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Abstract— This paper studies a rigid graph theory and
distance geometry-based approach to the autonomous vehicle
station-keeping problem for situations where global positioning
is not available. We propose a control scheme for the station
keeping of an autonomous vehicle A, i.e., the task of navigating
A to a target point T whose distances are predefined from a set
of beacons, where A is not capable of measuring its self-position.
The beacons can be stations or other autonomous vehicles, and
A is assumed to have nonholonomic unicycle motion kinematics
and can measure only distances to the beacons. In the proposed
control scheme, the vehicle-beacon range measurements are
mapped to the estimate of the distance to T utilizing notions
of globally rigid graphs for guaranteeing unique estimation,
short-term odometry, and triangulation techniques. The overall
scheme involves a target pursuit control law, which can be
selected in switching or linear quadratic optimal forms to
regulate this distance estimate to zero. Besides formal analysis
of the range estimation scheme and discussion of real-time
implementations, the performance of the proposed control
scheme is verified by simulation tests.

I. INTRODUCTION

Various multi-vehicle or multi-mobile-robot-agent forma-
tion control algorithms require an autonomous vehicle (mo-
bile robot) to satisfy certain inter-vehicle geometric con-
straints with the other vehicles in the network, which usually
occur in the form of inter-vehicle distances and/or bearing
angles. An example of these objectives for an autonomous
vehicle A is station keeping, viz. the task of merging it
to a multi-vehicle network S1, . . . , SN via converging to a
location T that is at a certain distance d∗i from each (station)
vehicle Si in the existing network. In some cases, the vehicle
A is required to converge to T utilizing only its distance
measurements to the station vehicles Si in the control law,
in cases where the target location pT and the location pi of
Si are not available. Station keeping has applications in other
areas, such as sensor network (SN) localization (location
estimation), and is studied in a collection of works [1]–[8].

In [1], [2], the station-keeping problem for the case where
the self-position pA of vehicle A is available is approached
using adaptive control and optimization techniques. The
works [4], [8] treat the station-keeping problem as forma-
tion maintenance in multi-agent networks and propose an
adaptive solution that first estimates the unknown locations
pi of the stations and then drives the vehicle A toward the
target T utilizing a gradient convex minimization algorithm
proposed in [9] for range-based SN localization. The works
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[4], [8] assume that the vehicle A is a holonomic vehicle
with known position pA, similarly to [1], [2].

Two other closely relevant control problems that localizq-
tion of a target through range measurements and navigating
an autonomous vehicle to the vicinity of the unknown target
location are adaptive target pursuit [10], viz. reaching to the
target point, and adaptive circumnavigation [11], viz. settling
on a circular close orbit around the target point. These
problems have been studied in [10]–[13] for the case where
the autonomous vehicle has access to its self-location.

The adaptive circumnavigation, adaptive pursuit, and
station-keeping problems for the case where the autonomous
vehicle cannot measure its location have later been studied
in [5], [6], [14]. Inspired by [14], the works [5]–[7] have
proposed switching-based solutions to the adaptive target
pursuit and station-keeping problems for the case with lack
of the autonomous vehicle’s self-location information, where
a nonholonomic motion kinematics model is used for the
vehicle. The adaptive target pursuit controller proposed in
[5], [6] uses the range measurement to the target as a
feedback signal and tunes the angular velocity of the vehicle
so that this signal decays to (a small neighborhood of) zero.
The station-keeping control design in the same works uses
the same idea and tunes the vehicle’s angular velocity in a
way to minimize a cost penalizing the difference between
actual and desired vehicle-station distances.

Later, to address the agent path and motion optimality,
a linear quadratic (LQ) optimal target pursuit and station-
keeping control schemes involving a Luenberger observer-
based state estimator are designed in [7]. Although the
station keeping control approaches in [5]–[7] are justified to
work in general, the proposed algorithms are influenced by
the indirect approach aiming to minimize multiple vehicle-
station distance errors simultaneously, and as a consequence,
the produced navigation paths are not optimal.

