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Abstract— We consider a platooning control problem where
the communication channels between vehicles are subject to
coloured additive noises. Due to the stochastic nature of these
channels, our analysis delves into examining the convergence
of both the mean and variance of the vehicle tracking errors.
We study the convergence as both time and number of vehicles
grow unbounded. Our results include necessary and sufficient
conditions for convergence and reveal that the colour of the
noise does not impact the convergence characteristics of the er-
ror statistics, although it affects the values of the tracking error
variances. Our findings offer insights into string stabilization.
Numerical examples illustrate our results.

Index Terms— Convergence, coloured additive noise chan-
nels, platooning, string stability

I. INTRODUCTION

Platooning involves coordinating autonomous vehicles to
optimize road use, cut fuel consumption, improve travel
times, and enhance safety [1]. In this context, Cooperative
Adaptive Cruise Control (CACC) is crucial for platooning
analysis. CACC coordinates vehicles at predefined speeds,
ensuring consistent inter-vehicle distances through wireless
communication and spacing methods [2].

In one-dimensional platooning, the fundamental control
challenge in CACC pertains to maintaining a desired dis-
tance from the preceding vehicle whenever possible. Under
undisturbed conditions, the control algorithm of each vehicle
should achieve this desired inter-vehicle gap in steady state,
ensuring that the entire platoon travels at the cruising speed
of the lead vehicle. However, the occurrence of disturbances,
such as sudden changes in the leader’s velocity, introduces
transient tracking errors in each vehicle. These errors have
the potential to propagate and increase along the chain of
vehicles. If this occurs, the platoon is said to be string
unstable [3]. Conversely, if these transient errors attenuate
along the string of vehicles, the platoon is deemed string
stable. Ensuring string stability is indispensable as it im-
proves platoon performance, facilitates platoon scalability,
diminishes collision probabilities, and augments the safety
and fluidity of vehicular movement.
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Due to its significance, researchers have focused on ob-
taining conditions for string stability in different scenarios,
but mostly deterministic. One relevant factor that affects the
study of string stabilization relates to the vehicle models,
which can be linear [4] or nonlinear [5], [6], described
in the time domain [7] or frequency domain [8], and in
continuous-time [9] or discrete-time setups [7]. The network
communication topology also plays a crucial role, with the
Predecessor-Following (PF) topology being one of the sim-
plest and most studied ones [4]. However, there are several
others, such as Bidirectional (BD) [10] and Predecessor-
Leader-Following (PLF) [11], among others. The spacing
policy is also an important parameter in the study of pla-
toon systems [12]. A more extensive classification of string
stability for platoon systems for deterministic setups can be
found in [3] and [13].

An important issue in real applications is the case where
inter-vehicle communication channels are subject to random
communication phenomena. Indeed, an increasing interest
in studying their effect on platooning applications has been
observed during the last years, mainly focused on studying
platoons with data loss [7], [14]–[16] and random delays
[17]–[20]. We noted that platooning over additive channels
is still incipient [21], although the study of additive noise
channels in control problems has been extensively studied
in other contexts [22]–[24]. In particular, in [21] the inter-
vehicle communication is assumed to be affected by additive
white noisy channels, and the string stability is numerically
studied based on the convergence of the mean and variance
of the tracking errors.

A disadvantage of studying platoons considering these
random phenomena is the lack of a general framework to
address string stability in stochastic environments. Many of
the aforementioned works partially analyze string stability
[15], [18], [25], assess it numerically using the mean and
variance of the collected data [26], [27], or simply do not for-
mally address string stability and instead focus on proposing
techniques to mitigate the effects of communication channels
[16], [20]. This lack of a comprehensive definition of string
stability for stochastic environments has constrained theo-
retical analysis, although most of the available approaches
coincide in that the convergence of the statistics of the signals
of interest (mean and variance) is a necessary condition to
have a string stable behavior.

In this work, our interest is to study platoons whose
inter-vehicle communication is affected by coloured additive
noise, which is a more general and realistic model compared
to the white noise channel model [28]. We consider one-
dimensional platoons with predecessor-following topology
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and a constant time headway policy, in a discrete-time set-
ting. Our goal is to analyze the effect of the noise colour on
the convergence properties of the tracking error second-order
statistics (mean and variance). We consider convergence not
only on time but also when the number of vehicles in the
platoon increases unbounded, providing analytical results
that would serve as a basis for string stability analysis. Our
findings include necessary and sufficient conditions for pla-
toon convergence and reveal that, while the stationary values
of the tracking error variance are significantly influenced
by the noise colors, it does not impact the convergence
properties of the platoon. Our results are complemented with
simulation results that allow a numerical evaluation of string
stability and its connection with the convergence conditions.

