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Abstract— This paper deals with the observer design for
continuous-time nonlinear systems with external disturbances.
It suggests a new observer structure that relies on an output-
based dynamic extension strategy enabling the state observer to
be less affected by measurement noise. The proposed observer
is based on new Linear Matrix Inequality (LMI) condition
guaranteeing the Input-to-State Stability (ISS) property of the
estimation error.

Index Terms— Observer design, LMIs, Lyapunov methods,
Continuous-time nonlinear systems.

I. INTRODUCTION

State estimation is essential to ensuring effective control
of systems in many real-world applications, ensuring their
steady and optimal operation. It provides accurate estimates
when direct measurement of system states is infeasible
due to sensor limitations or cost constraints. To this end,
several estimation schemes in the literature aim to build an
accurate estimate of the system states under the observability
conditions. For linear systems, Luenberger observers have
been widely used in the literature [1].

However, nonlinear systems are the most common in
real-world applications. Hence, estimation strategies methods
able to handle these complexities are required. The first
nonlinear observer design approaches have involved trans-
forming a nonlinear system into an observable canonical
form to design state observers with linear error dynamics
such as in [2]. Beyond the well-established Extended Kalman
Filter (EKF) method [3], another wide range of nonlinear
state observer techniques have emerged applied directly on
the nonlinear system. For instance, the sliding-mode ob-
server, as explored by [4], tackles the design of the estimator
through the algebraic Riccati equation, aiming to minimize
an upper bound on the estimation error. Additionally, Moving
Horizon Estimation (MHE), an optimization-based approach,
is gaining traction for its ability to estimate the state of
nonlinear systems over a finite time horizon, as demonstrated
in [5], [6]. Nevertheless, the pursuit of more robust estima-
tion schemes have lead to the emergence of another class of
observers based on Linear Matrix Inequalities (LMIs) in the
literature. This integration offer guaranteed performance in
terms of convergence rate, disturbance rejection, and noise
attenuation. The LMI technique, combined with Lyapunov
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methods, directly addresses the nonlinearities in the system
dynamics, enabling the design of observers to accurately esti-
mate the state variables even in the presence of nonlinearities
and despite noisy sensor readings and system uncertainties
as shown by researchers in [7], [8], [9]. Researchers have
effectively applied this technique to various real-world non-
linear system applications, showcasing its versatility such as
fault diagnosis of a formation of satellites and tumor growth
prediction in [10], [11].

In this work, we suggest a more generic nonlinear observer
design strategy with an extended dynamic output which
expands the range of systems on which the method can be
applicable. The main contribution of the paper is proposing
a filtered-like output based observer, which allows reducing
the effect of the measurement noise in the state observer.
Furthermore, to guarantee optimal performance, a system
must be Input-to-State (ISS) stable since it ensures global
stability, accounting for an error term based on the input’s
essential supremum norm [12]. To this end, we propose a
novel Linear Matrix Inequality (LMI) condition, ensuring the
Input-to-State Stability (ISS) property of the estimation error.

The paper is organised as follows. Section II, presents
the problem formulation where the new output variable is
introduced. The observer design is detailed in Section III.
Finally, conclusions and future work are outlined in Section
IV.

II. PROBLEM FORMULATION

A. System description and motivation

We begin by presenting basic concepts and preliminaries
that are essential in the proposed methodologies. We consider
nonlinear systems in the form{

ẋ = ψ(x,w)
y = ϕ(x, v)

(1)

where x ∈ Rn is the system state and y ∈ Rp is the
vector of output measurements of the system. w ∈ Rs and
v ∈ Rq are unknown external disturbances. The functions
ψ(·, ·) and ϕ(·, ·) are assumed to be Lipschitz-continuous,
with respect to x, on Ω ⊆ Rn, where Ω is a positively
invariant compact and convex set of the system (1). Then, the
functions ψ(πΩ(·), w) and ϕ(πΩ(·), v) are globally Lipschitz
in Rn, where πΩ(x) is the Hilbert projection of x on the
convex set Ω.