Aiming to address these issues, we propose a new ap-
proach integrating the switching adaptive target pursuit con-
troller of [5], [6] or the LQ optimal pursuit controller of [7]
with a rigid formation geometry-based estimator to generate
an estimate r̂ of the vehicle distance r = ∥pA − pT ∥ to
the target location T which is at pre-specified distances d∗i
from the station vehicles or nodes Si and short-term integral
odometry to estimate the displacement dA of A between two
sample instants. dA is required for the triangulation proce-
dure of the proposed vehicle-target distance estimator, and
the uniqueness and accuracy of the generated estimate for
ideal noise-free distance measurement cases are guaranteed
by utilizing notions of globally rigid graphs.
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The paper is organized as follows. In Section II, we define
the station-keeping problem. In Section III, we propose
the overall control scheme and propose our vehicle-target
range estimation method. In Section IV, we present a set
of simulation test results. The implementation aspects of
the proposed control scheme are discussed in Section V.
Concluding remarks are provided in Section VI.

II. STATION KEEPING PROBLEM

Consider an autonomous vehicle A with nonholonomic
agent kinematics

ẋA = v cos(θ), ẏA = v sin(θ), θ̇ = ω, (1)

where pA(t) ≜ [xA(t), yA(t)]
⊤ ∈ ℜ2 is the position of

A in a global frame, θ(t) ∈ (−π, π] is the global heading
angle, and u(t) ≜ [v(t), ω(t)]

⊤ ∈ ℜ2 is the control input
of the vehicle. The control signals v, ω represent the linear
and angular speeds of the vehicle, respectively, satisfying
0 ≤ v ≤ v̄ and |ω| ≤ ω̄ for some v̄, ω̄ > 0.

Consider also an SN S = {S1, · · · , SN}, N ≥ 3, which
represents either (i) a vehicle network A is required to merge
in, where each Si denotes a vehicle or (ii) a sensory station
network. Let T be an unknown target point having distance
d∗i from each Si, which denotes the desired distance of A to
each vehicle in scenario (i), or the distance of a signal source
(located at T ) measured by sensory station Si in scenario
(ii). The station-keeping task of A is to reach T using the
available range measurements. Using Bϵr (pT ) to denote the
ϵr neighborhood of the position pT , i.e., the disc with center
pT and radius ϵr, this task can be formally defined as follows:

Problem 1: Consider a nonholonomic vehicle A with
motion kinematics (1) and a set of N sensor stations
S = {S1, · · · , SN}, N ≥ 3 located at unknown positions
p1, . . . , pN ∈ ℜ2. Let T be a target point located at an
unknown constant position pT = [xT , yT ]

⊤ ∈ ℜ2 and has
known distances ∥pi − pT ∥ = d∗i , i = 1, . . . , N , from the
stations. Assume that pi are not collinear, and A is informed
with the target distances d∗i and the actual vehicle-station
distances ∥pi−pA(t)∥ = di(t) for all t ≥ 0. Design a control
law u = [v(t), ω(t)]

⊤ that drives A to an ϵr neighborhood
Bϵr (pT ) of T in finite time for some ϵr > 0.

The dynamics (1) is not suitable for the objectives pre-
sented in the sequel because the vehicle A cannot measure
any of the state variables xA, yA, θ, nor pT . Similar to [5]–
[7], instead of (1), we use the following kinematics model
focusing on the range r(t) ≜ ∥pA(t)− pT ∥ and the heading
angle θT ∈ (−π, π] measured from the pA−pT line segment
to A’s heading, as represented in Fig. 1:

ṙ(t) = −v(t) cos(θT (t)), (2)

θ̇T (t) = ω(t) +
1

r(t)
v(t) sin(θT (t)). (3)

The distances di represent an implicit measure of the
range r. In the sequel, we propose a vehicle-target range
estimation scheme deploying the geometric properties of a
pseudo-SN with nodes located at pT , p1, . . . , pN and pA(t)
at two consequent sample instants of time t.
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Fig. 1. An example configuration with the vehicle A, the target T and the
N sensor stations Si.
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Fig. 2. The block diagram of the overall control scheme.

