
Solving Mixed-Integer Optimization Problems in Microsecond Scale:
A Scalable Real-Time Embedded Hardware Architecture

Nart Gashi1, Victor Truong Thinh Lam1 and Georgios Papafotiou1

Abstract— For the application of modern control and op-
timization techniques to power electronics applications, per-
forming intensive computations on a microsecond-scale is of
paramount importance. The optimization algorithms involved
are in most of the cases NP-hard, involving integer variables and
non-linear objectives; their real-time implementation is done on
embedded control platforms in the form of field-programmable
gate arrays (FPGAs). These enable fast computation but also
feature limited hardware resources that constrain the size of
the problems that can be tackled. In this paper, we present a
scalable digital hardware (HW) architecture implemented on
an FPGA for the real-time implementation of a branch-and-
bound algorithm for mixed-integer optimization. The need for
such a solver stems from the concept of converter modulation,
where an optimal voltage path of a certain length has to be
reconstructed by the appropriate choice of a combination of
integer variables. We showcase how the geometrical properties
of the optimization problem can be exploited to enable a
solution in microseconds, and how the FPGA design can be
modularized to ensure that the HW resources are adequate even
when considering longer voltage reconstruction paths which
translate to an exponential increase in problem complexity.

I. INTRODUCTION

In the last decades, computation has revolutionized power
electronics (PE) applications, where circuits employing net-
works of semiconductor power switches are converting elec-
tric energy from one form to another (e.g. dc to ac). Some
30 years ago, most of the control loops in PE applications
were analog circuits. When more advanced control algo-
rithms were reported, they were deployed on rudimentary
digital control platforms due to hardware cost considerations
[1]. In stark contrast with that time, field-programmable
gate arrays (FPGAs) are nowadays commonly used in PE
converters [2], [3]. This has allowed for the investigation
and eventual application of more computationally expensive
optimization-based control techniques, such as model pre-
dictive control (MPC) in power electronics systems [4].

The challenges in this field, however, remain formidable.
Switching frequencies of the power switches in PE converters
vary depending on the power level of the application; they
have typically ranged from a few hundred of Hz for high-
power (MW) applications utilizing IGCTs to a few 10s of
kHz for medium power applications with IGBTs and a few
100s of kHz for low power applications employing power
MOSFETs. The advent of wide band-gap power switches
is pushing the numbers for medium power applications to

1Department of Electrical Engineering, Electromechanics and Power
Electronics Group, Eindhoven University of Technology, Eindhoven,
The Netherlands. E-mails: n.gashi@student.tue.nl. v.t.t.lam@
tue.nl and g.papafotiou@tue.nl

Outer

control loop
oaSVM

=

~

IM

- +Controller and modulator

Plant

Fig. 1: The electric drive setup considered, consisting of outer control loops,
oaSVM, and a three-level NPC inverter driving an induction machine (IM).

the 100s of kHz and for low power into the MHz range.
For optimization-based control techniques, this is limiting
the time available for computing the optimal solution [5].

Motivated by this challenge, we present in this paper a
scalable digital hardware architecture that can be imple-
mented on an FPGA, dedicated to solving mixed-integer
optimization problems, such as those encountered in PE ap-
plications, in real-time using branch-and-bound. The specific
problem at hand is a mixed-integer non-linear optimization
problem (MINLP) that originates from the example of an
electric drive setup comprising a three-level neutral-point-
clamped (NPC) inverter driving an induction machine (IM),
see Fig. 1. In such a system, an outer control loop calculates
the voltages (as continuous, real-valued variables) that the
converter needs to apply to the motor to reach the desired
performance. Subsequently, a modulator reconstructs these
as time-average of the available discrete-valued voltages of
the converter by choosing the appropriate switch on- and
off-positions and their duration [6].

In previous work, we have investigated how posing the
modulation problem as an online optimization process can
bring performance benefits with respect to the state-of-the-art
scheme. This new modulation scheme is called online adap-
tive space vector modulation (oaSVM) [7], and it is based on
the search in real-time for the optimal switch positions which
can reconstruct the voltages required by the converter’s outer
control loop, while also improving the trade-off between the
switching losses in the converter semiconductors and current
total harmonic distortion (THD) at the output. Furthermore,
with oaSVM one can also compute the optimal switching
sequence over an optimization window of L modulation
cycles, when provided with a voltage path that needs to be
followed into the future.

