
 

 

 

 

Abstract — The quadruped robots represent a rapidly 

growing field in the industrial world due to their various 

applications in supporting everyday and hazardous human 

activities. Despite significant research contributions, gait 

optimization remains a challenging task. Typically, gait patterns 

are inspired by mimicking nature but fall short of replicating the 

flexibility and articulated adaptability observed in animals. This 

paper introduces a new method for optimizing gait and 

designing quadruped robots offline. This approach takes into 

account the dynamics of the entire system, including leg masses, 

by employing genetic algorithms and nonlinear programming 

techniques. The results of this new technique enable the 

exploration of gait patterns that can accommodate the rigidity of 

robots while minimizing the energy cost of locomotion. 

I. INTRODUCTION 

uadruped robots, also known as four-legged robots, 

represent a fascinating and rapidly evolving field within 

robotics. These machines, inspired by the locomotion of 

animals like dogs, cheetahs, and horses, have garnered 

significant interest for their ability to navigate diverse and 

challenging environments. Unlike their bipedal counterparts, 

quadruped robots possess intrinsic stability and versatility that 

make them suitable for a wide range of applications. 

The study of quadruped locomotion has drawn researchers 

from various disciplines, driving advancements in mechanics, 

control systems, and materials science. These collective 

efforts have led to the development of sophisticated robots 

capable of executing precise and dynamic movements, even 

on rough terrains [1-5]. In recent years, quadruped robots 

have transitioned from experimental prototypes to practical 

real-world applications. They have found use in sectors such 

as research and rescue, agriculture, exploration, and logistics. 

Furthermore, their ability to navigate difficult environments 

with agility and endurance has opened the door to applications 

in disaster relief and environmental monitoring [6-8]. 

Despite significant progress, challenges persist in 

optimizing gait types and locomotion control [9]. Researchers 

are actively exploring innovative approaches, such as 

advanced optimization models [10-13] predictive control 

systems [14], and the integration of flexible elements [15-18], 

to enhance performance and adaptability. 

Among the various optimization and control 

methodologies, those that generate robust gaits while 

simultaneously minimizing the energy cost of locomotion are 

of particular relevance. It is known from the literature that as 
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transport speeds increase [10, 11, 15], it is advantageous to 

change the gait in order to minimize the energy cost. Thus, 

transitions occur from walking to a walking trot at low speeds, 

which have clear support polygons and are easily controllable, 

to a flying trot and gallop at high speeds, which have support 

lines or even intermittent support points interspersed with 

flight phases. However, while changing gaits at high speeds 

is beneficial, it becomes increasingly complex to control these 

systems and ensure their stability and periodicity of motion. 

Currently, trajectory optimization techniques are based on 

important assumptions such as lightweight or even negligible 

legs, along with motion solutions derived from the simplified 

Single Rigid Body - SRB model [1, 2, 10, 15]. Applications 

on real robots are predominantly based on Central Pattern 

Generators for gaits like walking and walking trot [19]. These 

gaits have the advantage of being supported by support 

polygons and based on Zero Hybrid Dynamics [20], typically 

very robust. Conversely, systems that are inherently more 

unstable with support lines and jumps require predictive 

feedback controls capable of accounting for the strong 

nonlinearities of the system [17, 18, 21]. 

In this paper, we propose an innovative approach to 

generating optimized gaits with the dual objectives of 

reducing the energy Cost of Transport - CoT and eliminating 

the dynamic residuals associated with the presence of inertial 

legs. The algorithm has been designed in such a way that, 

through a series of iterative sub-optimizations, it manages to 

identify a closed and periodic solution capable of satisfying 

the motion equations of the robot. However, it is worth noting 

that this process does not occur in real-time but takes a few 

minutes to ensure convergence towards an optimal and 

compatible solution. The gait generator is based on the 

evolutionary algorithm, Genetic Algorithm - GA, as presented 

in [10], but here, it is enhanced to introduce new and crucial 

elements. In this algorithm: (i) it incorporates the yaw 

equation, allowing for a more comprehensive understanding 

of the robot's rotational dynamics; (ii) it includes a concept of  

a "dummy leg" within the optimization cycle, which 

accurately approximates the overall dynamics; (iii) it resolves 

contact forces in a way that absorbs all the inertial residuals 

of the complete multi-body system. 