III. PROPOSED CONTROL SCHEME

The proposed control scheme for solving Problem 1 is
composed of three main components; a short-term integral
odometry scheme for calculation of the displacement dAk =
∥∆pA[k]∥ = ∥pA[k] − pA[k − 1]∥ between the vehicle
locations pA[k − 1] = pA((k − 1)T0) and pA[k] = pA(kT0)
and at consequent sampling times, assuming a fixed sampling
time T0 > 0 that is long enough for acceptable odometry
accuracy, a rigid formation geometry based vehicle-target
range estimator, and a target capture control law proposed in
[5], [6], as depicted in Fig. 2. The ”Target capture control
law” can be chosen as an adapted version of either the
switching-based control scheme of [5], [6], or the LQ optimal
control scheme of [7] and aims to regulate the estimate r̂ of
the vehicle-target range r to (a small value close enough
to) zero. The accuracy of the estimate r̂ is crucial for the
performance of the overall station-keeping scheme.

In Fig. 2, the “Vehicle kinematics” block represents the
non-holonomic kinematics (1) of the vehicle. The “Target
range estimator” utilizes the distance geometry among the
sensor stations S1, . . . , SN , the target T , and two instant
locations of the vehicle A (at two consequent sampling times)
to generate the estimate r̂ based on the rigidity of the formed
graph, as detailed in the next subsection.
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A. Rigid Graph Theory Based Target Range Estimation

In this subsection, we propose an algorithm to estimate
the unknown distance r(t) between the agent location pA(t)
and the target location pT at each sampling time t = kT0 for
k = 1, 2, . . . , given the station-target distances ∥pi − pT ∥ =
d∗i , the range measurements of ∥pA(t) − pi∥ = di(t) at the
time instants t = kT0 and t = (k − 1)T0 (denoted by dik
and di(k−1), respectively), and the short-term odometry based
measurement of the displacement dAk of A from pA[k−1] =
pA((k− 1)T0) to pA[k] = pA(kT0). Leaving discussions on
the measurement noise effects to Section V, let us assume
that range and displacement measurements are accurate.

The setting of the above estimation problem fits well with
distance graph theory-based SN localization, where a planar
SN is represented by a graph GSN = (VSN , ESN ), called
the underlying graph of the SN, each vertex in VSN repre-
senting a sensor node and each edge in ESN representing
a node pair with known inter-distance. For estimation of
r, at each sampling time t = kT0 for k = 1, 2, . . . , we
consider a pseudo-SN with N + 3 nodes (N ≥ 3) located
at p1, . . . , pN , pT , pA[k], pA[k − 1], which are all unknown,
as illustrated in Figure 3, and represented, respectively,
by vertices v1, ...vN , vT , vA0, vA1. Considering the available
inter-node distance measurements to determine the edges, the
underlying graph of this pseudo-SN is defined as

G =(V, E), V = {v1, ...vN , vT , vA0, vA1}, (4)
E ={(v1, vT ), . . . , (vN , vT ), (v1, vA0), . . . , (vN , vA0),

(v1, vA1), . . . , (vN , vA1), (vA0, vA1)}.
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Fig. 3. The pseudo-sensor network and its underlying graph for the target
range estimation problem: 1 ≤ i < j < l ≤ N .

Next we establish that each of the target distances rk =
∥pA[k] − pT ∥ and rk−1 = ∥pA[k − 1] − pT ∥ is uniquely
determined given the distances corresponding to the edges
in E , utilizing the notion of global rigidity [15], [16]. To
formally define global rigidity [19], we need to introduce
some rigid graph and matroid theory notions first: A 2D
framework (G, π) is a pair of a graph G = (V,E) and a
map π, called realization, from V to ℜ2. A 2D realization
is called generic if the mappings for any three vertices in
V are non-collinear. Two 2D frameworks (G, π) and (G, ϱ)