A critical question for this new scheme concerns the
feasibility of its real-time implementation. The complexity

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3305

of the underlying optimization problem is of the order of
O(273L), and the typical length of a modulation cycle for
such a PE application, within which the optimal solution
must be found, would be few 10s (for medium power)
or mostly 100s (for high power) of microseconds. We are
threfore aiming at a real-time implementation that allows
for (i) solving the oaSVM problem in the permissible time
intervals, and (ii) increasing the length of the optimization
window without excessively increasing the FPGA resources
required for the solution of the more complex problem that
arises.

A number of past works have already reported on the use
of FPGAs for the development of computationally intensive,
optimization-based control techniques in PE applications.
In [8], the authors are using an explicit MPC approach to
the design of the outer control loop of a dc-dc converter
and subsequently implement the evaluation of the control
law in real-time on a FPGA. More common in the literature
are direct MPC approaches, where the outer control loop
selects the switch positions directly and the modulator is then
removed. The authors in [9] are using an exhaustive search
approach with a branch-and-bound algorithm; however, the
prediction horizon is fixed in advance through simulations,
and the presented FPGA implementation is not scalable. The
use of sphere decoding algorithms has also gained signif-
icant attention, see [10], [11]. In these cases, the problem
considered is based on a quadratic objective, rather than a
non-linear one as in oaSVM; furthermore, the dynamics and
need for control of the converter’s neutral point potential
are neglected. Finally, in [12], the authors are employing,
and ultimately implement on an FPGA, a neural network
that replaces the enumerative optimization search that direct
MPC requires. To the best of our knowledge, this is the first
time it is attempted to formulate the modulation problem of
the three-level NPC converter as a non-linear mixed-integer
optimization problem, including minimization of the semi-
conductor losses and control of the neutral point, and then
develop a dedicated and scalable digital control hardware
architecture to facilitate its real time implementation in the
microsecond scale.

The rest of the paper is structured as follows. Section II
introduces the application background. Section III explores
the digital hardware architecture proposal, and Section IV

XC

XC

vn
vnin

+
vdc

2

−vdc

2

Load
va

vb
vc

iabc

vdc,u

+

−

vdc,l

+

−

Fig. 2: The considered three-level neutral-point-clamped inverter.

presents the integration of oaSVM into it. Finally, Section V
presents performance results, and Section VI concludes the
paper.

II. PRELIMINARIES

A. Three-level NPC inverter

The topology of the three-level NPC inverter is shown in
Fig. 2 [13, Fig. 2.18, p. 55], which consists of IGCTs and
diodes. Here, the dc-link voltages are vdc,u = vdc

2 − vn and
vdc,l =

vdc
2 + vn, where vn denotes the neutral-point voltage.

In each phase x ∈ {a, b, c}, the on- and off -states of the
IGCTs can be modeled as a switch position that can take
one of the three values ux ∈ {−1, 0, 1}. In total, 33 = 27

combinations of uabc =
[
ua ub uc

]T
are possible and

each can be mapped into the orthogonal αβ-reference frame
as a so-called voltage vector v using the following relation
[13, eq. 2.13, 2.77, p. 35, 56]

v =
vdc

2

2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
︸ ︷︷ ︸

P

uabc. (1)

B. oaSVM algorithm

The modulation method oaSVM is based on space vector
modulation (SVM). In each p-th modulation cycle Ts, SVM
chooses the three (out of the available 27) voltage vectors
vp,1, vp,2, vp,3 which form the closest triangle that contains
the reference voltage v∗p in the αβ-reference frame, see Fig.
3a. Then, v∗p is reconstructed by applying each vector for
tp,1, tp,2, tp,3 ≥ 0 seconds, respectively, i.e.

tp,1vp,1 + tp,2vp,2 + tp,3vp,3 = Tsv
∗
p

tp,1 + tp,2 + tp,3 = Ts.

By defining t̄p,q =
tp,q
Ts

for q = 1, 2, 3, one can see that

t̄p,1vp,1 + t̄p,2vp,2 + t̄p,3vp,3 = v∗p

t̄p,1 + t̄p,2 + t̄p,3 = 1.
(2)

From (2) and t̄p,q ≥ 0, the reference voltage v∗p is a convex
combination of the three voltage vectors vp,1, vp,2, vp,3.
Therefore, oaSVM considers any triangle formed by the three
voltage vectors that contains v∗p , see Fig. 3b, and chooses the
one that gives the best loss-THD trade-off.

