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Abstract— This paper proposes a novel approach for the
design of stabilizing sliding manifolds for linear systems affected
by model uncertainties and external disturbances. In classical
sliding mode control approaches, rejecting model uncertainties
and external disturbances often relies on designing a dis-
continuous control law with a suitable gain. Specifically, the
greater the uncertainty, the larger the control gain. However,
this approach might be detrimental to the plant. Instead, the
proposed technique deals with this problem by focusing on
the design of a suitable sliding manifold, where stability is
guaranteed despite model uncertainties. This approach exhibits
several benefits such as not needing any further identification
process and designing a smaller control gain.

Index Terms— sliding mode control, sliding manifold design,
uncertain systems

I. INTRODUCTION

Sliding Mode Control (SMC) is a well-known robust
nonlinear control technique which owes its popularity to its
straightforward implementation and proven robustness with
respect to external disturbances [1]–[3]. In particular, SMC
aims to enforce the stability of a given system by means
of the design of a suitable sliding manifold, on which the
so-called equivalent dynamics exhibits desired convergence
properties. Once the manifold is designed, a control law is
designed to guarantee finite-time convergence of the system
trajectory onto the designed manifold.

Although different SMC approaches have been proposed
over the years, e.g. Integral SMC [4], Sub-optimal Second
Order SMC [5], SMC with optimal reaching [6], event-based
SMC [7], less attention has been devoted to the design of the
sliding manifold, focusing only on the development of new
control algorithms.

Only in the latest years the problem of designing a stabiliz-
ing manifold has become more and more relevant and several
works in the literature explore different design techniques in
the nominal case, i.e., considering no model uncertainties.
For instance, [8] reduces the sliding manifold design to a
deterministic free-cost Linear Quadratic Regulation (LQR)
problem, [9] relates the design of the equivalent dynamics on
the manifold to the Ackermann’s formula, which is iteratively
used to achieve the desired placement of the poles of the
equivalent system.
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The problem of the sliding surface design in presence of
unmatched disturbances is tackled in [10] and [11]. In [10]
the effect of the disturbance is minimized by choosing the
manifold as the transposed of the control effectiveness ma-
trix, while in [11] the manifold is modified with an integral
term and the disturbance is estimated with an observer and
treated separately.

However, two main flaws arise in the cited works. Specifi-
cally, either the unmatched uncertainty is disregarded, which
is a classical issue in SMC theory, or it is assumed to fully
know the system dynamics, which in practice is unrealistic.
Although the (matched) model uncertainty can be gathered in
the (matched) disturbance term and therefore rejected once
the manifold is attained, this comes at the cost of a larger
control effort compared to the one required with an effective
sliding manifold design.

To cope with this problem, data-driven approaches for the
design of sliding surface in the case of systems with uncertain
dynamics have been proposed in the literature (see, e.g.,
[12] and [13]). However, such data-driven solutions require
gathering a large amount of data in order to either satisfy the
persistent excitation assumption and effectively design the
sliding manifold, or to train and validate the used models.

From this point of view, if one correctly designs the sliding
manifold despite the model uncertainty, it is possible to
ignore them when designing the gain of the SMC controller,
while still having a stable controlled system.

This paper proposes a sliding surface design approach for
linear time-invariant (LTI) systems which guarantees that
the controlled system is stable even in presence of model
uncertainty and external disturbances, without relying on
any additional identification procedure. In particular, both
matched and unmatched disturbances are considered, and
it is proven that, besides rejecting matched disturbances,
the controlled system is input-to-state stable with respect to
unmatched disturbances.

The paper is organized as follows: in Section II we intro-
duce the fundamental concepts upon which the main result is
built. In Section III the main result of the paper is presented,
while in Section IV the proposed sliding manifold design
technique is assessed on an academic example. Finally, in
Section V conclusions are drawn.

Notation: Given a matrix M ∈ Rn×n, M ≺ 0
denotes that M is Hurwitz. Furthermore, we denote by λM

the maximum eigenvalue of M , and by λM its smallest
eigenvalue. Given two matrices M,N ∈ Rn×n, M ⊀ N
indicates the fact that the matrix M −N is not Hurwitz.
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II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a perturbed and uncertain LTI system

ξ̇(t) = Āξ(t) + B̄u(t) + h(t)

=
(
ˆ̄A+∆Ā

)
ξ(t) +

(
ˆ̄B +∆B̄

)
u(t) + h(t), (1)

where ξ(t) ∈ Rn is the state, u(t) ∈ Rm the control input,
and h(t) ∈ Rn the disturbance. Moreover, Ā, ˆ̄A,∆Ā ∈
Rn×n, and B̄, ˆ̄B,∆B̄ ∈ Rn×m. In particular, ∆Ā and ∆B̄
represent the model uncertainty.