are called equivalent if ∥π(u)− π(v)∥ = ∥ϱ(u)− ϱ(v)∥ for
any (u, v) ∈ E, and are called congruent if ∥π(u)−π(v)∥ =
∥ϱ(u)−ϱ(v)∥ for any u, v ∈ V . (G, π) is called rigid if there
exists ε > 0 such that any (G, ϱ) that is equivalent to (G, π)
and satisfies ∥π(v) − ϱ(v)∥ < ε, ∀v ∈ V is congruent to
(G, π). (G, π) is called globally rigid if every framework
equivalent to (G, π) is congruent to (G, π). Rigidity and
global rigidity are generic graph properties, i.e. given any
two generic realizations π and ϱ of a graph G, (G, π) is
(globally) rigid if and only if (G, ϱ) is (globally) rigid. A
graph G is called generically (globally) rigid in 2D if any
2D framework (G, π) is (globally) rigid. A generically rigid
graph G = (V,E) is called generically redundantly rigid if
G remains rigid after removal of any single edge from E.

Consider the 2D framework (G, p), where G is as de-
fined in (4) and p maps v1, ...vN , vT , vA0, vA1 to p1, ...pN ,
pT , pA[k], pA[k−1], respectively. All the inter-node distances
for this framework, including rk and rk−1, are uniquely
determined if G is generically globally rigid in 2D. The next
proposition establishes 2D generic global rigidity of G.

Proposition 1: For N ≥ 3, the graph G = (V, E) defined
in (4) is generically globally rigid in 2D.

Proof: A graph is generically globally rigid in 2D if it
is generically redundantly rigid and vertex-3-connected [20].
G defined in (4) is both generically redundantly rigid and
vertex-3-connected.

Utilizing Proposition 1 for guaranteeing solution existence
and uniqueness, one can design different sequential com-
binatorial algorithms or batch optimization algorithms to
calculate all the edge distances for G [15], [17], [18]. One
example sequential algorithm is provided in Algorithm 1
to generate the estimate r̂k and r̂k−1 of rk and rk−1,
respectively. In Algorithm 1, a local coordinate frame is
considered with pA[k − 1] = pA1 at the origin (0, 0) and
pA[k] = pA0 at (0, dAk). Three of the available distance
measurements are chosen, denoted di, dj , dl, based on certain
robustness criteria (see Remark 1). Next, two possible beacon
positions are calculated for each of pi, pj , pl applying a
standard triangulation routine (lines 2-4). Then, without
loss of generality, two of the three desired distance values
d∗i , d

∗
j are chosen from which (at most) four possible target

locations are calculated (lines 6-9). Finally, the possible
target locations are evaluated based on fit with d∗l and the
two possible locations for pl in lines 11–14, and the vehicle-
target distance at time instants t = kT0 and t = (k + 1)T0

are estimated in lines 15–18.

Remark 1: Although three beacons suffice to guarantee
the uniqueness of r̂k and r̂k−1, we consider the general case
N ≥ 3 to increase the flexibility and robustness of our
algorithm. At any time instant, the mobile vehicle utilizes
distance measurements to only three beacons which can be
chosen based on the quality of the measurement signal. For
instance, if N > 3 and the deviation of measurements to
a particular beacon is too high, the vehicle can discard that
beacon’s measurement to improve robustness.
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Algorithm 1 Estimation of r̂
Require: dAk, d1k, . . . , dNk, d1(k−1), . . . , dN(k−1),

d∗1, . . . , d
∗
N

Ensure: r̂k, r̂k−1

1: (pA1, pA0)← ((0, 0), (0, dAk))
2: {p1i , p2i } ← TRIANGULATE(pA1, pA0, di(k−1), dik)
3: {p1j , p2j} ← TRIANGULATE(pA1, pA0, dj(k−1), djk)
4: {p1l , p2l } ← TRIANGULATE(pA1, pA0, dl(k−1), dlk)
5: PT ← ∅
6: for qi = 1 : 2 do
7: for qj = 1 : 2 do
8: {pT1, pT2} ← TRIANGULATE(pqii , p

qj
j , d∗i , d

∗
j )