O

v∗
v1 v2

v3

v∗

v3

v1

v2v∗

v3

v2

v1
vα

vβ

(a) SVM: the closest triangle.

O

v∗

v1

v2

v3

v∗

v3

v1

v2v∗

v3

v2

v1
vα

vβ

(b) oaSVM: any triangle.

Fig. 3: Illustrating the concept of how oaSVM has the freedom to choose any
triangle that satisfies hardware imposed constraints, while SVM is limited
to choosing the nearest triangle that contains the requested voltages.

3306

As mentioned before, L is the number of upcoming
modulation cycles we consider over which the reference
voltage path is assumed to be known and needs to be recon-
structed. The voltage and current paths refer to sequences of
reference voltages, denoted as V ∗ =

[
v∗1 · · · v∗L

]
, and

load currents, denoted as I =
[
i1 · · · iL

]
, respectively.

These sequences are defined in the αβ-reference frame and
are generated by the outer control loop.

By minimizing a cost function, oaSVM tries to improve
the trade-off of the switching losses and current THD, while
also balancing the neutral point voltage in the three-level
NPC inverter [14]. For each p-th modulation cycle, i.e.
triangle, the following cost function is used

fp = wvn,pv
2
n,p + wloss,p

 3∑
q=1

∑
r=a,b,c

Ēp,q,r

2

+

wTHD,p

(
3∑

q=1

(
vp,q,α − v∗p,α

)2
+
(
vp,q,β − v∗p,β

)2)
,

Here, Ēp,q,r denotes the switching energy losses using [13,
tab. 2.5, p. 61], vn,p denotes the neutral-point voltage after
applying the three voltage vectors and wvn,p, wloss,p, wTHD,p

denote the weights which can be tuned.
The decision variable U is given as

U =

 u1

...
uL

 , up =

 up,1

up,2

up,3

 , up,q =

 up,q,a

up,q,b

up,q,c

 ,

where up with p = 1, ..., L denotes the set of three switch
positions up,q , which correspond to three voltage vectors vp,q
using (1) with q = 1, 2, 3. Note that, only u1 is sent to the
inverter every Ts. Then, oaSVM finds the optimal solution
Uopt such that

min f =

L∑
p=1

fp s.t. (2) and t̄p,1, t̄p,2, t̄p,3 ≥ 0.

C. Solving MINLP using branch-and-bound (BnB) method

The problem introduced above is a Mixed-Integer Non-
linear Program, owing to the presence of integer decision
variables and the nonlinear terms included in the cost
function. Finding solutions to MINLP problems typically
requires considerably more computational effort, compared
to continuous optimization problems [15], and branch-and-
bound (BnB) is commonly used for a more efficient search
of the solution space [16, ch. 1, p. 6]. .

The BnB method constructs a search tree over all the
possible integer combinations, and starts the search for the
optimal solution from the top root node. The algorithm
searches until the last nodes have been reached (which are
known as leaf nodes). BnB will start searching nodes on a
branch, and when a node satisfies the constraints, its cost
is computed, and it will then be evaluated by a bounding
function whether to branch into the node (unless it is a

Root

node

Node 1

cost = 23

Node 2

cost = #

Node 3

cost = 67

Node 3.1

cost = 43
Node 1.1

cost = 15

Node 1.2

cost = 67

New best bound

 23 + 15 = 38
Leaf nodes

Prune branch

67 > 38

(worse

then best found)

Node 3.2

cost = 25

Constraints

not satisfied

Branch

further

Fig. 4: Branch-and-bound method visualized. The search starts from node
1, it then branches further and finds a best-known bound with a total cost
of 38. It then backtracks and proceeds to node 2. However, node 2 does not
satisfy the constraints, so it gets pruned without computing its cost. Finally,
node 3 satisfies the constraints, but its cost exceeds the bound found, and
it gets pruned as it cannot contain an optimal solution.