As described in [3], if matrix B̄ is full column rank,
then there exists a change of variables x(t) = Tξ(t), with
T ∈ Rn×n non singular, that allows to rewrite system (1)
in the so-called canonical reduced (or regular) form charac-
terized by the matrices A := TĀT−1 and B := TB̄ and the
disturbance in the new coordinates, i.e., d(t) := Th(t).

In this form, the state x(t) and the disturbance d(t) can be
split, respectively, into two vectors, i.e., x1(t), d1(t) ∈ Rn−m

and x2(t), d2(t) ∈ Rm, such that (1) can be rewritten as

ẋ1(t) = A1,1x1(t) +A1,2x2(t) + d1(t) (2a)
ẋ2(t) = A2,1x1(t) +A2,2x2(t) +Bu(t) + d2(t), (2b)

where A1,1 ∈ R(n−m)×(n−m), A1,2 ∈ R(n−m)×m, A2,1 ∈
Rm×(n−m) A2,2 ∈ Rm×m, and B ∈ Rm×m. Note that from
now, the dependence on time t is neglected when obvious
from the context.

The uncertainty on the matrices Ā and B̄ is transferred to
the matrices Ai,j and B as follows

Ai,j = Âi,j +∆i,j , ∀ (i, j), (3a)

B = B̂ +∆B , (3b)

with Âi,j and B̂ being the nominal part of matrix Ai,j and B
respectively, and matrices ∆i,j ∆B being the corresponding
uncertainty.

Assumption 1: The unmatched disturbance d1(t) and the
matched one d2(t) are bounded, i.e.,

∥d1(t)∥2 ≤ d̄1 ∥d2(t)∥2 ≤ d̄2,

where d̄1 and d̄2 are known positive constants.
Assumption 2: The model uncertainty on B satisfies the

following inequality ∥∥∥B̂∥∥∥
2
> ∥∆B∥2 .

Also, the model uncertainties satisfy

∥∆i,j∥2 ≤ δi,j ∥∆B∥2 ≤ δB ,

where δi,j and δB are known positive constants.
Note that the first inequality in Assumption 2 is needed

to guarantee that the control direction is not affected by the
uncertainty on B, which is a key assumption to design the
gain of the discontinuous controller.

For the linear system (2), it is possible to design the sliding
variable σ ∈ Rm as the linear combination of the states, i.e.,

σ := Λx = Λ1x1 + Λ2x2, (4)

where Λ ∈ Rm×n, Λ1 ∈ Rm×(n−m), Λ2 ∈ Rm×m. Without
loss of generality, it is possible to define Λ2 = Im and Λ1 =
K, so that when the system is in sliding mode, i.e., when
σ = 0, x2 can be written as a function x1, i.e.,

σ = Kx1 + x2 = 0 ⇐⇒ x2 = −Kx1. (5)

Note that, since the sliding variable σ is regarded as the
system output, then, in order to design a first-order SMC,
the control input u must appear in the first time derivative
of σ. This is straightforward to verify in our case. Indeed,
by virtue of the choice of Λ, σ in (4) satisfies

σ̇ = Λ1ẋ1 + Λ2ẋ2

= Kẋ1 + ẋ2

= K (A1,1x1 +A1,2x2 + d1)+

+A2,1x1 +A2,2x2 +Bu+ d2

along the solution of (2), where B is by assumption a full
rank matrix. Moreover, one can notice that the choice of K
does not affect the relative degree of the system, which in
this case is said to be strictly equal to 1 according to the
definition given in [14].

The motion of a system in closed-loop with a sliding mode
controller consists of two phases. The first one is the so-
called reaching phase, in which the state trajectory converges
in a finite time tr onto the sliding manifold σ = 0, while
the second one is the sliding phase, in which the system
trajectory remains on the manifold σ = 0.

