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Abstract— Model Predictive Control (MPC) for tracking for-
mulation presents numerous advantages compared to standard
MPC, such as a larger domain of attraction and recursive
feasibility even when abrupt changes in the reference are pro-
duced. As a drawback, it includes some extra decision variables
in its related optimization problem, leading to a semi-banded
structure that differs from the banded structure encountered in
standard MPC. This semi-banded structure prevents the direct
use of the efficient algorithms available for banded problems.
To address this issue, we present an algorithm based on the
alternating direction method of multipliers that explicitly takes
advantage of the underlying semi-banded structure of the MPC
for tracking.

Index Terms— Model predictive control, embedded optimiza-
tion, embedded systems, ADMM, MPC for tracking.

I. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
policy whose control action is obtained from a constrained
Optimization Problem (OP) posed at every sample time [1],
[2]. MPC has become widely popular due to its ability to
optimize the plant operation performance while dealing with
constraints. However, it presents disadvantages, such as the
computational cost required to solve its associated OP at each
sample time, or the unavailability of a suitable control action
when the OP is infeasible or if it cannot be solved in a short
amount of time compared to the sample time of the system.

Recently, there has been a significant amount of academic
literature providing results which mitigate these issues, such
as the proposal of efficient solvers suitable for the implemen-
tation of MPC [3], [4], [5], [6], [7], or results which palliate
the problem of MPC infeasibility [8], [9].

In particular, in this article we focus on the MPC for
tracking (MPCT) formulation, originally proposed in [8],
which introduces an artificial reference as an additional
decision variable of the OP. The main benefit of introducing
this artificial reference is that MPCT attains a notably larger
domain of attraction and feasibility region when compared
with standard MPC formulations. Additionally, MPCT guar-
antees recursive feasibility, even when sudden changes in the
reference occur. Furthermore, it also guarantees asymptotic
stability to an admissible steady state of the system, even
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if the reference is infeasible. These benefits make MPCT a
strong candidate for its use in a practical setting, since it
significantly mitigates some of the main issues of standard
MPC. However, these benefits come at the cost of a more
complex OP due to the addition of the artificial reference. In
particular, the inclusion of the additional decision variables
leads to a semi-banded structure in the MPCT OP, whereas
standard MPC formulations present a banded structure than
can be exploited by the optimization solver [3], [10].

In [11], the authors propose an efficient solver for MPCT
where the banded structure of standard MPC formulations
is recovered by using the Extended Alternating Direction
Method of Multipliers (EADMM) [12]. This provides a
solver whose computational cost per iteration is nearly
identical to the one for standard MPC formulations us-
ing first-order optimization methods such as (non-extended)
ADMM [13]. However, the disadvantage is that EADMM
presents several drawbacks when compared with ADMM,
both theoretical and in terms of its practical performance.

In this article we present an alternative way of solving
MPCT using the ADMM algorithm by decomposing the
semi-banded structure of the MPCT OP. This decomposition
recovers the same banded structure associated with the
standard MPC formulation, which can thus be exploited in
the numerical solver. The computational cost per iteration
of the resulting solver is over two times larger than the
one for the EADMM solver proposed in [11]. However, in
spite of this, the use of the ADMM algorithm instead of
EADMM provides better theoretical guarantees and practical
performance, as illustrated by the numerical results.

This article is structured as follows. Section II introduces
the MPCT formulation. Section III presents the proposed
ADMM algorithm for MPCT, where we show how we
decompose its semi-banded structure to attain an efficient
solver. Section IV shows numerical results demonstrating the
practical benefits of the proposed solver. Finally, Section V
summarizes the main results of the article.