To demonstrate the effectiveness of this approach, we 

present the solution for the trot gait, which is characterized by 

the absence of a support polygon. Furthermore, to highlight  
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the capabilities of the method that takes into account a 

significant leg mass compared to the body, we have identified 

a gait that significantly raises the tips of the feet, thus 

simulating the overcoming of terrain obstacles while 

simultaneously minimizing the CoT. 

The article is divided into three sections: the first section 

introduces the motion equations of the quadruped robot and 

the SRB model with a dummy leg. The second section 

describes the optimization algorithm. Finally, in the third 

section, the trot results are presented, comparing them with 

the results obtained using the SRB model with non-

"negligible" leg masses. 

I. MATHEMATICAL MODEL FOR THE GAIT OPTIMIZATION 

A. Robot’s gait parameters 

The Figure 1 describes the robotic system under 

consideration. The robot is composed of a rigid trunk and four 

legs identified by the index 𝑖 = 𝐹𝑅, 𝐻𝑅, 𝐹𝐿, 𝐻𝐿 representing 

front right, hind right, front left, and hind left legs 

respectively. The legs interact with the ground to determine 

the motion of the robot. Each leg has a contact phase (CP) 

during which it interacts with the ground and a swing phase 

(SP) to move towards the next contact point. For stable 

motion of the robot, the sequence of the CP and SP of each 

leg must produce a globally periodic motion of period T. To 

identify a specific gait of the robot, the parameters 𝑡𝑖 ∈ [0, 𝑇] 
and 𝑇𝑖  representing the time at which each leg meets the 

ground and the time duration of the CP, respectively, must be 

known. The ratio between these two quantities is typically 

referred to as the duty factor 𝛽𝑖 =
𝑇𝑖

𝑇
, which is a dimensionless 

parameter characterizing the gait of quadrupeds. 

B. Quadrupedal model with dummy legs 

The motion equations of an 18 degrees of freedom 

quadruped robot, as shown in the Figure 1, allowing leg 

adduction and rotation of the thigh and knee, can be described 

in a compact form: 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� = 𝑺𝝉 + 𝒈(𝒒) + 𝑱(𝒒)𝑇𝒇 (1) 

where the state vector 𝒒 = [𝒒𝑏 , 𝒒𝑙]
𝑇 is organized in two 

groups: 

1. the body coordinates 𝒒𝑏 = [𝒓, 𝜽]𝑇  composed by the 

position vector of the centre of gravity 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 

with respect the fixed reference frame and the three 

angles roll, pitch and yaw 𝜽 = [𝜃, 𝜙, 𝜓]𝑇 between 

the fixed and mobile reference frames; 

2. the 𝑛 = 12 −leg’s joint variables 𝒒𝑙 = [𝛾1, … , 𝛾𝑛]𝑇. 

Then, 𝑴, 𝑪 ∈  ℝ(6+𝑛)×(6+𝑛) are the mass and centrifugal-

Coriolis matrixes; 𝑺 = [𝟎𝑛×6 𝑰𝑛×𝑛]𝑇 is the selection matrix 

of the 𝑛 −leg’s actions torque 𝝉; 𝒈 ∈  ℝ6+𝑛 is the gravity 

force; 𝑱(𝒒)𝑇 ∈  ℝ(6+𝑛)×𝑚 is the Jacobian of the 𝑚 =

4 −ground forces 𝒇 = ∑𝒇𝑖 with 𝒇𝑖 = [𝐹𝑥𝑖 , 𝐹𝑦𝑖, 𝐹𝑧𝑖]. 