The system in sliding can be written as an autonomous
system referred to as the equivalent system, which can be
obtained by imposing σ = σ̇ = 0. For the canonical form (2)
the equivalent dynamics is described by n − m differential
equations and m algebraic equations, i.e.,{

ẋ1 = (A1,1 −A1,2K)x1 + d1

x2 = −Kx1

(6)

Then, if the pair (A1,1, A1,2) is controllable, and K in (5)
is well designed, it is possible to establish the input-to-state
stability of the dynamics of the equivalent system in (6) with
respect to the unmatched disturbance d1. Asymptotic stability
can be established for linear systems only if d1 is constant.

Definition 1 (Input-to-State Stability [15]): The dynami-
cal system ξ̇ = f (ξ, ν) is input-to-state stable (ISS) with
respect to the input ν if and only if there exist a smooth
function V : Rn → R≥0, three class K∞ functions α1(·),
α2(·), α3(·), and a class K function α4(·) such that

α1 (∥ξ∥) ≤ V (ξ) ≤ α2 (∥ξ∥) (7a)

V̇ (ξ) ≤ −α3 (∥ξ∥) + α4 (∥ν∥) . (7b)

Then, V is referred to as an ISS-Lyapunov function, and the
system is said to be ISS with respect to ν.

A necessary condition for the system’s input-to-state sta-
bility, is that the matrix K has to be designed so that the
equivalent system without d1 is asymptotically stable [16,
Section 2]. However, model uncertainties can make the
system unstable since there exist different choices of K
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that stabilize the nominal system but not the uncertain one,
i.e., in general K might satisfy Â1,1 − Â1,2K ≺ 0 and
A1,1 −A1,2K ⊀ 0.

For this reason, given the LTI system (2), we seek for
a condition that allows to design a matrix K on the basis
of the nominal system and that stabilizes the system despite
model uncertainties. In the next section we will present such
a condition, derived from Lyapunov stability analysis on the
equivalent system.

Note that in this paper we focus only on the design of the
sliding manifold, i.e., on the sliding phase, while the design
of the reaching phase is standard and can be enforced via
classical techniques [1]–[3].

III. PROPOSED MANIFOLD DESIGN TECHNIQUE

In this Section we aim to solve the problem formulated in
the previous section, i.e., we propose a systematic procedure
to design a sliding function σ given by (4), such that on
the manifold σ = 0 the system (2) exhibits desired stability
properties. More precisely, considering that the pair (Â, B̂)
is the only known information about the plant, we aim
to provide a condition on K that allows to asymptotically
stabilize the system by making sure that the nominal part
of the equivalent dynamics is dominant with respect to the
uncertain one.

Theorem 1 (Robust Stability of the Manifold): Consider
the uncertain linear system (2) and let Assumptions 1 and
2 hold. Given a sliding variable σ as in (4), let P̂ and Q̂
be symmetric positive definite (SPD) matrices satisfying
the the Lyapunov equation associated with the nominal
dynamics of the equivalent system (6), i.e.,(

Â1,1 − Â1,2K
)⊤

P̂ + P̂
(
Â1,1 − Â1,2K

)
= −Q̂. (8)

If the following inequality is satisfied

λQ̂

λP̂

> 2 (δ1,1 + δ1,2 ∥K∥2) + γ, (9)

with γ ∈ R>0 arbitrarily small, then (6) is ISS with respect
to the unmatched disturbance d1.

Proof: Consider a candidate ISS-Lyapunov function
associated with the equivalent dynamics (6), i.e.,

V (x1) := x⊤
1 P̂ x1. (10)

To comply with the condition (7a), let ε ∈ R>0 be an
arbitrarily small positive constant. Then, since P̂ is SPD,
its eigenvalues are all positive and it is possible to choose
α1 = λP̂ − ε > 0 and α2 = λP̂ + ε > 0 such that V in (10)
satisfies

α1∥x1∥22 ≤ V (x1) ≤ α2∥x1∥22,

where α1∥x1∥22 and α2∥x1∥22 are class K∞ functions, since
they are radially unbounded, strictly increasing in ∥x1∥22, and
equal to 0 when ∥x1∥22 = 0. Thus, V in (10) is a candidate

ISS-Lyapunov function and satisfies

V̇ = x⊤
1 P̂ ẋ1 + ẋ⊤

1 P̂ x1

= x⊤
1 P̂ (A1,1 −A1,2K)x1+

+ x⊤
1 (A1,1 −A1,2K)

⊤
P̂ x1+

+ x⊤
1 P̂ d1 + d⊤1 P̂ x1.