Notation: Given a square matrix A, det(A) is its determi-
nant. Given two integers a, b, Iba = {a, a + 1, . . . , b − 1, b}.
Sn≻ denotes the set of symmetric positive definite matrices of
size n× n. Given a vector x, we denote its j-th component
as x(j). Given Q ∈ Sn≻, ∥x∥Q

.
=

√
x⊤Qx and ∥x∥∞

.
=

maxj=1...n |x(j)|. The identity matrix of dimension n is
denoted by In and the vector of ones by 1n ∈ Rn (we may
drop the sub-index n if the dimension is clear from the
context). Given x, y ∈ Rn, x ≤ (≥) y denotes component-
wise inequalities. For vectors x1 to xN of any dimension,
(x1, . . . , xN ) denotes the column vector formed by their

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2711



concatenation. We denote by diag(A1, . . . , AN ) the block
diagonal matrix formed by the concatenation of scalars
and/or matrices A1 to AN (possibly of different dimensions).
Function max(·) : R×R×· · ·×R→ R returns the maximum
element of its scalar inputs. The Kronecker product between
matrices A and B is denoted by A⊗B.

II. MPC FOR TRACKING FORMULATION

Consider a controllable discrete-time system described by

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the state and input at
sample time t, respectively, subject to box constraints

x ≤ x(t) ≤ x, (2a)
u ≤ u(t) ≤ u, (2b)

where x, x ∈ Rnx and u, u ∈ Rnu satisfy x < x and u < u.
The control objective is to steer the system to the steady-state
reference (xr, ur) while satisfying the system constraints. If
(xr, ur) is admissible, then the closed-loop system should
converge to it. Otherwise, we wish to converge to some
admissible steady-state that is close to (xr, ur).

This control objective can be achieved by using the
MPC for tracking (MPCT) proposed in [8]. In particular,
we address the MPCT formulation with terminal equality
constraint from [11], whose OP is given by

min
x,u,
xs,us

N−1∑
i=0

(∥xi−xs∥2Q+∥ui−us∥2R)+∥xs−xr∥2T+∥us−ur∥2S

(3a)
s.t. x0 = x(t), (3b)

xi+1 = Axi +Bui, i ∈ IN−2
0 , (3c)

xs = AxN−1 +BuN−1, (3d)
xs = Axs +Bus, (3e)

x ≤ xi ≤ x, i ∈ IN−1
1 , (3f)

u ≤ ui ≤ u, i ∈ IN−1
0 , (3g)

xε ≤ xs ≤ xε, (3h)
uε ≤ us ≤ uε, (3i)

where the decision variables are the artificial reference
(xs, us) and the predicted states x = (x0, x1, . . . , xN−1) and
inputs u = (u0, u1, . . . , uN−1) along the prediction horizon
N ; x(t) is the current state of the system at sample time t;
the matrices Q ∈ Snx

≻ , R ∈ Snu
≻ , T ∈ Snx

≻ and S ∈ Snu
≻

are the cost function matrices; and given the arbitrarily small
scalar ε > 0, xε = x+ε1nx

, xε = x−ε1nx
, uε = u+ε1nu

and uε = u−ε1nu . The ε-tightened constraints (3h) and (3i)
are considered to avoid a possible controllability loss if any
constraint is active at the equilibrium point [8].

The MPCT formulation (3) has several advantages with
respect to standard MPC [1], such as guaranteed recursive
feasibility under nominal conditions, i.e., when controlling
the model used as prediction model with no disturbances, or
asymptotic stability to the admissible steady state (x̂, û) that
minimizes ∥x̂−xr∥2T+∥û−ur∥2S [8]. However, the inclusion

Algorithm 1: ADMM
Require : v0, λ0, ρ > 0, ϵp > 0, ϵd > 0

1 k ← 0
2 repeat
3 zk+1 ← argmin

z
Lρ(z, v

k, λk)

4 vk+1 ← argmin
v
Lρ(z

k+1, v, λk)

5 λk+1 ← λk + ρ(Czk+1 +Dvk+1)
6 k ← k + 1
7 until ∥Czk+1+Dvk+1∥∞≤ϵp and ∥vk+1−vk∥∞≤ϵd

Output: z̃∗ ← zk, ṽ∗ ← vk, λ̃∗ ← λk

of (xs, us) leads to a more complex OP than the one of
standard MPC, as the banded structure that arises when
solving the OP of MPC is lost in (3). We note that the banded
structure of standard MPC is crucial for the implementation
of efficient solvers [3], [10]. Thus, even though MPCT only
adds nx+nu extra decision variables with respect to standard
MPC, the time required to solve (3) can be notably higher if
a naive approach is used to solve the OP, e.g., if non-sparse
matrices are used when solving the OP. In the following
section we present an efficient ADMM-based solver for (3).