The primary goal of this research is to determine the 

trajectory 𝒒 that aligns with the gait parameters selected by 

the GA algorithm described in the following section and 

simultaneously satisfies the motion equations (1) while 

minimizing CoT. However, fully addressing this problem can 

be challenging, as explained in [10, 11], due to significant 

discontinuities occurring when the foot tips initially contact 

the ground, the potential for multiple solutions, and 

configurations that are not achievable kinematically. For 

these reasons, we approach the problem in stages, identifying 

intermediate solutions that initially adhere to simplified 

models and then adapting them to the comprehensive model. 

Below, we illustrate how the optimization algorithm is 

constructed, starting with the SRB combined with a simplified 

dynamic model of the legs, which allows us to generate 

candidate solutions and subsequently complete the resolution 

of the global problem, thereby eliminating any remaining 

dynamic residuals. 

Splitting the equation (1) and isolating the 6 body’s DoF, 

is possible to explicit the inertia contributions that the legs act 

on the body 𝓡𝑏  and vice versa 𝓡𝑙  as: 

𝑴𝑏(𝒒)𝒒�̈� + 𝑪𝑏(𝒒, �̇�)𝒒�̇�

= 𝒈𝑏(𝒒𝑏) + 𝑱𝑏(𝒒)𝑇𝒇
+ 𝓡𝑏(𝒒, �̇�, �̈�𝒍) 

(2) 

𝑴𝑙(𝒒)𝒒𝑙̈ + 𝑪𝑙(𝒒, �̇�)𝒒𝑙̇
= 𝒈𝑙(𝒒) + 𝑱𝒍(𝒒)𝑇𝒇 + 𝝉
+ 𝓡𝑙(𝒒, �̇�, �̈�𝒃) 

(3) 

At this point, is possible to rewrite (2) in a compact form 

explicating the translational and rotational contributions: 

Figure 1: Schematic representation of the robotic system. 

Figure 2: On the left: foot trajectory 𝑝(𝑡) along 𝑥 and 𝑧 

directions. On the right: normal and longitudinal ground 

forces 𝐹𝑧𝑖
, 𝐹𝑥𝑖

, with �̇�𝑥𝑖
(𝑡𝑖) < 0 for incipient contact and 

�̇�𝑥𝑖
(𝑡𝑖 + 𝑇𝑖) < 0 for the foot detachment, in accordance 

with the typical behavior of animals observed in nature. 
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𝑚�̈� = 𝕴(𝒒𝒃, �̇�𝒃, 𝒒𝒍, �̇�𝒍, �̈�𝒍) 

𝑰�̈�  = 𝓛(𝒒𝒃, �̇�𝒃, 𝒒𝒍, �̇�𝒍, �̈�𝒍) 
(4) 

The optimization algorithm based on GA starts when 

design parameters, such as the mass and inertias of both the 

body and legs, are configured together with the locomotion 

speed 𝑉 and the average body height ℎ. The GA proceeds by 

identifying the optimal gait through exploration of various 

combinations of 𝒑𝐺𝐴 = [𝑇, 𝑡𝑖, 𝛽𝑖 , 𝒍𝑖] that are, the parameters 

characterizing the gait and the thigh-leg geometries, 

succinctly summarized as vector 𝒍𝑖. 

In this phase, equations (4) can be approximated under the 

assumption that the leg trajectory 𝒒𝑙(𝒑𝐺𝐴, 𝑉, ℎ, 𝒑𝑠𝑝(𝑥, 𝑧), 𝑡) 

and its derivatives are autonomous function and preassigned 

as a function of the assumed gait 𝒑𝐺𝐴, presuming that the body 

moves at a constant velocity and height. Moreover, the 

kinematics of the leg's swing phase relative to the body 

𝒑𝑠𝑝(𝑥, 𝑧) are also predetermined, with a predefined maximum 

height point to reach, 𝑧𝑠𝑝, as schematically depicted in Figure 

2. This guarantee to overcome possible obstacles during the 

motion. 