Using (3a), it yields

V̇ = x⊤
1 P̂

(
Â1,1 − Â1,2K

)
x1+

+ x⊤
1

(
Â1,1 − Â1,2K

)⊤
P̂ x1+

+ x⊤
1 P̂ (∆1,1 −∆1,2K)x1+

+ x⊤
1 (∆1,1 −∆1,2K)

⊤
P̂ x1+

+ x⊤
1 P̂ d1 + d⊤1 P̂ x1.

Now, using (8) we obtain

V̇ = −x⊤
1 Q̂x1 + x⊤

1 P̂ (∆1,1 −∆1,2K)x1+

+ x⊤
1 (∆1,1 −∆1,2K)

⊤
P̂ x1 + 2x⊤

1 P̂ d1. (11)

As for the cross term in (11), it is possible to apply Young’s
inequality, as it exists γ ∈ R>0 such that

x⊤
1 P̂ d1 ≤ γ∥x1P̂∥22

2
+

∥d1∥22
2γ

,

thus allowing the following upper bound for equation (11)

V̇ ≤ −x⊤
1 Q̂x1 + x⊤

1 P̂ (∆1,1 −∆1,2K)x1+

+ x⊤
1 (∆1,1 −∆1,2K)

⊤
P̂ x1 + γ∥x1P̂∥22 +

∥d1∥22
γ

.

Since Q̂ is SPD, the corresponding quadratic form is bounded
from above and below by its biggest and smallest eigenvalue,
respectively. Then, it yields

∥x1∥22λQ̂ ≤ x⊤
1 Q̂x1 ≤ ∥x1∥22λQ̂.

Now, since also P̂ is SPD, we have

∥P̂∥2 =

√
λ
(
P̂⊤P̂

)
=

√
λ
2

P̂ = λP̂ .

Then, by virtue of Assumption 2, we obtain

V̇ ≤ −∥x1∥22λQ̂ + 2∥x1∥22∥P̂∥2 ∥∆1,1 −∆1,2K∥2 +

+ γ∥x1P̂∥22 +
∥d1∥22
γ

≤ −∥x1∥22λQ̂ + 2∥x1∥22λP̂ ∥∆1,1 −∆1,2K∥2 +

+ γλP̂ ∥x1∥22 +
∥d1∥22
γ

≤ ∥x1∥22
(
2λP̂

(γ
2
+ ∥∆1,1 −∆1,2K∥2

)
− λQ̂

)
+

+
∥d1∥22
γ

≤ ∥x1∥22
(
2λP̂

(γ
2
+ δ1,1 + δ1,2 ∥K∥2

)
− λQ̂

)
+

+
∥d1∥22
γ

.
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Now, let us define α3, α4 ∈ R as

α3 := 2λP̂

(γ
2
+ δ1,1 + δ1,2 ∥K∥2

)
− λQ̂

α4 :=
1

γ
.

Then, if (9) is satisfied, both α3 and α4 are positive, and we
obtain

V̇ ≤ −α3∥x1∥22 + α4∥d1∥22.

Since α3∥x1∥22 is a class K∞ function and α4∥d1∥22 is a class
K function, we can conclude that the equivalent dynamics (6)
is ISS with respect to the unmatched disturbance d1.

Remark 3.1 (Asymptotic Stability): Note that the ISS
property of (6) implies that when d1 is constant or equal
to zero, then (6) is asymptotically stable. In particular the
proof in the case of d1 = 0 is straightforward, while for the
case in which d1 = d⋆1 ∈ Rn−m, it is enough to first shift the
system with respect to the equilibrium point corresponding
to the constant d⋆1.

Remark 3.2 (Ultimately Bounded Set): It is possible to
compute the ultimately bounded set of the state of the equiv-
alent system (6) by using the upperbound of the unmatched
disturbance given in Assumption 1. Specifically, from the
inequality

V̇ ≤ −α3∥x1∥22 + α4d̄
2
1,

the ultimately bounded set Ω1 for the state x1 is defined as

Ω1 :=
{
x1 ∈ Rn−m : ∥x1∥ ≤

√
α4

α3
d̄1

}
. (12)

It is clear that, by virtue of the enforcement of a sliding
mode on the manifold σ = 0, where x2 = −Kx1, also the
state x2 is ultimately bounded and the corresponding set Ω2

can be computed straightforwardly.
Remark 3.3: Let S and Ŝ denote the sets of matrices

K ∈ Rm×(n−m) making, respectively, the full and nominal
equivalent dynamics Hurwitz, i.e.,

S := {K : (A1,1 −A1,2K) ≺ 0}

Ŝ :=
{
K :

(
Â1,1 − Â1,2K

)
≺ 0

}
.