III. EFFICIENTLY SOLVING MPCT USING ADMM

We now show how to efficiently solve (3) using the
ADMM algorithm [13] by decomposing its most computa-
tionally expensive step into several simple-to-solve steps. We
start by describing the version of the ADMM we consider.

A. Alternating Direction Method of Multipliers

Let f : Rnz → (−∞,∞] and g : Rnz → (−∞,∞] be
proper, closed and convex functions, z, v ∈ Rnz , and C,
D ∈ Rnz×nz . Consider the OP

min
z,v

f(z) + g(v) (4a)

s.t. Cz +Dv = 0, (4b)

with augmented Lagrangian Lρ : Rnz × Rnz × Rnz → R,

Lρ(z, v, λ) = f(z)+g(v)+λ⊤(Cz+Dv)+
ρ

2
∥Cz+Dv∥22,

where λ ∈ Rnz is the vector of dual variables and the scalar
ρ > 0 is the penalty parameter. We denote a solution of (4)
by (z∗, v∗, λ∗), provided that one exists.

Starting from an initial point (v0, λ0), ADMM, shown in
Algorithm 1, returns a suboptimal solution (z̃∗, ṽ∗, λ̃∗) of
(4), where suboptimality is determined by the choice of the
primal and dual exit tolerances ϵp > 0 and ϵd > 0 [13, §3.3].

B. Applying ADMM to MPCT

For y, y, y ∈ Rny , Ĝ ∈ Rmy×ny , b̂ ∈ Rmy , let us define

I[y,y](y) =

{
0, if y ≤ y ≤ y,

+∞, otherwise,

I(Ĝy=b̂)(y) =

{
0, if Ĝy = b̂,

+∞, otherwise.
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Problem (3) can be posed as (4) by taking C = I, D = −I,

z = (x0, u0, x1, u1, . . . , xN−1, uN−1, xs, us),

and

v = (x̃0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃s, ũs)

as a copy of the decision variables of (3), leading to

f(z) =
1

2
z⊤Hz + q⊤z + I(Gz=b)(z), (5a)

g(v) = I[v,v](v) = I[xε,xε](x̃s) + I[uε,uε](ũs) (5b)

+

N−1∑
i=1

I[x,x](x̃i) +

N−1∑
i=0

I[u,u](ũi),

where q = −(0, 0, . . . , 0, Txr, Sur), b = (x(t), . . . , 0),

H =


Q 0 · · · −Q 0
0 R · · · 0 −R

0 0
. . .

...
...

−Q 0 · · · NQ+ T 0
0 −R · · · 0 NR+ S

 , (6a)

G =


I 0 0 0 · · · 0
A B −I 0 · · · 0

0
. . . . . . . . . 0

...
0 0 A B −I 0
0 0 0 0 (A− I) B

 , (6b)

v
.
= (x, u, . . . , x, u, xε, uε), (6c)

v
.
= (x, u, . . . , x, u, xε, uε). (6d)

With these elements, Step 3 of Algorithm 1 consists of solv-
ing a quadratic program subject to equality constraints, con-
stituting the main computational load when solving MPCT
with ADMM. On the other hand, Step 4 of the algorithm
requires solving a simple separable convex problem (i.e.,
solving nz simple scalar OPs). The next subsections are de-
voted to explaining how these steps are computed efficiently.