At this point, equations (4) can be easily rewritten in the 

SRB version with dummy legs, with the additional 

assumption that body oscillations are small, and that the 

derivative of the Tait–Bryan angles �̇� can be reasonably 

approximated with the angular velocities in the mobile 

reference frame, resulting in: 

𝑚�̈� ≈ 𝑚𝒈 + ∑(𝒇𝑖 + 𝒇𝒍𝑖
) 

𝑰�̈� ≈ ∑(𝒎𝑖 + 𝒎𝒍𝑖
) 

(5) 

where 𝒈 is the gravity acceleration, 𝒇𝑖 and 𝒎𝑖 represent the 

forces and moments acting on the body through the contact 

forces, and similarly denoting 𝒇𝑙𝑖
, 𝒎𝑙𝑖

 for the contributions of 

the dummy legs. 

C. Contact forces constraints 

During the contact phase, the legs exert forces with the 

ground, while no forces are exchanged during the swing 

phase. This means that, at the start and end of the contact, the 

forces must be zero. The normal force 𝐹𝑍𝑖
 must be strictly 

positive during the contact, while the longitudinal 𝐹𝑥𝑖
 and 

lateral 𝐹𝑦𝑖
 forces need to obey to the friction law: 

√𝐹𝑥𝑖
2 + 𝐹𝑦𝑖

2 ≤ 𝜇𝑠𝐹𝑧𝑖 (6) 

with 𝜇𝑠 the static friction coefficient. 

From the observation of animal locomotion, a typical shape 

emerges for the longitudinal force. Animals display the habit 

of always decelerate at the beginning of the contact �̇�𝑥𝑖
(𝑡𝑖) <

0 and then accelerate to propel themselves forward 

�̇�𝑥𝑖
(𝑡𝑖 + 𝑇𝑖) < 0 and permit the foot detachment, (Figure 2). 

A similar force trend holds for the lateral force that is 

responsible for the unavoidable lateral staggering of the 

quadruped’s body. 

D. Periodicity constraints and time-averaged values. 

To identify a valid locomotion, it is essential to impose the 

constraint of kinematic periodicity, which means that within 

one cycle 𝑇, the pitch, roll, and yaw movements and their 

derivatives, as well as the lateral and vertical motion, are 

equal. For longitudinal motion, it is required to maintain the 

same starting and ending cycle velocity and to ensure that the 

average velocity 𝑉 is respected. For vertical motion, the 

desired average height is ℎ: 

𝒒𝑏(0) = 𝒒𝑏(𝑇) 𝑤𝑖𝑡ℎ  𝑥(0) ≠ x(𝑇)  
�̇�𝑏(0) = �̇�𝑏(𝑇) 

𝑉 =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇

0

    ;      ℎ =
1

𝑇
∫ 𝑧(𝑡)𝑑𝑡

𝑇

0

 

(7) 

II. OPTIMIZATION ALGORITHM 

A. General Outline of the Optimization Algorithm 

The algorithm is organized in layers, with a global 

optimizer represented by the GA. Within the GA, there are 

subsequent sub-optimizations based on Non-Linear 

Programming (NLP) and Quadratic Programming (QP) 

techniques. The overall objective of the GA is to identify the 

optimal locomotion gait, 𝒑𝐺𝐴, which minimizes a specific 

fitness function defined as the sum of two contributions: 

• the cost of transport, CoT; 

• the jerk of the contact forces �̇�. 

This is achieved while ensuring that the selected solutions 

always satisfy the motion periodicity conditions described in 

the previous section. 

Once the algorithm converges, it provides the general 

locomotion solution in which the complete robot dynamics 

equation (1) is entirely resolved. This includes determining 

the body trajectory 𝒒𝑏, the leg trajectories 𝒒𝑙, the joint torques 

𝝉, and the ground contact forces 𝒇𝑖. 

