joint)

m 0.05

Lnode,alu distance (aluminum node
to joint)

m 0.05

Lcu,air distance (copper node to
air)

m 0.05

Lalu,air distance (aluminum node
to air)

m 0.05

Ucu,air thermal transmittance
(copper to air)

W/m2K 5.0

Ualu,air thermal transmittance
(aluminum to air)

W/m2K 5.0

Ualu,C thermal transmittance
(aluminum to cooling)

W/m2K 0.1256

Acu,air area (copper to air) m2 0.03

Aalu,air area (aluminum to air) m2 0.03

Aalu,cu area (contact between
mass 1 and 2)

m2 0.0833

Aalu,C area (contact between
mass 2 and glycol)

m2 0.833

TCu,init initial copper temperature ◦C 25

TAlu,init initial aluminum tempera-
ture

◦C 25

Tjoint,init initial joint temperature ◦C 25

dt simulation time step s 0.1

delay output time delay s 4.0

Pmax Resistor heat capacity W 600

TC cooling temperature ◦ C 25

Tair,init air temperature ◦ C 25

C. Results and benchmarking

Experiment description follows (see Figure 5). Each
experiment lasts for a total of 380 seconds. It begins
with a warmup to 25C for min relying on a well-tuned
PI parameters (this ensures consistency in comparison
between different runs), followed by a bumpless transfer
of control parameters to the tested PI combination, so
that the sudden change in integrator parameter does not
create a large step in the output of the controller. Finally,

a step reference is applied at 140 seconds and is recorded
for length of 120 seconds. The experiment ends with a
cool-down period of 120 seconds back to below 25C so
that the next experiment can be started. For the computation
of the objective function, exclusively the data within the
time interval of 140 to 260 seconds is considered. Instead

Fig. 5. Experiment description

of conducting a comparison with manual tuning, we opted
to employ another optimization solver, namely Nomad
(Nonlinear Optimization by Mesh Adaptive Direct Search),
to benchmark our findings. Nomad is a free optimization
solver available in OPTI tool a. For solving the Bayesian
optimization, we used the developed approach by [19] and
publicly available at http://lis.csail.mit.edu/code/imgpo.html.

The NOMAD solver’s configuration we employed was set
to default, with the sole modification being the adjustment
of the maximum number of iterations, which was set to 80.
The considered ranges (upper and lower bounds) for the
proportional gain (KP) and integral gain (KI) were defined as
[4, 100] and [0.1, 3], respectively. The initial guss is chosen
as Kp0 = 90 and Ki0 = 2. For the Bayesian optimization
approach, in the first step (focused on parameter estimation)
the Gaussian Process Upper Confidence Bound (GP-UCB)
model is used with the following hyper-parameters (default) :
mean = 0, ell = 1/4, sf = 1 and lik = −∞ (more
details about these parameters can be found in IMGPO tool
manual). The unknown parameters of cupper and alluminium
masses are identified using real measurement (from setup)
collected with PI controller configuration: Kp0 and Ki0.
The considered upper and lower bounds for both masses are
respectively 0.5Kg and 2Kg.

In the second step of the approach, we maintained the
same configuration of the Gaussian Process for the purpose
of searching for an optimal solution via the Bayesian op-
timizer. As described in our approach, the outcomes from
step 2 served as the foundation for initializing step 3 (K∗p0,
K∗i0, mean, and new ranges). The new ranges were set as
follows: 0.5K∗p0 < Kp < 2K∗p0 and 0.5K∗i0 < Ki < 8K∗i0.
The selection of these ranges depends on the quality of the
model used and the need to encompass the optimal region
in case the initial guess (from step 2) significantly deviates
from the actual optimal solution in the commissioning phase.
It represents a trade-off between achieving convergence with
fewer iterations and adequately covering the optimal region

ahttps://github.com/jonathancurrie/OPTI
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of the objective function. These ranges can be further reduced
if the quality of model predictions improves. For the cost
function, we considered the following parameters: a1 =
4000, a2 = 5, and a3 = 2.

Figure 6 illustrates a comparative analysis between No-
mad and the BO-based approach. The x-axis represents the
cost, while the y-axis represents the number of iterations.
Evidently, the BO-based approach achieves a convergence
rate that is 47% faster than NOMAD, a notable performance
advantage, even considering the moderate model prediction
quality. There is potential for further enhancement in this
percentage if additional efforts are invested in refining the
model predictions. It is important to note that NOMAD still
requires more iterations to reach the minimum value achieved
by our approach. In fact, due to time constraints, we made
the decision to halt NOMAD at 76 iterations, while the BO-
based approach reached a stopping point at 56 iterations.

Fig. 6. Comparison between Nomad and the proposed BO-based approach

V. CONCLUSION

This paper presented an approach for improving the con-
vergence of PI controller auto-tuning during the commission-
ing phase. The approach relies on utilizing a descent process
model and harnessing Bayesian optimization’s capabilities.
The primary objective is to enhance the accuracy of model
predictions and integrate them with a Bayesian optimization
approach to autonomously fine-tune the PI gains within a
simulation environment. The outcomes obtained, including
the initial estimate, upper and lower bounds, and Gaussian
process mean, serve as the foundation for initializing the
Bayesian optimization during the commissioning phase. The
approach efficiency is assessed and confirmed through testing
on a real thermal plant.
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