9: Append PT with pT1, pT2

10: r̂k ←∞, r̂k−1 ←∞
11: ql1 = argminq=1: length(PT) |∥p1l − PT[q]∥ − d∗l |
12: L1 = |∥p1l − PT[ql1]∥ − d∗l |
13: ql2 = argminq=1: length(PT) |∥p2l − PT[q]∥ − d∗l |
14: L2 = |∥p2l − PT[ql2]∥ − d∗l |
15: if L1 < L2 then
16: r̂k ← ∥PT[ql1]− pA0

∥, r̂k−1 ← ∥PT[ql1]− pA1
∥

17: else
18: r̂k ← ∥PT[ql2]− pA0∥, r̂k−1 ← ∥PT[ql2]− pA1∥

B. Odometry Based Displacement Calculation

Here, we propose an odometry-based periodic calculation
of vehicle motion that is robust and easily implementable
on real-time systems. We denote by To the fixed odometry
period and denote by θ

′
the reset heading angle such that

θ
′
(t0) = 0 and θ

′
(t) = θ(t)−θ(t0) for t0 ≤ t < kT0, for any

t0 = (k−1)T0 and k = 1, 2, . . . The vehicle A does not have
direct access to θ

′
because the heading θ(t) is not available

to A. We calculate θ
′

within t0 = (k − 1)T0 ≤ t < kT0 by
integrating the angular velocity, i.e.,

θ
′
(t) =

∫ t

t=t0

ω(τ)dτ, (5)

which can be approximated in discrete time steps with small
approximation errors in real implementations.

The vectoral displacement ∆pA[k] := pA[k] − pA[k − 1]
of A from t0 = (k−1)T0 to kT0 is calculated as ∆pmA [k]via
odometry considering a local coordinate frame with origin
at pA[k− 1] = pA(t0) and +x-axis in the direction of θ(t0)
as follows:

∆pmA [k] =

∫ kTo

t=t0

ṗA(t)dt = v̄

[∫ kTo

t=t0
cos(θ

′
(t))dt∫ kTo

t=t0
sin(θ

′
(t))dt

]
. (6)

C. Target Capture Control Law

As mentioned earlier, the ”target capture control law” in
Fig. 2 aims to regulate the estimate r̂k of the vehicle-target
range r, which is generated by the range estimator described
in Section III-A, to zero, and can be chosen as an adapted
version of either the switching based control scheme of [5],
[6] or the LQ optimal control scheme of [7]. Here we briefly
describe each of these two options.

As the first option, application of the switching target
capture control law based on [5], [6] utilizes a fixed ap-
proximation ρk := (r̂k − r̂k−1)/T0 of ˙̂r(t) within each
time interval [kT0, (k + 1)T0), leading to the following
triangulation range estimation based switching (T-switching)
control scheme for kT0 ≤ t < (k + 1)T0:

u = [v, ω]⊤ , (7)

v(t) =

{
v̄, if r̂k > ϵr
0, otherwise, (8)

ω(t) =


(

sgn(ρk) + 1 +
(1 + α)v̄

r̂k

)
σ
(−ρk

v̄

)
, if r̂k > ϵr

0, otherwise,
(9)

where α is a design parameter satisfying

0 < α <
ϵr(ω̄ − 2)

v̄
− 1, (10)

and σ is a function that defines the characteristics of the
transitions of ω at different θT profiles and is used to penalize
the deviation of θT from its desired value zero. An example
σ function is given in [5], [6] as follows:

σ(x) =


1, if x ≤

√
1− γ

1−x2

γ , if
√
1− γ < x < 1

0, if x ≥ 1

(11)

where 0 < γ < 1. Note that the control law (9)–(11)
guarantees that 0 ≤ ω ≤ ω̄. Under the control law (7)-(9),
the vehicle agent A moves with constant linear speed v̄ > 0
and non-negative angular speed ω till r̂k gets smaller than
ϵr. Particularly, (9) guides A to rotate with a rate dependent
on r̂k, v̄, and the sign of ρk as long as A is estimated to
be outside the target vicinity ball Bϵr (pT ), unless |θT | gets
sufficiently close to zero. The switches to zero in the control
inputs (8) and (9) prevent chattering and assure that the
vehicle stops once A is estimated to enter the disc Bϵr (pT ).