leaf node), into a new set of nodes that comes from the
node before it. In the case that a node does not satisfy the
constraints, then the branches of that node are pruned, and
do not need to be searched further since they cannot contain
the optimal solution. BnB also keeps track of the best-found
selection of nodes so far, and uses it as a bounding function.
This means the selection of nodes that have a cost higher
than the best-found selection are directly pruned, and not
searched further as they are guaranteed to not contain the
optimal solution [16, ch. 1, p. 6]. In this way, the search
for an optimal solution can be done more efficiently without
having to explore all the nodes on a tree. This concept is
illustrated in Fig. 4

III. PROPOSED HARDWARE ARCHITECTURE

The proposed hardware architecture comprises three main
parts: the process control unit (PCU), the node computation
unit (NCU) and the branch-and-bound unit (BnB). We ab-
stracted the architecture in such a way that the NCU does
not have information about the tree depth or the search but
rather only evaluates nodes, for which the relevant data is
provided from the PCU. Nevertheless, the BnB unit requires
information on tree depth in order to compute new bounds.
The reason for this abstract structure is to allow for easy
scalability of the tree depth and enable the possibility of
searching multiple nodes in parallel to speed up the search
(which is beyond the scope of this paper).

A. The process control unit (PCU)

The process control unit manages the entire search pro-
cess, controls tree exploration, and coordinates the operation
of other units. To enable tree searching, as shown in Fig.
4, the process control unit utilizes two finite-state machines
(FSMs): one to track tree depth exploration, see Fig. 5a, and
another to coordinate unit operation for searching nodes at
a specific tree depth, as shown in Fig. 5b.

3307

Idle state Initializing

state

Tree search

depth

1

Tree search

depth

2

Tree search

depth

D

Tree

search

completed

.....

Start

NCU

Wait for

BnB

unit

Start search Initializing

complete Branch Branch

BacktrackBacktrack

Tree search completedTree search completed

Tree search completed

(a)

(b)

Save current

depth

node index

Idle state

Load

node

from node

index

Increament

node index

by 1

Start search
Relevant

data
loaded

NCU completed
computations

BranchPrune

Set node

index to first

node on next

depth

Fig. 5: Finite state machines of the process control unit: (a) the tree depth
exploration FSM. FSM (b) is used to perform the searching at a tree depth,
hence iterating through the nodes at a tree depth.

Initially, the FSMs start with initializing states. Some
problems may require some procedures before the tree
searching starts, such as processing the input data (which
is the case with oaSVM as will be seen later). Nevertheless,
the initialization states may be skipped for the case where
no initialization is needed, and it can proceed directly to tree
searching. After initialization is complete (or skipped) and
the system is ready for tree searching, the FSM transitions
to the tree search depth states (on the tree depth exploration
FSM, see Fig 5a). These states keep track of which tree
depth the current search is happening. Moreover, each node
in the tree-searching process is assigned an index number, so
that there is information as to which node is currently being
evaluated. Before evaluating a node, first the relevant data
for the node is loaded (or generated). After loading is done,
the NCU starts computing the cost of the node and checks
if constraints are satisfied. Once the NCU has finished, it
will signal to the PCU, and then the PCU activates the BnB
unit to check if the node should be pruned or branched
further. If it results in branching further, then the tree-depth
exploration FSM transitions to the next depth level, otherwise
no branching happens, and the tree-depth exploration FSM
stays in the same state. Moreover, when a branch is finished
and all nodes have been searched, the tree-depth exploration
FSM jumps one state down, and the search proceeds on that
tree depth level from where it was left of. When the whole
tree has been evaluated, the PCU will signal to the BnB to
output the optimal solution

By abstracting the search process in this manner, expand-
ing the tree depth only requires adding more states and other
recurring elements to the PCU and the BnB unit associated
with the increase in tree depth, such as more registers,
without modifying the NCU. Essentially, the NCU operates
solely on the current node iteration, unaware of the tree depth
or process state, while the PCU manages the tree search.
An example of recurring elements per each tree depth may

be registers which store the value of the node before it
transitions to the next depth.

The choice to add more states to the FSM and other
recurring elements in order to increase the maximum tree
search depth, instead of having one register that counts the
tree depth and using memory such as BRAM or RAM
for recurring elements, is made to minimize latency. A
recurring element such as a basic register, can be accessed
instantaneously. While, if these recurring elements would be
dynamically allocated on BRAM, accessing and writing the
data may take a minimum of two clock cycles or more,
which is undesired due to increasing the latency of basic
data accesses.