C. Efficient computation of zk+1

Variable zk+1 updated in Step 3 of Algorithm 1 applied
to problem (5a) is obtained from the optimal solution of

min
z

1

2
z⊤Pz + p⊤z (7a)

s.t. Gz = b, (7b)

where P = H + ρI and p = q + λk − ρvk.
As shown in the following proposition, problem (7) can

be solved by posing a linear system of equations describing
its Karush-Kuhn-Tucker optimality conditions.

Proposition 1 ([14, §5.5.3]): Consider the OP (7), where
P ∈ Rnz×nz is positive semi-definite, p ∈ Rnz , G ∈
Rmz×nz and b ∈ Rmz . A vector z∗ ∈ Rnz is an optimal
solution of this problem if and only if there exists a vector
µ ∈ Rmz such that

Gz∗ = b, (8a)

Pz∗ +G⊤µ+ p = 0. (8b)

As shown in [15], simple algebraic manipulations of (8)
along with the definition of matrix W

.
= GP−1G⊤ lead to

the alternative form

Pξ = p, (9a)
Wµ = −(Gξ + b), (9b)

Pz∗ = −(G⊤µ+ p), (9c)

from where the optimal solution z∗ of (7), and thus the
update zk+1 of Step 3 of Algorithm 1, can be obtained.
Solving (9) is the main computational burden of Algorithm 1.
Thus, we wish to solve the three linear systems efficiently.
However, matrices P and W are semi-banded due to the
semi-banded structure of H shown in (6a). The following
definition formalizes the notion of a semi-banded matrix.

Definition 1: Given the non-singular matrix M ∈ Rn×n

and vector d ∈ Rn, we say that the linear system

Mz = d, (10)

is semi-banded if there exists a non-singular banded matrix
Γ ∈ Rn×n, and U ∈ Rn×m and V ∈ Rm×n satisfying

M = Γ + UV, (11)

where the dimension m is assumed to be significantly smaller
than the dimension of M , i.e., m≪ n.

A naive approach to solving the three linear systems (9)
will generally be computationally expensive. However, we
now show how the decomposition (11) can be used to solve
(9) efficiently. We start by showing that, indeed, matrices P
and W in (9) are semi-banded, providing explicit values for
their decomposition (11) in the following proposition, which
makes use of the well-known Woodbury matrix identity [16].

Lemma 1 (Woodbury matrix identity): Let Γ ∈ Rn×n be
non-singular. Then, if I + V Γ−1U is non-singular, Γ + UV
is also non-singular and its inverse is given by

(Γ + UV )−1 = Γ−1 − Γ−1U(I + V Γ−1U)−1V Γ−1. (12)
Proposition 2: Matrices P and W of (9) are semi-banded

and can be decoupled as P = Γ̂ + Û V̂ and W = Γ̃ + Ũ Ṽ ,
where, denoting Y

.
= −1⊤

N ⊗ diag(Q,R),

Γ̂ = diag(Q,R,Q,R . . . , NQ+ T,NR+ S) + ρI,

Û =

[
Y ⊤ 0
0 I(nx+nu)

]
, V̂ =

[
0 I(nx+nu)

Y 0

]
,

Γ̃ = GΓ̂−1G⊤,

Ũ = −GΓ̂−1Û(I+V̂ Γ̂−1Û)−1, Ṽ = V̂ Γ̂−1G⊤.

Moreover, provided that G is full column rank, matrices P ,
W , Γ̂ and Γ̃ are positive definite.

Proof: The decomposition P = Γ̂ + Û V̂ immediately
follows from the definition of P

.
= H + ρI and the semi-

banded structure of H shown in (6a). Next, by applying (12)
to P we have that

P−1 = Γ̂−1 − Γ̂−1Û(I + V̂ Γ̂−1Û)−1V̂ Γ̂−1.
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Thus, from the definition W
.
= GP−1G⊤, we have

W = G(Γ̂−1 − Γ̂−1Û(I + V̂ Γ̂−1Û)−1V̂ Γ̂−1)G⊤

= GΓ̂−1G⊤ −GΓ̂−1Û(I + V̂ Γ̂−1Û)−1V̂ Γ̂−1G⊤,

from where the claim W = Γ̃ + Ũ Ṽ then follows from the
definitions of Γ̃, Ũ and Ṽ . Finally, the fact that Γ̃ is banded-
diagonal follows from the banded-diagonal structures of Γ̂
and G (6b), as shown in [3, Eq. (33)].