As the second option, the triangulation estimation-based
LQ (T-LQ) optimal control scheme based on [7] keeps the
lines (7) and (8) in the above control scheme but replaces
(9) with the following state-space LQ optimal control law
that aims to minimize the quadratic cost function

J =
1

2

∫ ∞

0

[xT (t)Qcx(t) + rcω
2(t)] dt, (12)

with positive definite state cost matrix Qc and positive input
cost scalar rc, for the equivalent state space representation

ẋ(t) =

[
−v̄ cosx2(t)

v̄ sin x2(t)
x1(t)

]
︸ ︷︷ ︸

f(x(t))

+

[
0
1

]
︸︷︷︸
B

ω(t) (13)

of (2),(3) with state x(t) = [r(t), θT (t)]
T , for the cases

where v(t) = v̄, i.e., r̂k > ϵr, fed by an estimate x̂ of the
state, noting unavailability of the measurement of θT :

ω(t) = −Kc(t)x̂(t), (14)
Kc(t) = r−1

c BTP (t), (15)
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where Pc = PT
c > 0 is the solution of the Riccati equation

Ṗc = PcA
T
c +AcPc − PcBr−1

c BTPc +Qc = 0,

Ac =
∂f

∂x

∣∣∣∣
x̂

=

[
0 v̄ sin x̂2

−v̄ sin x̂2

x̂2
1

v̄ cos x̂2

x̂1

]
, x̂1 ̸= 0,

with derivation details provided in [7], and x̂ is obtained
as mapping of the estimate x̂o of the 3-dimensional state
xo = [r2/2, r sin θT , r cos θT ]

T of the model

ẋo =

0 0 −v̄
0 0 ω
0 −ω 0


︸ ︷︷ ︸

Ā(ω)

xo +

 0
0
−v̄


︸ ︷︷ ︸

δ

= f(xo, ω),

yo = xo1 =
[
1 0 0

]︸ ︷︷ ︸
CT

xo,

which is equivalent to (13), by the Luenberger observer

˙̂xo = Ā(ω)x̂o + δ +Ko(ω)(yo − CT x̂o),

where the observer gain Ko(ω) is calculated so that the
dynamics of the state estimation error x̂o−xo has the desired
stable eigenvalues, and the required output yo(t), within each
time interval kT0 ≤ t < (k + 1)T0, is approximated as

yo(t) ≈ r2k/2.

IV. SIMULATIONS

The proposed station-keeping scheme, summarized in Fig-
ure 2, with both the switching implementation (7),(8),(9) and
the LQ optimal implementation (7),(8),(14) of the ”target
capture control law”, is numerically tested through various
simulations. The results for a case with three station sensors
S1, S2, S3 located at p1 = [−0.4, −0.2]T , p2 = [0.4, 0]T ,
p3 = [0, 0.5]T , and T located at pT = [0, 0]T are shown in
Figures 4–7. The vehicle agent A starts motion from pA(0) =
[−4, − 1.5]T with an initial orientation angle θ(0) = π/3.
Using a fixed-time step to allow the calculation of the
odometry-based displacement (6), the subsequent positions
of the mobile agent are used to facilitate the execution of
the proposed target range algorithmic steps detailed in the
pseudo-code of Algorithm 1.

The trajectories of the mobile agent under the proposed
triangulation estimation-based switching (T-switching) and
LQ (T-LQ) optimal control schemes, which incorporate the
target range estimator of Section III-A, are shown in Fig.
4. The same figure displays the trajectory obtained via
the original LQ optimal station keeping control scheme
of [7] as well, for comparison purposes. The performance
enhancement via the T-LQ optimal approach can be easily
observed in terms of the length of the agent trajectory and
the smoothness and amplitude of the control signal ω. The
control inputs shown in Fig. 5, Fig. 6 and Fig. 7 provide the
change of the angular velocity input with respect to time,
which can be corresponded to the smoothness of the vehicle
trajectory and the practicality of the control scheme. Fig.
7 shows the aggressive fluctuation of the angular velocity
due to the dependence on the different errors calculated

with respect to each beacon. Such fluctuation causes the
irregularity of the final generated path, as in both cases of
using the original switching station keeping control scheme
of [6] or the original LQ optimal station keeping control
scheme of [7]. These adverse effects are well eliminated
utilizing the target range estimator of Section III-A.