B. The branch-and-bound (BnB) unit

The BnB unit’s main responsibility is to signal the PCU
when to branch further and when to prune the branch. It
performs so by utilizing registers that store the best cost
found, and the node selection that has given the best cost. The
BnB unit takes as input the current tree depth (which comes
from the PCU), the evaluated node’s cost, and whether the
node satisfies the optimization constraints (which come from
the NCU). When the tree searching starts, the BnB initially
has a high cost (if the objective is to minimize) or a zero cost
(if the objective is to maximize). During the tree exploration,
when a selection of nodes has been done such that it has
reached the leaf node, its total cost is first compared to the
best cost found. In case it is better than the best cost, then
the best cost is updated with this selection, hence this refers
to a new bound being computed in the branch-and-bound
method. Moreover, if a selection of nodes has a worse cost
than the best found, even though the leaf node has not been
reached, the BnB unit signals for the branch to be pruned to
the PCU.

C. Node computation unit (NCU)

The node computation unit has two main tasks: (i) check-
ing if the current node satisfies optimization constraints
and (ii) calculating its cost. The unit’s structure may vary
depending on the optimization problem’s cost function. It
takes node-specific input data and provides the node’s cost
and constraint satisfaction as output.

IV. INTEGRATING OASVM INTO THE PROPOSED HW
ARCHITECTURE

A. Triangles as nodes

In order to implement oaSVM in hardware, a table of
all possible voltage space vectors that form a triangle is
generated through MATLAB. Since, on a three-level inverter
there are 27 possible voltage space vectors, the total number
of triangles is 273 = 19683. Nevertheless, we only consider
the triangles that satisfy the switching constraints, which
are given in [13, ch. 2.4.1.6, p. 59-60]. Moreover, we also
remove the triangles that have an area close to 0, as they are
degenerate triangles and cannot contain any point inside [17,
ch. 5.2, p. 175].

3308

After applying these constraints, the total list drops down
to just 612 triangles. Each of these triangles is a node in a
tree and has a specific index, which corresponds to a memory
address inside the BRAM from 0 to 611. Hence, now the total
number of nodes to be searched is 612L instead of 19683L.

Furthermore, we can exploit the symmetry of the space
vector diagram. A fine grid of reference voltages (v∗s) is
generated for each sector. The presence of each grid point
within triangles is examined, revealing that 161 triangles
contain at least one point in this sector. Subsequently, the 612
triangles are grouped into sets of 161 triangles, as depicted in
Fig. 6, and stored in block random access memory (BRAM).
In this way, only the triangles on the sector where the
requested voltage v∗s is located are iterated through, reducing
even further the search space from 612 triangles to just
161 triangles. To enable this, before starting the tree search,
the sector in which the requested voltage lies has to be
decoded first (which is an example of initializing states used
in oaSVM). The triangles in the BRAM can be rearranged
to provide a warm start to the search, without any additional
hardware, which can speed-up the search. In each set of
the 161 triangles, by firstly placing equilateral triangles in
the beginning, and then the rest of the triangles, essentially
the search starts with computing traditional SVM (hence the
equilateral triangles), which can be assumed as a warm-start,
and then proceeds to triangles which traditional SVM does
not consider, but oaSVM does.

B. oaSVM integration

The specifics of the oaSVM integration into the proposed
architecture is illustrated in Fig. 7. As it can be observed,
it contains the triangle LUT, which is the triangle table
discussed in the previous subsection, stored in BRAM. The
PCU provides the triangle index input (hence the BRAM
address memory) to load the data for the triangles. Inside the
NCU, there is the constraints checker module, which makes
sure that the constraints are satisfied, and the rest of the
three modules compute the switching loss cost, THD cost and
neutral-point voltage balance cost. These sub-units operate in
parallel to speed up the computation, and their results are all
added together as the total cost for that node. It is important
to note, that the accumulation of the cost, between tree depth
0 and tree depth L is chosen to be done on the BnB unit,
such that NCU stays independent of tree depth information.

I
II

III

IV
V

VI
O

vα

vβ
161 triangles

161 triangles

161 triangles

161 triangles

161 triangles

161 triangles

LUT in BRAM

Fig. 6: Organization of the triangles which contain at least a point in a
sector.