Usually in the literature, we propose the following state
observer:

˙̂x = ψ(x̂, 0) + L
(
y − ϕ(x̂, 0)

)
, (2)
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where x̂ ∈ Rn is the estimate of the system state x and
L ∈ Rn×p is the constant observer gain to be determined
such that the estimation error e = x − x̂ converges ex-
ponentially towards zero. However, with this kind of clas-
sical and natural observer, the observer gain is multiplied
by the output nonlinearity and then by the disturbance in
the measurement. This coupling between the observer gain
and the output measurement can amplify the effect of the
measurement noise. In this paper, the main objective consists
in proposing a different state observer for the system (1).
We will propose a filtered-like output based observer, which
allows both avoiding the output nonlinearity and disturbances
to be explicitly multiplied by the observer gain.

B. Output-based dynamic extension

The initial system is given by the equations (1). We
perform a change of output variable by introducing the
following system:{

η̇(t) = αy(t)
η(0) = η0 (known) (3)

Since η0, α, and y(t) are known, then the state η(t) may be
considered as the new output measurement generated from
the measurement y(t). Therefore, we consider y(t) = η(t)
as the new output, expressed in terms of the extended state
vector ξ as follows:

y(t) = η(t) =

C︷ ︸︸ ︷[
Ip 0

]
ξ, with ξ(t) ≜

[
η(t)
x(t)

]
(4)

where Ip is the identity matrix of dimension p. Let us define
also the vector ω which combines the w and v as follows:

ω(t) ≜

[
w(t)
v(t)

]
.

This allows us to transform the equations of the original
system into a new system with the state variable ξ: ξ̇ = f(ξ,ω) ≜

[
αϕ(x, v)
ψ(x,w)

]
y = η = Cξ

(5)

This transformed system incorporates the relationships
between the output vector y and the system states represented
by ξ. Note that the dynamics of the states are now given by
f(ξ,ω), which is a function of the generalized state ξ and
extended disturbance vector ω ∈ Rnw , where nw = s + q.
The state observer we will consider in this paper corresponds
to the system (5) with linear outputs. Then, the observer
synthesis and the Lyapunov analysis become simpler.

C. Preliminary tools

Before tackling the observer design problem, we need the
following lemma.

Lemma 1 ([13]): Consider a function φ : Rn −→ Rp.
Assume that φ is γφ−Lipschitz on a nonempty subset Ω ⊆
Rn, with γφi the Lipschitz constant of each component φi

of φ. Then, there exist

• a Lipschitz extension φ̌ ≜ φ ◦ πΩ : Rn −→ Rp of φ,
with φ̌(x) = φ(x),∀x ∈ Ω;

• functions φij : Rn × Rn −→ R
• constants γ

φij
and γ̄φij

such that for all X,Y ∈ Rn, X ̸= Y , we have

φ̌(X)− φ̌(Y ) =

p∑
i=1

n∑
j=1

φij(t)Hp,n
ij

(
X − Y

)
(6)

and
−γφij ≤ γ

φij
≤ φij(t) ≤ γ̄φij ≤ γφij (7)

where

φij(t) ≜ φij

(
XYj−1 , XYj

)
, Hp,n

ij ≜ ep(i)e
⊤
n (j).

Proof: The detail of the proof is given in [13]. It is
based on the use of the properties of the Hilbert projection
function, πΩ, on the convex set Ω.

III. OBSERVER DESIGN BY USING OUTPUT-BASED
DYNAMIC EXTENSION

This section is devoted to the observer design method
proposed in this paper. In addition to the new observer struc-
ture and the output-based extended dynamics technique, we
propose novel LMI-based synthesis procedure guaranteeing
the Input-to-State (ISS) property of the estimation error.

A. Formulation of the observer design problem
Instead of the standard state observer form (2), we pro-

pose a new observer structure by exploiting the extended
dynamics (5). The observer is driven by the created output
measurement y(t). This new output y(t) plays the role of
a filter which makes it possible to filter the disturbances or
the measurement noise. The estimation strategy is depicted
in Figure 1.