B. First Algorithm Layer: Non-Linear Programming 

The first sub-optimizer provides an estimate of the ground-

exchanged forces' shape, identifying an approximate solution 

for the contact forces 𝒇𝑖 that satisfy the SRB - dummy legs 

model as reported in (5). The following actions are then 

executed sequentially: 

1) the GA is initialized by assigning the parameters of the 

robot to be optimized, including the average velocity 

and height 𝑉, ℎ, as well as the masses, the geometry 

and inertias of the body; 

2) the GA generates a candidate population of parameters 

𝒑𝐺𝐴 for gait type 𝑇, 𝑡𝑖 , 𝛽𝑖 and the lengths of the hip, 

thigh, and leg links 𝒍𝑖; 

3) the masses and inertias of the leg links are calculated 

based on 𝒍𝑖; 

4) the leg trajectories 𝒒𝑙 , �̇�𝑙 , �̈�𝑙 are defined using inverse 

kinematics for the stance phase (CP) and pre-

configured Bézier curves for the swing phase (SP). 

The SP trajectory is constructed so that the foot tip 

reaches a predetermined height, 𝑧𝑠𝑝, representing the 

clearance of a hypothetical terrain obstacle. The 𝒒𝑙(𝑡) 

are referred to as dummy legs because they are 
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attached to a hypothetical body that moves at a 

constant gait with fixed velocity and height, and they 

are a function of the optimization vector 𝒑𝐺𝐴; 

5) the forces and moments 𝒇𝒍𝑖
, 𝒎𝒍𝑖

 transmitted by the 

legs to the body are evaluated based on the previously 

defined leg trajectories. 

At this point, the NLP determines the shape of the ground-

reaction forces and the initial conditions of the body 

𝒒𝒃(0), �̇�𝒃(0) to minimize the jerk of the contact forces. To 

reduce the number of unknowns in the problem and expedite 

the method, we have described the forces 𝒇𝑖 as functions of 𝑘 

unknown coefficients 𝒄𝑘, which, in the interval CP ∈ [𝑡𝑖 , 𝑇𝑖], 
describe the spline shape of these forces, resulting in 𝒇𝑖(𝒄𝑘). 

Additionally, the NLP must ensure: 

i. the non-slipping of the foot when it is in contact with 

the ground, as reported in equation (8), the positive 

direction of normal forces, and the braking 

conditions during the initial contact �̇�𝑥𝑖
(𝑡𝑖) < 0 and 

detachment �̇�𝑥𝑖
(𝑡𝑖 + 𝑇𝑖) < 0, all synthetically 

represented by the inequality constraint 𝒉𝑖(𝒄𝑘) < 0; 

ii. adherence to the motion equation for SRB dummy 

legs as stated in (5); 

iii. the periodic conditions and time-averaged values 

discussed in (7) and synthetically represented by 

𝒘(𝒒𝑏(0), �̇�𝑏(0), 𝒒𝑏(T), �̇�𝑏(T), 𝑉, ℎ) = 0. 

The subproblem is summarized as follows: 

min
𝒄𝒌,𝒒𝒃(0),�̇�𝒃(0)

∑ ∫ �̇�𝑖(𝒄𝑘) 𝑑𝑡
𝑇𝑖

𝑡𝑖𝑖

 

       subject to        𝒉𝑖(𝒄𝑘) < 0 

{
𝑚�̈� = 𝑚𝒈 + ∑(𝒇𝑖(𝒄𝑘) + 𝒇𝒍𝑖

)

𝑰�̈� = ∑(𝒎𝑖(𝒓, 𝒇𝑖(𝒄𝑘)) + 𝒎𝒍𝑖
)
 

𝒘(𝒒𝑏(0), �̇�𝑏(0), 𝒒𝑏(T), �̇�𝑏(T), 𝑉, ℎ) = 0 

(8) 

The NLP assembled in this way is a typical shooting 

problem, where once the guess 𝒄𝒌, 𝒒𝒃(0), �̇�𝒃(0) are 

identified, the first differential equation of (5) is explicitly 

solved. At this point, obtaining the translational motion of the 

body 𝒓 allows the calculation of the moments that the contact 

forces exert on the body 𝒎𝑖(𝒓), and then proceed with the 

explicit solution of the second differential equation (5). 