Triangle

LUT

(BRAM)

Process

control

unit

Node computation unit

Branch

and

bound

unit

Constraints

checker

Switching loss

cost

computation

THD cost

computation

Neutral-point voltage

balance controller

+

constr.

satisfied

Total

node

cost

Triangle

data

x

x

x

wn

wloss

wthd

Voltage

path

Current

loads

Start NCU

NCU finished

Start BnB

BnB result

Optimal

solution

output

oaSVM

Outer

control

loop

input

Node index

Fig. 7: Illustration of oaSVM implemented in the proposed architecture.

Finally, the BnB module will have stored the best selection
of nodes, i.e. triangles, which give the optimal switching
positions at the output.

It should be noted that the proposed implementation
allows for the online adjustment of the parameters of the
optimization problem, such as the cost function weights or
the length of the opimization window, online during run time.
This is an important feature as it renders the applicability
of the method more general, providing flexibility to tune
the behavior of the new modulator not only at the time of
application deployment but also during run-time.

V. PERFORMANCE RESULTS

The proposed architecture, with oaSVM integrated into
it, is implemented on an AMD Xilinx ZYNQ 7020
(xc7z020clg400-1) system-on-a-chip (SoC), which consists
of an FPGA part, but also has more features integrated to it,
such as two ARM-A9 Core CPUs [18].

The performance evaluation of the proposed scheme is
done in terms of computational performance, as well as
performance of the power electronics system’s physical vari-
ables in a closed-loop simulation. For this, we employ HIL
(Hardware-in-the-loop) simulations with MATLAB using the
electric drive setup presented in the introduction, in order to
validate the design and measure its performance on an FPGA.
The oaSVM on the FPGA receives as input the required
data from MATLAB, such as the requested voltage path and
current loads, for L modulation cycles. It then computes
and outputs the optimal switching positions for the next
modulation cycle, as well as the number of clock cycles that
were required for finding the solution. The rest of the electric
drive setup is modeled in MATLAB.

In order to achieve the communication between MATLAB
and the FPGA, we make use of the universal serial bus (USB)
protocol and the ARM-CORTEX A9 CPU inside the ZYNQ
7000 SoC. The CPU acts as an intermediate step between
taking the input data coming from MATLAB via the serial
bus, parsing it to the necessary format, and delivering it to
the FPGA via the AXI4 interface [19]. Then, the CPU starts
the solver in the FPGA and waits until the solver is finished.
Once it is finished, the CPU takes the optimal switching

3309

TABLE I: The minimum, maximum, average amount of clock cycles
Nclk and the problem size with respect to optimization window. Used
abbreviations are: min.: minimum; max.: maximum; avg.: average.

Optimization
window

Problem
size

(total
nodes)

Min. Nclk Avg. Nclk Max. Nclk

1 161 1128 1170 1226
2 25921 2340 9032 32318
3 4173281 1172 106600 2396200
4 671898241 1180 3656200 43776000

1 2 3 4

Optimization window L

103

104

105

106

107

108

109

1010

C
lo

c
k
 c

y
c
le

s
 N

c
lk

 200 us modulation cycle @ 50 MHz

 200 us modulation cycle @ 300 MHz

Theore
tic

al u
pper b

ound

Averge clock cycles

Minimum clock cycles

Maximum clock cycles

Fig. 8: Computational performance of the oaSVM implementation: Number
of clock cycles needed vs optimization window.

positions and the number of clock cycles it took to solve
and delivers this data to MATLAB for the next modulation
cycle. This repeats for every sample of the simulation.

A. Computational performance

As a metric for measuring the computational performance,
we use the number of clock cycles needed for the algorithm
to provide the solution. In Table I, one can see the problem
size in terms of number of search nodes, and the (minimum,
maximum and average) clock cycles that were required to
reach a solution, as observed in the simulations, with respect
to the length of the optimization window L. These are also
graphically depicted in Fig. 8, where, for completeness, the
theoretical upper bound of clock cycles that relates to the full
enumeration of all permissible triangles is also presented.
Moreover, in order to put these numbers into the context
of the application, we show the number of clock cycles
available within a typical modulation cycle interval of 200
µs, corresponding to two different FPGA speeds: one running
at a clock speed of 50 MHz (standard commercial speed
grade) and the other at 300 Mhz (speed limit of existing
commercial FPGAs).