The state observer form is described by the following
equations: {

˙̂
ξ = f̌(ξ̂, 0) + L

(
y − Cξ̂

)
x̂ =

[
0 In

]
ξ̂

(8)

where

f̌(ξ̂,ω) = f
(
πΩξ

(ξ̂),ω
)
, ∀ω ∈ Ωω ∋ 0, Ωξ ≜ Rp × Ω,

and L ∈ R(n+p)×p is the constant observer gain to be
computed such that the estimation error ϵ(t) ≜ x(t) − x̂(t)
satisfies an exponential ISS bound to be determined later.
To develop a synthesis method based on Lyapunov analysis,
let us define the extended error vector ϵξ(t) ≜ ξ(t) − ξ̂(t),
which satisfies the following dynamics:

ϵ̇ξ =
[
f(ξ,ω)− f̌(ξ̂, 0)

]
− LCϵξ. (9)

We decompose the nonlinear term as follows:

f(ξ,ω)− f̌(ξ̂, 0) =
(
f(ξ,ω)− f̌(ξ̂,ω)

)
+
(
f̌(ξ̂,ω)− f̌(ξ̂, 0)

)
. (10)

1730



Fig. 1: Output-Based Dynamic Extension Technique.

Since ξ̂ ∈ Ωξ, then we have f(ξ,ω) = f̌(ξ,ω). It follows
that from Lemma 1, there exist function fξij : Rnp ×
Rnp −→ R and constants γ

fξ
ij

and γ̄fξ
ij

such that

f(ξ,ω)− f̌(ξ̂,ω) =

np∑
i=1

np∑
j=1

fξij(t)H
np

ij

(
ξ − ξ̂

)
(11)

and
−γfξ

ij
≤ γ

fξ
ij

≤ fξij(t) ≤ γ̄fξ
ij
≤ γfξ

ij
. (12)

Similarly, there exist functions fωij : Rnw × Rnw −→ R
and constants γ

fω
ij

and γ̄fω
ij

such that

f̌(ξ̂,ω)− f̌(ξ̂, 0) =

np∑
i=1

nw∑
j=1

fωij (t)H
np,nw

ij ω(t) (13)

and
−γfω

ij
≤ γ

fω
ij

≤ fωij (t) ≤ γ̄fω
ij
≤ γfω

ij
. (14)

Before tackling the Lyapunov analysis on the estimation
error dynamics (9), we introduce some transformations and
notations to write the dynamics equations in a simpler and
convenient form. Then, we introduce the following notations:

np∑
i=1

np∑
j=1

fξij(t)H
np

ij

(
ξ − ξ̂

)
= Anp ×Πξ(ϵξ) (15)

np∑
i=1

nw∑
j=1

fωij (t)H
np,nw

ij

(
ξ − ξ̂

)
= Anp,nw

×Πω(ω) (16)

where

Aℓ1,ℓ2 ≜ blkdiag
( ℓ2 times︷ ︸︸ ︷
eℓ1,ℓ2 , . . . , eℓ1,ℓ2

)
,

and

eℓ1,ℓ2 ≜

ℓ2 times︷ ︸︸ ︷[
e⊤ℓ1(1) . . . e⊤ℓ1(ℓ2)

]

by setting Aℓ1,ℓ1 = Aℓ1 . In (15) and (16), we have ℓ1 = np
and ℓ2 = nw. The terms Πξ(ϵξ) and Πω(ω) are defined
in (17) and (18), respectively.