II. PROBLEM SETUP

A. Notation

Let M ∈ Rn×n be a square matrix, its spectral radius is
denoted as ρ(M) = max {|λ1|, |λ2|, ..., |λn|}, where λi are
the eigenvalues of M . Given a matrix N ∈ Rn×m, we use
vec(·) to denote the vectorization, whose inverse operation
vec−1(·) is such that N = vec−1(vec(N)). To denote the
Kronecker product and transpose of a matrix we use ⊗, and
(·)⊤, respectively.

Let x(k), with k ∈ N, be a discrete-time stochastic pro-
cess. The mean µx(k) ∈ Rnx , and variance matrix Px(k) ∈
Rnx×nx are respectively defined as µx(k) ≜ E {x(k)}, and
Px(k) ≜ E

{
(x(k)− µx(k))(x(k)− µx(k))

T
}

, where E {·}
denotes the expectation operator. The process x is said to be
mean square stable if and only if the mean and variance
satisfy limk→∞ µx(k) = µx and limk→∞ Px(k) = Px,
where µx and Px are stationary well-defined constant values.

Consider a discrete-time LTI system whose transfer func-
tion is given by W (z). The output of the system to a
stochastic process input u(k) is given by y(k) = w(k)∗u(k),
where ∗ denotes the convolution, and w(k) is the impulse
response. To simplify the notation, we will adopt the notation
y = Wu. Finally, we define W (z)∼ ≜ W⊤(z−1).

B. Platooning framework

We consider a one-dimensional homogeneous platoon
formed by N vehicles modelled as linear time-invariant
discrete-time systems. The position of the vehicle i is de-
noted by yi(k), where k is the discrete-time index. We
assume a predecessor following (PF) communication topol-
ogy in which each vehicle i transmits its own position to
its immediate follower i + 1. However, in our setup, we
assume that the transmitted signal yi(k) is corrupted by the
communication channel and, thus, the received signal by the
follower is ỹi(k) = yi(k)+vi(k), where vi is coloured noise.
We consider the following assumptions on vi:

• The noise vi is wide-sense stationary (WSS), with mean
µvi = 0 and variance Pvi .

• The power spectrum of vi, Sv , is known and is such
that Sv(z) = Ωv(z)Ωv(z)

∼, where Ωv(z) is stable,
minimum phase and strictly proper spectral factor.

Channel Channel

Fig. 1. Platoon with noisy communication.

• The noise vi(k) is uncorrelated with the initial condi-
tions of the platoon vehicles.

The platoon tracking task consists of maintaining the
inter-vehicle distance ℓi = yi−1(k) − yi(k) equal to a
desired reference ri(k) if it is possible. Figure 1 depicts the
described platoon’s configuration with noisy communication.
We assume that the leader (i = 0) is unaffected by noise
since it does not follow any vehicle. We assume that the
leader follows a virtual reference, which allows us to describe
its trajectory (see e.g. [15]).

The adopted spacing policy is such that ri(k) should be
wide enough for high speeds, and can be narrower for low
speeds. We thus consider the time-headway spacing policy

ri(k) = h [yi(k)− yi(k − 1)] , (1)

where h is a positive time headway constant. It is known
that string stability, that is, the lack of amplifications of
disturbances as they propagate along the string, depends on
the election of h when ideal communications are considered
[3]. Applying the Z transform we can write ri(k) in the
frequency domain as

Ri(z) =
hz − h

z
Yi(z) = H(z)Yi(z). (2)

The tracking error in the vehicle i is denoted by ζi(k),
and is given by

ζi(k) = ℓi(k)− ri(k)

= yi−1(k)− yi(k)− h [yi(k)− yi(k − 1)] . (3)

However, ζi(k) is not available at the i-th vehicle due to the
channel noise. Instead, each vehicle has access to a noisy
version which is denoted as ei(k) and given by

ei(k) = yi−1(k)− yi(k) + vi(k)− ri(k) (4)

The movement of each vehicle i is determined by a local
control loop which is limited to employing ei, rather than
ζi, to define the control action ui. We recall that the leader
follows a virtual reference and hence we can define a virtual
error ζ0(k) = r0(k) − y0(k) − h[y0(k) − y0(k − 1)] which
can be considered as a known external input.