As can be observed, the proposed oaSVM implementation
is feasible for the case of L = 1. This is already a
much more versatile, powerful but also complex modulation
concept compared to standard SVM. For the case of L = 2,
the solution is within the range of the capabilities of the

Resource
name

(FPGA)
L = 1 L = 2 L = 3 L = 4

Util.
Nm = 4

LUT 3186 4010 4382 4636 8.71%
LUTRAM 62 62 62 62 0.36%
FF 2316 3146 4558 5240 4.92%
DSP 64 64 64 64 29.0%
BRAM 15.5 15.5 15.5 15.5 11.07%

TABLE II: FPGA Implementation resources as L increases. The last
column contains the resource utilization (%) (for L = 4) based on
available resources inside ZYNQ-7020 (xc7z020clg400-1) FPGA fabric.
Used abbreviations are: util.: utilization.

Fig. 9: Switching position ux generated from the FPGA and normalized
stator currents is,x plotted per phase x, for L = 2, Tl = 1 pu, ωr = 1 pu
and Ts = 300 µs.

existing computational HW - although not for the very
conservative theoretical upper bound. For L = 3, algorithmic
improvements in the order of magnitude are required for
feasibility. These observations motivate the future directions
of work. Firstly, the development of solution strategies that
can mathematically guarantee a feasible, even if sub-optimal,
solution within a given time that is shorter than the modula-
tion cycle. This would enable the deployment of the method
on real power electronics HW, where a good enough solution
within the modulation cycle needs to be guaranteed to avoid
destroying the semiconductors. Secondly, the development
of suitable parallelization strategies that would allow for a
more than 10-fold performance improvement to render the
real-time solution for L = 3 feasible – without, however,
exhausting the resources of the FPGA and annulling the
scalability properties of the design.

The FPGA resource usage for increasing L can be found in
table II. Due to the way that the proposed architecture is built,
increasing L only requires extending the tree-depth explo-
ration FSM, which requires adding LUTs and FFs. Moreover,
it avoids the addition of DSP elements which are usually very
limited on the FPGA. This demonstrates the scalability of the
proposed architecture for various optimization window sizes
(L) without imposing resource restrictions.

B. Closed-loop drive performance

Fig. 9 shows the switching positions and the currents per
phase, of a HIL simulation, consistent with the results in
[7]. Furthermore, Fig. 10 shows the closed loop performance

3310

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

oa
oa

Fig. 10: Trade-off between current THD and normalized switching losses
Psw , between SVM and oaSVM running in oaSVM and FPGA, with Nm =
N = 1. Simulated with Ts from 600µs to 100µs with steps of 50 µs
for Tl = 1 pu and ωr = 1 pu. Abbreviations are: norm.: normalized;
sw.:switching.

of the proposed oaSVM implementation, in terms of the
observed trade-off between switching losses and harmonic
content of the current – the standard way to evaluate the per-
formance of a modulator in power electronics applications.
oaSVM on the FPGA behaves similarly to the ideal version
of MATLAB and better than SVM. Nevertheless, there is a
discrepancy between the implementation on MATLAB and
the real-time version due to the following reasons: (i) The
FPGA version uses a different method for balancing the
neutral point of the inverter, which is computationally faster
but alters the switching behavior, and (ii) the FPGA limited
numerical precision can have an impact on the choice of
switch positions. Nevertheless, the impact is not significant.

VI. CONCLUSIONS

In this paper, a scalable FPGA-based architecture for
real-time implementation of a branch-and-bound algorithm
for solving mixed-integer optimization problems has been
presented. The need for such a solver is motivated by
new modulation method for power electronics applications,
oaSVM, which is based on the online solution of a complex
mixed-integer optimization problem in the range of tens or
hundreds of microseconds. We have shown how oaSVM can
be integrated into this FPGA-based architecture, which can
serve as an example for future use cases. Most important,
the method is general and can be extended or adjusted for
application to other problems that require fast mixed-integer
optimization.

For validation and performance evaluation, hardware-in-
the-loop simulations between FPGA and MATALB have
shown that the proposed architecture can successfully run
oaSVM for optimization windows of 1-2 in the desired time
frame, while maintaining the flexibility of adjusting a number
of parameters of the optimization problem, such as the cost
function weights or the length of the opimization window,
online during run time. Equally important, the abstraction
of the proposed architecture lends itself to a number of
improvements and extensions, such as the parallelization of

the tree search to further speed up the computation time.
Such extensions are subject of ongoing and future work
and are expected to enable the full exploitation of the
method’s flexibility for significant application performance
improvements.