We notice that H is the matrix that corresponds to the
quadratic terms of MPC formulation (3). From the convexity
of the quadratic cost codified by H , we infer that H ⪰ 0.
Therefore, P = H + ρI ⪰ ρI ≻ 0. Also, from the positive
definite nature of matrices Q, R, S and T , we have that
the block-diagonal matrix Γ̂ satisfies Γ̂ ⪰ ρI ≻ 0. Since P
is positive definite, W = GP−1G⊤ is also positive definite
provided that G is full column rank. The same argument
applies to Γ̃ = GΓ̂−1G⊤.

Next, we show in the following proposition that (10), and
thus (9) by virtue of Proposition 2, can be solved by means
of Algorithm 2. This result also follows from Lemma 1.

Proposition 3: Consider the semi-banded system Mz = d
of Definition 1 and its decomposition M = Γ+ UV , where
both M and Γ are non-singular matrices. Algorithm 2 returns
a solution z̃ satisfying Mz̃ = d.

Proof: From det(M) ̸= 0 and det(Γ) ̸= 0 we obtain

0 ̸= det(Γ + UV ) = det(Γ) det(In + Γ−1UV )

= det(Γ) det(Im + V Γ−1U), (13)

where the last equality is due to the well-known identity
det(In+AB) = det(Im+BA), ∀A ∈ Rn×m,∀B ∈ Rm×n.
Thus, we infer from (13) that Im + V Γ−1U is non-singular.
From this, and (12), we have that M−1 = (Γ+UV )−1 can
be written as M−1 = Γ−1−Γ−1U(Im + V Γ−1U)−1V Γ−1.
Therefore,

z̃ = M−1d = Γ−1d−Γ−1U(Im+V Γ−1U)−1V Γ−1d. (14)

Defining z1 = Γ−1d, z2 = (Im + V Γ−1U)−1V Γ−1d and
z3 = Γ−1U(Im + V Γ−1U)−1V Γ−1d, we obtain Step 1 of
Algorithm 2 by the definition of z1, Step 2 by including
the definition of z1 into z2, and Step 3 by substituting the
definition of z2 into z3. Finally, z̃ = z1 − z3 by substituting
the definitions of z1 and z3 into (14).

We notice that the computation of z1 and z3 in Algorithm 2
can be done efficiently by exploiting the banded structure
of Γ, e.g., using a banded Cholesky decomposition if Γ is
positive definite [3]. Moreover, since Im+V Γ−1U ∈ Rm×m,
and we assume that m ≪ n, z2 is the solution of a small-
dimensional linear system, which is thus computationally
cheap to solve in comparison to Steps 1 and 3 of Algorithm 2.

Corollary 1: By means of Proposition 3, the optimal solu-
tion z∗ of problem (7) can be obtained by using Algorithm 2
to solve the three linear systems (9) using the decomposition
of matrices P and W provided in Proposition 2.

Remark 1: Matrix Γ̂ ≻ 0 in Proposition 2 is block-
diagonal. Therefore, Steps 1 and 3 of Algorithm 2 applied
to solve (9a) and (9c) are very simple. On the other hand,

Algorithm 2: Solve semi-banded system (Γ +
UV )z̃=d

Require : Γ, U , V , d
1 Compute z1 solving Γz1 = d
2 Compute z2 solving (I + V Γ−1U)z2 = V z1
3 Compute z3 solving Γz3 = Uz2

Output: z̃ ← z1 − z3

Algorithm 3: Efficient ADMM applied to MPCT (3)
Require : ρ > 0, ϵp > 0, ϵd > 0, Q, R, S, T , N
Input : x(t), xr, ur, v0, λ0,