Given the definition of ri(k), we can define the local
control loop of each vehicle as the one in Figure 2, where the
coloured noise vi is modelled as the output of the spectral
factor Ωv(z) when its input is a white noise denoted by
di (details of the noise modelling are in Section III). In
Figure 2, K(z), G(z) and H(z) are the transfer functions
of the controller, the vehicle, and the system H(z) in (2),
which are the same for each vehicle since the platoon is
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Fig. 2. Feedback control loop of the i-th vehicle

homogeneous. We assume that G(z)K(z) has as least two
integrators, which is required to achieve perfect tracking
for ramp signals [29]. We also assume that G(z) is strictly
proper.

The closed-loop transfer function T (z) is given by

T (z) =
K(z)G(z)

1 +K(z)G(z)H(z)
, (5)

and the sensitivity S(z) as S(z) = 1 − H(z)T (z). From
Figure 2, we note that the tracking errors ζi satisfy

ζi =

{
Tζ0 −HTΩvd1 For i = 1

Tζi−1 + TΩvdi−1 −HTΩvdi For i > 1.
(6)

In this paper, our goal is to study the convergence of
the tracking error when both the time k and the number of
vehicles N grow unbounded. Since the noises are stochastic
processes, we study the convergence properties of the mean
and variance of the tracking errors.

III. STATE SPACE DESCRIPTION

A. Coloured noise modelling

Assume that Ωv = (Av, Bv, Cv, 0) is a minimal realization
of Ωv , which is strictly proper, stable and minimum phase.
We model the noise vi as the output of Ωv , that is,

xvi(k + 1) = Avxvi(k) +Bvdi(k) (7a)
vi(k) = Cvixvi(k), (7b)

where di(k) is a white noise with mean µdi
= Ωv(1)

−1µv =
0 and unit variance. Note that the spectrum of vi in (7) is
Sv since di(k) is white, with unit variance and Sv(z) =
Ωv(z)Ωv(z)

∼. In (7), xvi denotes the state of the system
Ωv that models the noise vi. We consider that the initial
condition xvi(0) is a random variable satisfying

µxvi
(0) = (I −Av)

−1Bvµdi
= 0 (8a)

Pxvi
(0) = vec−1{(I −Av ⊗Av)

−1vec(BvB
T
v )}. (8b)

Given the above choice of µxvi
(0) and Pxvi

(0), it is easy to
verify that the mean and variance of vi in (7) are constant for
all k ≥ 0. Therefore, the signal vi in (7) can be considered
as a wide-sense stationary process with the same statistics
as the original coloured noise if we focus our analysis for
k ≥ 0. In Figure 2, the noise modelling as described in this
section is also depicted.

B. Representation based on an alternative state

For a given vehicle i, the corresponding coloured noise can
be analyzed jointly with its closed-loop transfer function T .
Thus, we consider a state space representation of the closed-
loop transfer function T given by

xi(k + 1) = Axi(k) +Bỹi−1(k) (9a)
yi(k) = Cxi(k), (9b)

where xi(k) is the state of the closed-loop system of vehicle
i. Using (9) and (7) it is possible to obtain an extended model
valid ∀i ≥ 1, which is given by[

xi(k + 1)
xvi(k + 1)

]
=

[
A BCv

0 Av

]
︸ ︷︷ ︸

Aa

[
xi(k)
xvi(k)

]
︸ ︷︷ ︸

xai
(k)

+

[
0
Bv

]
︸ ︷︷ ︸
Ba

di(k)

+

[
BC 0
0 0

]
︸ ︷︷ ︸

Bp

[
xi−1(k)
xvi−1

(k)

]
︸ ︷︷ ︸

xai−1
(k)

(10a)

yi(k) =
[
C 0

]︸ ︷︷ ︸
Ca

[
xi(k)
xvi(k)

]
. (10b)

Moving at a constant speed implies that the positions yi
can be modelled as ramp signals. Hence, some of the states
in xai

may increase unbounded, which is expected. However,
it is convenient to describe the platoon system in terms of a
bounded state. Hence, we define the alternative state