V. DISCUSSION ON REAL TIME IMPLEMENTATIONS

The proposed station-keeping scheme of Figure 2, with
both switching and LQ optimal implementations of the
”target capture control law”, is practical and easily imple-
mentable in real-time applications. The proposed scheme
requires the utilization of the onboard sensing capabilities
of a mobile robot solely and does not depend on a fixed
infrastructure or a ground station. Particularly, the vehicle
(or mobile robot) A only needs an onboard sensor that
provides distance measurements to the stations S1, . . . , SN

and a simple odometry unit. Several types of sensors can
be used to obtain A-Si distance measurements. For instance,
if the stations Si are equipped with ultrawideband (UWB)
range sensors or wireless radio transmitters, then a receiver
of the same kind of sensor can be utilized on board of A.
Various distance estimation schemes are available for such
settings, including received signal strength (RSS), time-of-
arrival (TOA), and time-difference-of-arrival (TDOA) based
ones. If the stations Si are passive, i.e., they do not actively
transmit signal, then a light detection and ranging (LIDAR)
sensor or a low-cost combination of a laser range sensor and
a monocular camera can be used to measure the distance
with additional feature detection/identification algorithms.
Odometry data is easily obtained by wheel encoders in non-
holonomic ground robots or by inertial measurement unit
(IMU) sensors in fixed-wing UAVs up to a certain error
level. Since typical research/commercial robots are already
equipped with most of these sensors in common robotics
applications, our algorithm can be readily applied to these
robots to aid in navigation in GPS-denied environments.

VI. CONCLUSION

We have proposed a new station-keeping control scheme.
for nonholonomic autonomous vehicles without access to
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Fig. 4. Controlled trajectories of the mobile agent for a station-keeping
simulation with target range estimation.

1927



0 10 20 30 40 50

time (sec)

0

2

4

6

0 10 20 30 40 50

time (sec)

0

2

4

6

0 10 20 30 40 50

time (sec)

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50

time (sec)

0

1

2

3

4

Fig. 5. d(t), r̂(t), v(t), ω(t) for the simulated station keeping problem
with the switching controller and target range estimation.

0 10 20 30 40 50

time [sec]

0

2

4

6

0 10 20 30 40 50

time (sec)

0

2

4

6

0 10 20 30 40 50

time (sec)

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50

time (sec)

-0.8

-0.6

-0.4

-0.2

0

Fig. 6. d(t), r̂(t), v(t), ω(t) for the simulated station keeping problem
with the LQ optimal controller and target range estimation.
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Fig. 7. d(t), r(t), v(t), ω(t) for the simulated station keeping problem
with the LQ optimal controller.

global position information, mapping the station-keeping
problem to a target capture problem using a rigid formation
theory and distance geometry-based target range estimation
algorithm. The proposed scheme first generates the range es-
timate that is implicitly defined in the rigid graph constructed
at certain time intervals by the stations, the target, and two
instances of the vehicle position. Then, this estimate is fed
to the control law for the mapped target capture problem

to drive the vehicle toward the target by using only this
estimate. Implementations of the target capture control law
via switching and LQ optimal approaches are studied. In
the considered setting, the target location, station locations,
and the vehicle’s self-location are not available. Therefore,
the proposed scheme constitutes a promising approach for
the cases the vehicle cannot locate the stations or the target
but can measure distances to the stations. A planned follow-
up future work is to analyze and enhance robustness of the
overall control scheme to sensor noises and to implement it
in real-time with ground and aerial autonomous vehicles.
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