1 k ← 0
2 Compute q and b in (5a) using x(t), xr and ur.
3 repeat
4 p← q + λk − ρvk

5 ξ ← solution of Pξ = p using Alg. 2
6 µ← solution of Wµ = −(Gξ + b) using Alg. 2
7 zk+1 ← solution of Pz=− (G⊤µ+ p) using

Alg. 2
8 Update vk+1 using (16)
9 λk+1 ← λk + ρ(zk+1 − vk+1)

10 k ← k + 1
11 until ∥zk+1 − vk+1∥∞ ≤ ϵp and ∥vk+1 − vk∥∞ ≤ ϵd

Output: u(t)← elements of vk corresponding to ũ0

matrix Γ̃ ≻ 0 is banded-diagonal, but not block-diagonal.
However, Γ̃ has the same banded-diagonal structure that is
exploited by the solvers proposed in [3], [11]. Therefore,
Steps 1 and 3 of Algorithm 2 applied to (9b) can be solved
by computing the banded Cholesky decomposition of Γ̃ and
using [15, Alg. 11].

Remark 2: Note that the operations Gξ and G⊤µ in (9b)
and (9c) can be performed sparsely, since G (6b) is sparse.

D. Computation of vk+1

Variable vk+1 updated in Step 4 of Algorithm 1, when
g(v) is given by (5b), is taken from the optimal solution of

min
v∈Rnz

ρ

2

nz∑
j=1

(v2(j) − 2zk+1
(j) v(j))−

nz∑
j=1

λk
(j)v(j)

s.t. x ≤ xi ≤ x, i ∈ IN−1
1 ,

u ≤ ui ≤ u, i ∈ IN−1
0 ,

xε ≤ xs ≤ xε,

uε ≤ us ≤ uε,

(15)

which is separable for each decision variable v(j). Indeed,
each element vk+1

(j) , j ∈ Inz
1 , of vk+1 is given by

vk+1
(j) = min

(
max

(
zk+1
(j) +

1

ρ
λk
(j), v(j)

)
, v(j)

)
. (16)

E. Comparison with the EADMM-based solver

Algorithm 3 shows the particularization of Algorithm 1
applied to the MPCT problem (3) using the results presented
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in the previous subsections. Steps 5, 6 and 7 of Algorithm 3
are its main computational burden. They make use of Al-
gorithm 2 to solve the three semi-banded linear systems in
(9) to update the decision variables zk+1. As discussed in
Remark 1, Step 6 requires solving two linear systems whose
matrix has the structure obtained when solving standard MPC
formulations. The EADMM solver (3) proposed in [11] also
recovers this very same banded structure. However, it only
needs to solve it once, instead of twice. Additionally, the
EADMM solver needs a problem computationally equivalent
to Step 8 of Algorithm 3 and a (nx+nu) dense linear system,
whereas Algorithm 3 needs to solve three 2(nx + nu)-
dimensional linear system (one for each call to Algorithm 2)
and four block-diagonal systems Γ̂z = d (two in Step 5 and
two in Step 7).

We conclude that the computational cost per iteration of
Algorithm 3 is more than double the one of the EADMM
solver proposed in [11]. Therefore, ADMM should require,
on average, less than half the number of iterations than
the EADMM solver from [11] to be computationally better.
However, the are several advantages to using ADMM instead
of EADMM. First, the convergence of EADMM is only
guaranteed if its step-size ρ belongs to a certain range that
depends on the properties of the OP [12, Theorem 3.1]. How-
ever, in practice the EADMM algorithm typically performs
very poorly when using values of ρ satisfying this theoretical
condition. On the other hand, the value of ρ for Algorithm 3
can be freely chosen, thus improving the practical perfor-
mance of the algorithm. Second, the theoretical convergence
results for ADMM are better than the current ones available
for EADMM, leading also to a better worst-case iteration
complexity. Finally, even when choosing values of ρ for
EADMM according to [12, Theorem 3.1], the number of
iterations required by the algorithm in practice is typically
much larger than the ones required by ADMM when applied
to the same OP.