ξi(k) = xai−1
(k)− xai

(k)− h[xai
(k)− xai

(k − 1)]. (11)

The main advantage of this state is that if the controller is
properly designed the mean and variance of the signal ξi
converges to fixed values, even if some terms in xai

become
ramp signals. Given (11) and the state space description in
(10), it is possible to characterize ξi and the tracking error
ζi for any platoon member with i > 0 by

ξi(k + 1) =Aaξi(k) +Bpξi−1(k)− (1− h)Badi(k)

+Badi−1(k) + hBadi(k − 1) (12a)
ζi(k) =Caξi(k). (12b)

C. State space representation for the concatenated system

For convenience, we can obtain a state space description
for the whole platoon as a unique LTI system. Define

ζ(k) =

 ζi(k)
...

ζN (k)

 , ξ(k) =

 ξi(k)
...

ξN (k)

 , d(k) =

 di(k)
...

dN (k)

 .

It is not difficult to show, given (12a) and (12b), that

ξ(k + 1) = Agξ(k) +B0ζ0(k) +Bgad(k) +Bgbd(k − 1)
(13a)

ζ(k) = Cgξ(k), (13b)
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where

Ag =


Aa

Bp Aa

. . . . . .
Bp Aa

Cg =


Ca

Ca

. . .
Ca



Bga =


(h− 1)Ba

Ba (h− 1)Ba

. . . . . .
Ba (h− 1)Ba


Bgb = diag{hBa, . . . , hBa}, B0 = [BT , 0, . . . , 0]T .

This representation allows us to describe the dynamics of the
whole platoon, having as external inputs the noises d and the
virtual error ζ0. The output is the vector of the tracking errors
of the whole platoon. Naturally, the dimensions of the state
space matrices increase as N increases.

IV. CONVERGENCE ANALYSIS

We consider the convergence of the tracking errors ζi(k),
with i = 1, . . . , N , when k → ∞, and also when N → ∞.
In our stochastic setup, the convergence is studied in terms
of the error statistics, that is, means and variances.

A. Convergence in time

From the system proposed on (13) it is possible to show
that the state mean and the tracking error mean satisfy
recursive equations.

Proposition 4.1: For any N ∈ N, the mean of ξ and ζ in
(13), denoted by µξ and µζ respectively, satisfy

µξ(k + 1) =Agµξ(k + 1) +B0ζ0(k) (14)
µζ(k) =Cgµξ(k). (15)

Additionally, the corresponding covariance matrices Pξ and
Pζ satisfy

Pξ(k + 1) =AgPξ(k)A
T
g +BagB

T
ag +BgbB

T
gb

+AgBagB
T
gb +BT

gbB
T
gaA

T
g (16)

Pζ(k) =CgPξ(k)C
T
g . (17)

■
Since the system in (13) is linear and time-invariant, the

recursions in Proposition 4.1 are standard results [30].
Now we focus on studying the statistics in Proposition 4.1

when k → ∞.
Lemma 4.2: For any N ∈ N, the mean and variance of

ξ and ζ in (13) converge to constant values if and only if
ρ(A) < 1.

Proof: It is easy to note that µζ(k) and Pζ(k) converge
to constant values if and only if µξ(k) and Pξ(k) converge,
respectively. Also, since the system in (13) is linear, it is easy
to see that ρ(Ag) < 1 is a necessary and sufficient condition
for µξ(k) and Pξ(k) to converge to constant values [30].
Given the specific block bi-diagonal structure of the matrix
Ag , it follows that ρ(Ag) < 1 if and only if ρ(Aa) < 1.
Finally, noting that eig(Aa) = eig(A) ∪ eig(Av), and given
that ρ(Av) < 1 since the spectral factor Ωv is stable, then

we conclude that ρ(A) < 1 is a necessary and sufficient
condition for time-convergence.

Note that ρ(A) < 1 ensures that the system in (13) is
internally stable but also mean square stable, which ensures
the existence of the second order statistics when k → ∞ for
both the tracking errors and system states. This is regardless
of the platoon length N . Satisfying ρ(A) < 1 is a basic task,
which can be easily done by a proper controller design.