Hence, the estimation error equation (9) is rewritten as
follows:

ϵ̇ξ = Anp
Πξ(ϵξ)− LCϵξ +Anp,nw

Πω(ω). (19)

B. New LMI-based ISS bound

This section is devoted to the main theorem, which
provides new sufficient LMI conditions ensuring the ISS
property of the estimation error ϵ(t). Before stating the main
theorem, we introduce the following matrices defined by the
bounds of the functions fξij and fωij :

Λξ
i ≜ blkdiag

(
γ
fξ
ij

Inp
, j = 1, . . . , np

)
Λ̄ξ
i ≜ blkdiag

(
γ̄fξ

ij
Inp

, j = 1, . . . , np

)
Λξ ≜ blkdiag

(
Λfξ

i , i = 1, . . . , np

)
Λ̄ξ ≜ blkdiag

(
Λ̄fξ

i , i = 1, . . . , n
)

Λω
i ≜ blkdiag

(
γ
fω
ij

Inw
, j = 1, . . . , nw

)
Λ̄ω
i ≜ blkdiag

(
γ̄fω

ij
Inw , j = 1, . . . , nw

)
Λω ≜ blkdiag

(
Λω
i , i = 1, . . . , np

)
Λ̄ω ≜ blkdiag

(
Λ̄ω
i , i = 1, . . . , np

)
.

We also introduce the following symmetric and positive
definite matrices Sξ and Sω as follows:

Sξ ≜ blkdiag
(
Sξ
1 , . . . , S

ξ
np

)
,

Sξ
i ≜ blkdiag

(
Sξ
i1, . . . , S

ξ
inp

)
(20)
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Πξ(ϵξ) ≜ blkdiag
(
fξij(t)Inp , j = 1, . . . , np, i = 1, . . . , np

)
Hϵξ

=



f
ξ
11Inp

. . . 0
...

. . .
...

0 . . . fξ1np
Inp

 0 . . .

...
. . .

...

0 . . .

f
ξ
np
Inp

. . . 0
...

. . .
...

0 . . . fξnp
Inp





H︷ ︸︸ ︷

Inp

...
Inp




n
p

tim
es

...Inp

...
Inp




n
p

tim
es


ϵξ (17)

Πω(ω) ≜ blkdiag
(
fωij (t)Inw

, j = 1, . . . , nw, i = 1, . . . , np

)
Jω

=



f
ω
11Inw

. . . 0
...

. . .
...

0 . . . fω1nw
Inw

 0 . . .

...
. . .

...

0 . . .

f
ω
np1Inw

. . . 0
...

. . .
...

0 . . . fωnpnw
Inw





J︷ ︸︸ ︷

Inw

...
Inw




n
w

tim
es

...Inw

...
Inw




n
w

tim
es


ω (18)

Sω ≜ blkdiag
(
Sω
1 , . . . , S

ω
np

)
,

Sω
i ≜ blkdiag

(
Sω
i1, . . . , S

ω
inw

)
. (21)

where Sξ
ij and Sω

ij are symmetric and positive definite
matrices of appropriate dimensions.

The main result of this paper is formulated in the following
theorem.

Theorem 1: Assume that there exist a symmetric positive
definite matrix P , two symmetric positive definite matrices
Sξ and Sω under the form (20)-(21), and a matrix X of
adequate dimensions such that the LMI (23) is satisfied. Then
the estimation error ϵ(t) with the observer gain L = P−1X
satisfies the following exponential ISS bound:

∥ϵ(t)∥ ≤ max

(√
4λmax(P)

λmin(P)
∥ϵ0∥e−

β
2 t,√

4λ

βλmin(P)
sup

s∈[0, t]

∥ω(s)∥

)
. (22)

Proof: Let ϑ(ϵξ) = ϵ⊤ξ Pϵξ be the Lyapunov function
candidate, where P = P⊤ > 0. We will show that under the
condition (23), we have

θ(ϵξ,ω) ≜ ϑ̇(ϵξ) + βϑ(ϵξ)− λω⊤ω < 0. (24)

By developing the derivative of ϑ(ϵξ) along the trajectories

of (19), and by changing the variable X = PL, we obtain

θ(ϵξ,ω) =


ϵξ

Πξ(ϵξ)
Πω(ω)

ω


⊤

Ω


ϵξ

Πξ(ϵξ)
Πω(ω)

ω

 (25)

where

Ω ≜


−X − X⊤ + βP PAnp

PAnp,nw
0

A⊤
np
P 0 0 0

A⊤
np,nw

P 0 0 0

0 0 0 −λInw

 .
(26)