Once the NLP minimum problem is solved, the trajectory 

of the body 𝒒𝑏 = 𝒒𝑏𝑁𝐿𝑃
 and the contact forces with the 

ground 𝒇𝑖 = 𝒇𝑖𝑁𝐿𝑃
 are obtained. At this point, it is possible to 

calculate, again through inverse kinematics, the new leg 

trajectories 𝒒𝑙 = 𝒒𝑙𝑁𝐿𝑃
, this time compatible with the body 

motion found. The NLP solution is tested in the global motion 

equation (2), evaluating the residual error of this first solution 

step as 𝜺𝑁𝐿𝑃 = [𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝜀𝜃 , 𝜀𝜙, 𝜀𝜓]. 

𝜺𝑁𝐿𝑃 = 𝑴𝑏(𝒒)𝒒�̈� + 𝑪𝑏(𝒒, �̇�)𝒒�̇� − 𝒈𝑏(𝒒𝑏) − 𝑱𝑏(𝒒)𝑇𝒇

− 𝓡𝑏(𝒒, �̇�, �̈�𝒍) 
(9) 

By using equation (3), it is also possible to evaluate the 

control action torques 𝝉 that enable the assessment of the 

𝐶𝑜𝑇𝑁𝐿𝑃. 

In the work [10], the authors proposed an optimization 

model similar to the first algorithmic step, which has been 

expanded and solved here using a different methodology, the 

NLP. In [10], they computed the 𝐶𝑜𝑇𝑁𝐿𝑃, assuming that the 

robot has negligible leg masses. However, in this context, the 

same authors demonstrate how the 𝐶𝑜𝑇𝑁𝐿𝑃 can deviate when 

considering leg masses. The algorithm presented here not 

only allows for the optimization of 𝐶𝑜𝑇 but also enables its 

minimization in the presence of legs with masses, consistently 

achieving periodic gaits. This is achieved by fully solving the 

multi-body motion equations (1), resulting in an 𝜺 equal to 

zero. 

C. Second Algorithm: Enhancing the Optimization Series 

with QP 

The second part of the algorithm involves the detailed 

solution of the contact forces 𝒇𝑖, which now directly satisfy 

the motion equation (2). The 𝒇𝑖𝑁𝐿𝑃
 previously found serve as 

guesses for the following new programming problem, with 

the difference that now the 𝒇𝑖 are discretized in time within 

the interval [0; 𝑇]. The new minimum problem is addressed 

by means of a QP approach, with the aim of minimizing the 

ground contact forces  

exchanged while ensuring that the multi-body motion 

equations (2) are satisfied along the trajectories obtained from 

the NLP, 𝒒𝑏𝑁𝐿𝑃
 and 𝒒𝑙𝑁𝐿𝑃

: 

min
𝒇𝑖

∑
1

2
𝒇𝑖

𝑇𝓗𝒇𝑖 + 𝓕𝑇𝒇𝑖 

              subject to        𝑨𝒇𝑖 ≤ 𝒃 

𝑴𝑏(𝒒)𝒒�̈� + 𝑪𝑏(𝒒, �̇�)𝒒�̇�

= 𝒈𝑏(𝒒𝑏) + 𝑱𝑏(𝒒)𝑇𝒇
+ 𝓡𝑏(𝒒, �̇�, �̈�𝒍) 

(10) 

where the matrix 𝓗 and the vector 𝓕 are generical gains of 

the objective function; the matrix 𝑨 and vector 𝒃 are defined 

to satisfy the linearized friction constraint, select positive 

normal forces during CP and the incipient braking and 

detachment conditions �̇�𝑥𝑖
(𝑡𝑖) < 0 and �̇�𝑥𝑖

(𝑡𝑖 + 𝑇𝑖) < 0. The 

equality constraints make it possible to achieve a new residual 

error 𝜺𝑄𝑃 less then the previous 𝜺𝑁𝐿𝑃, using the kinematic 

solution of the body 𝒒𝑏𝑁𝐿𝑃
 and legs  𝒒𝑙𝑁𝐿𝑃

 found by the first 

optimization algorithm. 