B. Convergence in the number of vehicles

Assuming ρ(A) < 1, we guarantee the existence of the
stationary spectrum for ζi, and hence we can study the
convergence when N → ∞ in the frequency domain using
the power spectral density of the tracking error. In order to
do that, based on (6) we can propose the following result.

Proposition 4.3: Assume that ρ(A) < 1. Then,

µζi(e
jθ) = T (ejθ)µζi−1

(ejθ) (18)

ϕζi(e
jθ) = |T (ejθ)|2ϕζi−1(e

jθ)

+ |T (ejθ)|2|S(ejθ)|2|Ωv(e
jθ)|2+

+ (1− |T (ejθ)|2)|1− S(ejθ)|2|Ωv(e
jθ)|2, (19)

where ϕζ1(e
jθ) =

∣∣H(ejθ)T (ejθ)
∣∣2 ∣∣Ωv(e

jθ)
∣∣2. ■

The terms in Proposition 4.3 are now recursive in i. This
allows us to easily analyze the convergence when N → ∞.

Lemma 4.4: Assume ρ(A) < 1. The mean and variance
of the tracking errors of the platoon converge to constant
values as N → ∞ if and only if

|T (ejθ)| < 1, ∀θ > 0. (20)

In this case, ∀N ∈ N and i ∈ {1, 2, ..., N}, the stationary
mean µζi is zero, and the stationary variance Pζi satisfies:

1) Pζi−1
≤ Pζi , ∀i > 1.

2) max
i

Pζi = PζN = ∥FζN ∥22 .

3) lim
N→∞

PζN =

(
||HTΩv||22 +

∣∣∣∣∣∣∣∣STΩv

M

∣∣∣∣∣∣∣∣2
2

)
,

where FζN =
[
STN−1 STN−2 · · · ST −HT

]
Ωv and

M(z) is a stable and minimum phase spectral factor such
that 1− T (z)T (z)∼ = M(z)M(z)∼.

Proof: It is evident from Proposition 4.3 that both recur-
sions converge as i grows if and only if |T (ejθ)| < 1. Addi-
tionally, it is also easy to see from (18) that lim

i→∞
µζi(e

jθ) =

0 when |T (ejθ)| < 1. On the other hand, by performing
some manipulations, (19) can be alternatively written as

ϕζi(e
jθ) = ϕζi−1(e

jθ) + |S(ejθ)T i−1(ejθ)Ωv(e
jθ)|2. (21)

Hence, the stationary value of Pζi is given by

Pζi =
1

2π

∫ π

−π

ϕζi(e
jθ) dθ = Pζi−1

+
∣∣∣∣ST i−1Ωv

∣∣∣∣2
2
. (22)

From (22), it is clear that Pζi > Pζi−1
. This means that

the stationary variance increases with the number of vehi-
cles. Therefore, for a platoon composed of N vehicles, the
maximum stationary variance of the tracking error reaches
its maximum value at PζN . Using (22), said value can be
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Fig. 3. Means and variances: (a) Convergent case (First column). (b) Non
Convergent case (Second column).

obtained as PζN = ∥FζN ∥22 , with FζN as in Lemma 4.4.
On the other hand, if the platoon satisfies the conditions
in (4.2) and (4.4), it is also expected that PζN converges
to a constant value when N → ∞. Let M(ejθ) be a
spectral factor such that |M(ejθ)|2 = 1 − |T (ejθ)|2, and
ϕζ∞(ejθ) ≜ lim

N→∞
ϕζN (ejθ). Then, from (19) it follows that

ϕζ∞(ejθ) =|T (ejθ)|2ϕζ∞(ejθ) + |S(ejθ)T (ejθ)Ωv(e
jθ)|2

+ |M(ejθ)|2|H(ejθ)T (ejθ)Ωv(e
jθ)|2

= |H(ejθ)T (ejθ)Ωv(e
jθ)|2 + |S(ejθ)T (ejθ)Ωv(e

jθ)|2

|M(ejθ)|2
.

Finally, the maximum stationary variance is given by

lim
N→∞

PζN =
1

2π

∫ π

−π

|H(ejθ)T (ejθ)Ωv(e
jθ)|2 dθ

+
1

2π

∫ π

−π

|S(ejθ)T (ejθ)Ωv(e
jθ)|2

|M(ejθ)|2
dθ

= ||HTΩv||22 +
∣∣∣∣∣∣∣∣STΩv

M

∣∣∣∣∣∣∣∣2
2

.