On other hand, from (12) and (14), we have

ϑξ ≜
(
Πξ(ϵξ)− Λ̄ξHϵξ

)⊤
Sξ

(
Πξ(ϵξ)− ΛξHϵξ

)
+

(
Πξ(ϵξ)− ΛξHϵξ

)⊤
Sξ

(
Πξ(ϵξ)− Λ̄ξHϵξ

)
≤ 0 (27)

ϑω ≜
(
Πω(ω)− Λ̄ωJω

)⊤
Sω

(
Πω(ω)− ΛωJω

)
+

(
Πω(ω)− ΛωJω

)⊤
Sω

(
Πω(ω)− Λ̄ωJω

)
≤ 0 (28)

It is obvious that θ(ϵξ,ω) ≤ θ(ϵξ,ω) − (ϑξ + ϑω). After
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Θ ≜



−H⊤Aξ

(
Sξ

)
H+ C(X ) + βP PAnp

+H⊤
(
Λ̄ξ + Λξ

)⊤
Sξ PAnp,nw

0

(⋆) −2Sξ 0 0

(⋆) (⋆) −2Sω Sω

(
Λ̄ω + Λω

)
J

(⋆) (⋆) (⋆) −λInw
− J⊤Aω

(
Sω

)
J


< 0

(23)

C(X ) ≜ −XC − C⊤X⊤, Aξ

(
Sξ

)
≜ Λ⊤

ξ SξΛ̄ξ + Λ̄⊤
ξ SξΛξ, Aω

(
Sω

)
≜ Λ⊤

ωSωΛ̄ω + Λ̄⊤
ωSωΛω

expanding the terms ϑξ and ϑω , we obtain

θ(ϵξ,ω)− (ϑξ + ϑω) =


ϵξ

Πξ(ϵξ)
Πω(ω)

ω


⊤

Θ


ϵξ

Πξ(ϵξ)
Πω(ω)

ω

 (29)

where Θ is defined in (23). This means that under the
condition (23), we have θ(ϵξ,ω) < 0, which implies that

ϑ̇(ϵξ) < −βϑ(ϵξ) + λ∥ω(t)∥2. (30)

Hence, from the well-known comparison theorem, we deduce
the following inequality:

ϑ(ϵξ(t)) ≤ ϑ(ϵξ(0))e
−βt + λe−βt

∫ t

0

eβs∥ω(s)∥2ds.

Since

λmin(P)∥ϵξ∥2 ≤ ϑ(ϵξ(t)) ≤ λmax(P)∥ϵξ∥2

then by developing the integral term, we get

∥ϵξ(t)∥2 ≤ λmax(P)

λmin(P)
∥ϵξ(0)∥2e−βt

+
λ

βλmin(P)
sup

s∈[0, t]

∥ω(s)∥2. (31)

By construction of η(t) in (3), η0 is known, then we can take
ξ̂1(0) = η0, which means that ∥ϵξ(0)∥ = ∥ϵ(0)∥. Finally,
since ∥ϵ(t)∥ ≤ ∥ϵξ(t)∥,∀t ≥ 0, then the bound (22) is
inferred. This ends the proof of Theorem 1.

IV. CONCLUSION AND FUTURE WORK

In this paper, we established an estimation approach for
continuous-time nonlinear systems affected with state and
measurement noises. We proved that the proposed observer
guarantees the Input-to-State Stability (ISS) property through
a novel LMI condition. Thus, reducing the effect of the
measurement noise in the state observer is made possible,
enhancing the accuracy and reliability of the estimated states.

Future work will be dedicated to exploring the practical
applicability of this state estimation method across various
real-world scenarios of autonomous systems, mainly in the
domain of precision agriculture. In this frame, a deeper ver-
sion of this work will address an application to a monitoring

drone operating in an Adaptive Vertical Farm (AVF), a new
vertical farming concept presented in [14], [15], to showcase
the efficacy and versatility of our proposed methodology
through detailed comparison with existing methods in the
literature.
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