REFERENCES

[1] T. Gupta, R. Boudreaux, R. M. Nelms, and J. Y. Hung, “Implementa-
tion of a fuzzy controller for dc-dc converters using an inexpensive 8-b
microcontroller,” IEEE transactions on Industrial Electronics, vol. 44,
no. 5, pp. 661–669, 1997.

[2] S. K. Sahoo, G. T. R. Das, and V. Subrahmanyam, “Contributions of
fpgas to industrial drives: A review,” 2007.

[3] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan,
and M. W. Naouar, “Fpgas in industrial control applications,” IEEE
Transactions on Industrial informatics, vol. 7, no. 2, pp. 224–243,
2011.

[4] G. A. Papafotiou, G. D. Demetriades, and V. G. Agelidis, “Technology
readiness assessment of model predictive control in medium-and high-
voltage power electronics,” IEEE Transactions on Industrial Electron-
ics, vol. 63, no. 9, pp. 5807–5815, 2016.

[5] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. No-
rambuena, “Model predictive control for power converters and drives:
Advances and trends,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 2, pp. 935–947, 2016.

[6] D. G. Holmes and T. A. Lipo, “Pulse Width Modulation for Power
Converters: Principles and Practice,” Wiley-IEEE Press, 2003.

[7] V. T. T. Lam and G. Papafotiou, “Online adaptive space vector
modulation,” in 12th International Conference on Power Electronics,
Machines and Drives (PEMD 2023), vol. 2023. IET, 2023, pp. 426–
433.

[8] M. Jeong, S. Fuchs, and J. Biela, “When fpgas meet regionless
explicit mpc: An implementation of long-horizon linear mpc for power
electronic systems,” in IECON 2020 The 46th Annual Conference of
the IEEE Industrial Electronics Society, 2020, pp. 3085–3092.

[9] S. Baltruweit, E. Liegmann, P. Karamanakos, and R. Kennel, “Fpga-
implementation friendly long-horizon finite control set model predic-
tive control for high-power electronic systems,” in 2021 IEEE 12th
Energy Conversion Congress Exposition - Asia (ECCE-Asia), 2021,
pp. 1823–1828.

[10] T. Dorfling, H. du Toit Mouton, T. Geyer, and P. Karamanakos, “Long-
horizon finite-control-set model predictive control with nonrecursive
sphere decoding on an fpga,” IEEE Transactions on Power Electronics,
vol. 35, no. 7, pp. 7520–7531, 2020.

[11] B. Stellato and P. J. Goulart, “Real-time fpga implementation of
direct mpc for power electronics,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), 2016, pp. 1471–1476.

[12] F. Simonetti, A. D’Innocenzo, and C. Cecati, “Neural network model-
predictive control for chb converters with fpga implementation,” IEEE
Transactions on Industrial Informatics, vol. 19, no. 9, pp. 9691–9702,
2023.

[13] T. Geyer, “Model Predictive Control of High Power Converters and
Industrial Drives,” John Wiley & Sons, Ltd, 2017.

[14] N. Celanovic and D. Boroyevich, “A comprehensive study of neutral-
point voltage balancing problem in three-level neutral-point-clamped
voltage source pwm inverters,” IEEE Transactions on power electron-
ics, vol. 15, no. 2, pp. 242–249, 2000.

[15] M.-W. Huang and J. S. Arora, “Optimal design with discrete variables:
some numerical experiments,” International Journal for Numerical
Methods in Engineering, vol. 40, no. 1, pp. 165–188, 1997.

[16] J. Lee and S. Leyffer, Mixed integer nonlinear programming. Springer
Science & Business Media, 2011, vol. 154.

[17] P. Schneider and D. H. Eberly, Geometric tools for computer graphics.
Morgan Kaufmann Publishers, 2002.

[18] “Zynq-7000 product page.” [Online]. Available: https://www.xilinx.
com/products/silicon-devices/soc/zynq-7000.html

[19] “Axiprotocol.” [Online]. Available: https://www.xilinx.com/products/
intellectual-property/axi.html

3311