Conditions in Lemmas 4.2 and 4.4 ensure temporal conver-
gence and convergence in the number of vehicles in a platoon
affected by coloured noise. Lemma 4.4 also establishes the
existence of a maximum value to which all stationary vari-
ances converge. Such limit strongly depends on the colour of

the noise. This limit, in turn, guarantees the boundedness of
the platoon when both convergence conditions are satisfied.

C. Connection with the string stability property

It is important to highlight that the obtained conditions in
Lemmas 4.2 and 4.4 coincide with those that ensure string
stability for the ideal (and deterministic) case where channel
noises are removed. However, in this work, we are not for-
mally proving string stability. Instead, we have investigated
convergence over time and the number of vehicles, and we
have shown that, under certain conditions, we can guarantee
that the mean of the errors converges to zero and that the
error variances are bounded by an upper limit. This is closely
related to the concept of string stability, so we believe that
these conditions will be at least necessary conditions for
string stability for stochastic scenarios.

V. NUMERICAL SIMULATION

Consider the platoon described in Section III. Each vehicle
has a closed-loop transfer function T (z) defined by H(z) =
(1 + h)− h/z,

G(z) =
1

z − 1
, K(z) =

0.228z2 − 0.1824z

z3 − 0.95z2 − 0.73z + 0.68
.

To analyze the convergence we select two values of the
constant h, namely, h = 3.8 and h = 2.2. Remember that
as the value h increases, so does the desired inter-vehicle
spacing. These values are selected to show a convergent
and non-convergent system. It is important to mention that
the system T (z), for both time-headway scenarios, exhibits
internal stability, i.e. ρ(A) < 1 (Lemma 4.2). This condition,
although trivial, but necessary, can be observed in the con-
vergence over time, as depicted in Fig. 3, where both cases
show the mean and variance of the tracking error converging
to stationary values when k → ∞. In this section, we mainly
focus on analyzing the behaviour of the mean and variance
when the number of vehicles increases (N → ∞). Through
simulations, we validate and discuss the results obtained in
Lemma 4.4.

The coloured noise is modelled using a white Gaussian
noise di(k) with mean µdi

= 0 and variance Pdi
= 1, ∀i ∈

1, . . . , N ; and the spectral factor Ωv(z) is given by

Ωv(z) =
0.021z3 + 0.071z2 + 0.689z + 0.28

z2 − 0.755z + 0.28
.

The output of this system, vi(k), is a zero-mean pink
noise. Figure 3 shows the evolution of the mean of the
positions, and the mean and variance of the tracking errors
of a platoon of 20 vehicles which follow a ramp reference
and start from rest with zero initial conditions. Each vehicle
is denoted by a colour code, with the first follower depicted
in dark blue and the last vehicle in dark red. The colour
legend is presented at the top of the figure for reference.
The results are obtained by using a Monte Carlo simulation
with 106 realizations.

For the convergent case (h = 3.8) shown in Figure 3(a),
we observe good reference tracking on the position mean.
The mean of the tracking error converges to zero and also the
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peak values are reduced as the number of vehicles increases.
Also, we observe that the tracking error variance converges
to a value different from zero bounded by a maximum
value. This means that the difference between the stationary
variance of two consecutive vehicles ∆i = Pζi −Pζi−1

tends
to zero as i increases.

On the other hand, on the non-convergent case (h = 2.2)
presented in Figure 3(b), even if the individual variances
converge to stationary values, we could note that as the
number of vehicle increases so does the difference ∆i.
Additionally, in the non-convergent case, it is clear that
collisions can exist given that the mean of the error presents
oscillations with maximum peaks that grow as the number of
vehicles increases. Note that given the double integration, the
mean of the tracking error tends to zero, but the oscillations
are significant on the transient.

VI. CONCLUSION

We explored a platooning problem wherein the commu-
nication channels among vehicles are affected by coloured
additive noises. Due to the stochastic nature of the channels,
we analyzed the convergence behaviour of the mean and
variance of vehicle tracking errors over time and with an in-
creasing number of vehicles. Our findings establish necessary
and sufficient conditions for convergence, revealing that, in
our setup, the noise colour did not impact the convergence
characteristics of error statistics. However, it did influence
the values of tracking error variances. Our results shed light
on the impact of coloured noise on string stabilization.
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