D. Evaluation of the GA's constraint and fitness function 

At this point, we move on to assess the constraint equation 

of the GA, specifically, evaluating if the periodicity 

conditions are met. To do this, we take the 𝒇𝑖𝑄𝑃
 calculated 

from the QP and the initial conditions 𝒒𝑏𝑁𝐿𝑃
(0), �̇�𝑏𝑁𝐿𝑃

(0) 

found by the NLP, and we check the gait periodicity 
𝒘(𝒒𝑏(0), �̇�𝑏(0), 𝒒𝑏(T), �̇�𝑏(T), 𝑉, ℎ) = 0 by solving 

explicitly the equation (2). At each time step the inverse 

kinematics is computed to describe leg movement that is 

compatible with the body. This step allows us to minimize 

residual errors 𝜺 and evaluate how well the periodicity 

conditions have been met. 
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Similarly to what was done before, from equation (3), it is 

now possible to calculate the control actions 𝝉 expended. At 

this point, we proceed with the evaluation of the GA's fitness 

function that we aim to minimize, which is a function that 

sums the CoT and the jerk of the contact forces: 

𝐽 =
1

𝑚𝑔𝑑𝑇
∫ |𝝉 ∙ �̇�𝑙|

𝑇

0

𝑑𝑡 +
1

 𝑇
∫ ‖�̇�‖

𝑇

0

𝑑𝑡 (11) 

with 𝑑 being the distance travelled by the robot in a complete 

cycle with a period 𝑇. 

III. RESULTS AND DISCUSSION 

In this paper, we aim to demonstrate how the optimization 

algorithm, as assembled, can quickly and easily identify fully 

closed solutions that adhere to periodicity. We tasked the GA 

with minimizing the fitness function of a trotting gait that does 

not exhibit support polygons but only alternate support lines 

(Figure 1). This type of configuration is achieved by setting a 

duty factor 𝛽𝐹𝑅 = 𝛽𝐹𝐿 = 0.5 and 𝛽𝐻𝑅 = 𝛽𝐻𝐿 = 0.5 for both 

the front and rear legs and ensuring that there is no overlap 

between the pair 𝐻𝐿, FR with HR, FL. Unlike the classic 

walking trot, which is characterized by the presence of a 

support polygon, the trot or flying trot are gaits that are often 

discarded in robotics due to their complexity to execute [9] 

and do not allow chance for errors. 

Table 1 presents the robot's data, where it has been required 

that the leg length 𝒍𝑖, as well as their mass 𝒎𝑙𝑒𝑔 and inertia of 

each link (𝑰ℎ𝑖𝑝 , 𝑰𝑡ℎ𝑖𝑔ℎ , 𝑰𝑐𝑎𝑙𝑓), be the same for each 𝑖 − 𝑡ℎ leg. 

The measurements for 𝒍𝑖 and 𝒎𝑙𝑒𝑔 are organized as 

[ℎ𝑖𝑝, 𝑡ℎ𝑖𝑔ℎ, 𝑐𝑎𝑙𝑓]. The inertias are centered at the joint and 

ordered such that the first component is aligned with the 

cylindrical axis, and the other two are the same because the 

link is axially symmetric. The sum of the masses of all leg 

links accounts for approximately 6% of the body mass, 

inspired by the robot presented in [1]. In Figure 3, the forces 

and moments that various sub-optimizers have found for 

identifying the global solution of the GA are shown. In 

particular, the black line indicates the solution found by NLP 

using the SRB with dummy legs, for which 𝒇𝑖𝑁𝐿𝑃
 e 𝒎𝑖𝑁𝐿𝑃

 are 

 

Figure 3: Optimization results. The black lines represent the forces and torques that result after the non-linear programming. 