IV. NUMERICAL RESULTS

We provide a computational comparison between the
proposed Algorithm 3 and the EADMM solver for MPCT
presented in [11]. We consider the ball and plate system pre-
sented in [17, §V.A], which consists of a ball whose position
on a (nominally) horizontal plate is controlled by motors on
each of its two main axes. Consequently, the system has two
inputs, angular accelerations [rad/s2] of the motors, and eight
states, position [m] and velocity [m/s] of the ball with respect
to each axis, as well as angular position [rad] and velocity
[rad/s] of the plate in each axis. The physical parameters of
the system are the same as in [17, §V.A], as well as the
sample time of 0.2 seconds. We take the constraints (2) as
u = (0.2, 0.2), u = −u, x = (2, 1, 0.785,∞, 2, 1, 0.785,∞),
x = −(0, 1, 0.785,∞, 0, 1, 0.785,∞), and, for (3), N=30,
ε=10−6, R = diag(0.5, 0.5), S = diag(0.3, 0.3),

Q = diag(10, 0.05, 0.05, 0.05, 10, 0.05, 0.05, 0.05),

T = diag(200, 50, 50, 50, 200, 50, 50, 50),

where the order of the state and input elements are taken
from [17]. Additionally, we take the exit tolerances of
Algorithm 3 and EADMM as 10−4, i.e., ϵp = ϵd = 10−4.
Finally, we note that we use the scaling of the system model
used in [11] to improve the numerical conditioning of (3).

Using version v0.3.11 of the Spcies Toolbox [18] in
an I5-1135G7 laptop, Table I shows results on the number
of iterations and computation time of Algorithm 3 and the
EADMM solver from [11] (for different values of ρ) when
applied to the above system for 500 random initial states,
where the position and velocity of the ball are taken from a
uniform distribution in the intervals [0.3, 1.8] and [−0.2, 0.2],
respectively. Additionally, we consider two references: the
Reachable reference xr = (1, 0, 0, 0, 0.8, 0, 0, 0), and the
Unreachable reference xr = (2.15, 0, 0, 0, 2.2, 0, 0, 0), which
violates the constraints on the position of the ball. In both
cases ur = (0, 0).

The results indicate that Algorithm 3 is noticeably faster
than the EADMM solver when the reference is Reachable.
However, when it is Unreachable, the number of iterations
and computation times grow considerably for Algorithm 3.
Even though ADMM seems less efficient in that specific
case, asymptotic convergence of the algorithm is guaranteed
for any positive value of ρ [13], while EADMM applied
to our case study requires ρ ∈ (0, 0.0176] (see [12, Theo-
rem 3.1]). If we take ρ for EADMM in the range such that
its asymptotic convergence is guaranteed, Algorithm 3 out-
performs EADMM in both the Reachable and Unreachable
cases, as it leads to a poor performance of EADMM.

Figure 1 illustrates the closed-loop evolution of the system
controlled by applying (3) to one of the 500 tests with
Reachable reference from Table I. Figure 2 shows the
closed-loop evolution considering instead the Unreachable
reference. As mentioned in Section II, Figure 2 shows that
when the reference is infeasible, the MPCT formulation (3)
steers the system to its closest admissible steady-state.

V. CONCLUSION

This article has presented an efficient method for solv-
ing the MPCT formulation using ADMM. We have shown
how the semi-banded structure of the most computationally-
expensive step of the ADMM algorithm can be solved
efficiently by decomposing it into three simpler-to-solve
steps. Indeed, the decomposition recovers the simple matrix
structure exploited by several first-order solvers for standard
MPC from the literature. We have presented numerical re-
sults comparing the proposed solver with a recent EADMM-
based MPCT solver from the literature, showing that the
proposed approach may outperform the EADMM algorithm
from a computational point of view. This, along with the
solid theoretical convergence guarantees of ADMM, results
in a rather sensible and efficient solution for the practical
implementation of MPCT.
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