The yellow lines represent the forces and torques of the final solution of the algorithm. 

 

Figure 4: Optimization results: the black lines represent the body motion 𝒒𝑏𝑁𝐿𝑃
 after the solution of the NLP; the blue lines 

represent the body motion �̃�𝑏𝑁𝐿𝑃
 found by straight forwarding the multi-body equations; the yellow represent the final 

trotting gait 𝒒𝑏. 

Table 1. Simulation setting parameters. 
Parameter Value Unit 

[𝑚; 𝑉; ℎ] [25; 1; 0.5] [𝑘𝑔; 𝑚/𝑠; 𝑚] 

[𝐼𝑥; 𝐼𝑦; 𝐼𝑧] [0.35; 2.1;  2.1] 𝑘𝑔 𝑚2 

[𝐿, 𝑊, 𝐻] [0.6; 0.25; 0.2] 𝑚 

𝑧𝑠𝑝 0.25 𝑚 

𝒍𝑖 [0.06; 0.33; 0.33] 𝑚 

𝒎𝑙𝑒𝑔 [0.06; 0.16; 0.16] 𝑘𝑔 

𝑰ℎ𝑖𝑝 [0.01; 0.02; 0.02] 𝑘𝑔 𝑚2 

𝑰𝑡ℎ𝑖𝑔ℎ = 𝑰𝑐𝑎𝑙𝑓  [0.03; 0.09; 0.09] 𝑘𝑔 𝑚2 

𝑡𝐹𝑅 = 𝑡𝐻𝐿 0 𝑠 

𝑡𝐻𝑅 = 𝑡𝐹𝐿 0.23 𝑠 
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reported. In yellow, the final solution's 𝒇𝑖 and 𝒎𝑖 are shown. 

In Figure 4, the body's kinematics are presented, with the 

dashed black line representing 𝒒𝑏𝑁𝐿𝑃
, while the blue line 

represents the solution related to the first NLP sub-optimizer, 

obtained when the results of the forces 𝒇𝑖𝑁𝐿𝑃
, 𝒒𝑙𝑁𝐿𝑃

 and 

𝒒𝑏𝑁𝐿𝑃
(0) �̇�𝑏𝑁𝐿𝑃

(0) are used to evaluate the explicit solution 

of the multi-body motion equations (2). Thus, �̃�𝑏𝑁𝐿𝑃
, due to 

the presence of 𝜺𝑁𝐿𝑃, does not comply with the periodicity 

conditions and diverges. In yellow, the final solution 𝒒𝑏 

calculated from the explicit solution of (2) based on 𝒇𝑖𝑄𝑃
, 

while maintaining 𝒒𝑙𝑁𝐿𝑃
 and the initial conditions found by 

the NLP 𝒒𝑏𝑁𝐿𝑃
(0), �̇�𝑏𝑁𝐿𝑃

(0). 

The trajectories 𝒒𝑏, compared to the trajectories 𝒒𝑏𝑁𝐿𝑃
, 

imply an increase in the CoT value (≈ 5% more) or, in other 

words, to a higher effort of the actuation system in applying 

the torques 𝝉 to the robot joints. It's important to emphasize 

that even though the solution of an NLP may find a low CoT, 

on the other hand, the dynamic solution is no longer 

compatible with non-negligible leg masses. 

IV. CONCLUSION 

This article represents a significant improvement of the 

current optimization techniques used to generate gaits of 

quadruped robots. The models used to date do not consider 

the dynamics of the legs and the effects they have on the 

robot's body. The algorithm presented here is able to select 

solutions for complex and weakly controllable gaits, such as 

trotting without a support polygon. The algorithm not only 

finds solutions compatible with nonlinear dynamics but also 

selects those that minimize energy cost. All of this is made 

possible through a stepwise solution approach where each 

intermediate solution serves as the guess for the next 

algorithm. 

Future developments will focus on analyzing the stability 

and robustness of the gaits identified under conditions of 

uncertain parameters such as mass distribution or terrain 

roughness. 
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