Moreover, let Sr denote the set of matrices K ∈ Ŝ that
satisfy (9), then one has that Sr ⊆ (S ∩ Ŝ).

Remark 3.4: Note that Theorem 1 holds even if the un-
certainties ∆i,j(x) and ∆B(x) are nonlinear functions of the
state as long as Assumption 2 is satisfied.

IV. SIMULATION RESULTS

To assess the proposed technique, in this section we
consider as an academic example the RLC circuit depicted
in Fig. 1 and described by the Kirchhoff equations

CV̇C = −VC

R2
+ IL − h1

LİL = −VC −R1IL + u+ h2,

where h1 and h2 are unmatched and matched disturbances,
respectively.

−
+h2

−
+u

LIL R1

C

+

−

VC R2 h1

Fig. 1. RLC case study circuit described in (13).

The aim of the control problem is to impose a given
reference voltage V ∗

C on the load, which will correspond to
that on the capacitor VC , while imposing a certain reference
current I∗L on the inductor. In the following simulations,
without loss of generality, the reference voltage is chosen as
V ∗
C = 0V , and thus the reference current is set to I∗L = 0A.

Let ṼC := VC − V ∗
C and ĨL := IL − I∗L denote the voltage

and current error. Then, the error system can be expressed
as

˙̃VC = − 1

CR2
ṼC +

1

C
ĨL − 1

C
h1 (13a)

˙̃IL = − 1

L
ṼC − R1

L
ĨL +

1

L
(ũ+ h2) . (13b)

Given a sliding variable as in (4), i.e.,

σ = kṼC + ĨL,

with k ∈ R, then the equivalent dynamics of (13) on the
sliding manifold σ = 0 can be expressed as

˙̃VC = − 1

C

(
1

R2
+ k

)
ṼC − 1

C
h1,

while the nominal one can be written as

˙̃VĈ = − 1

Ĉ

(
1

R̂2

+ k

)
ṼC − 1

Ĉ
h1.

In the case of the considered RLC circuit, the Lyapuonv
equation is scalar. In particular, since P̂ , Q̂ ∈ R, then such
matrices coincide with their eigenvalues, and thus we obtain

−2
1

Ĉ

(
1

R̂2

+ k

)
λP̂ = −λQ̂. (14)

Then, by using (14) in (9), it yields

1

Ĉ

(
1

R̂2

+ k

)
> δ1,1 + δ1,2 |k|+

γ

2
.

The parameters used in the simulation are reported in
Table I, while the disturbances h1 and h2 are defined as

h1(t) := 0.05 sin
(
103t

)
h2(t) := 0.1 cos

(
103t

)
.

The bounds δ1,1 and δ1,2 are calculated on the basis of the
maximum possible variation of the parameters, i.e.,

max
∆R2,∆C

{∣∣∣∣∣ 1

(R̂2 +∆R2)(Ĉ +∆C)
− 1

R̂2Ĉ

∣∣∣∣∣
}

≤ 260.1

max
∆C

{∣∣∣∣ 1

Ĉ +∆C
− 1

Ĉ

∣∣∣∣} ≤ 214.3
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TABLE I
PARAMETERS OF THE RLC CIRCUIT IN FIGURE 1.

Parameter True Nominal Uncertainty Unit of
Symbol Value Value Percentage Measure

C 1.8× 10−3 1.4× 10−3 30% F
L 2.2× 10−3 2.9× 10−3 25% H
R1 5.0× 10−1 4.0× 10−1 25% Ω
R2 2.0 1.5× 102 41% Ω

Therefore, δ1,1 = 260.1 and δ1,2 = 214.3. The simulation
results depicted in Fig. 2 are obtained by setting k = 1.
Indeed it is easy to verify that

1224.5 =
1

Ĉ

(
1

R̂2

+ k

)
> δ1,1 + δ1,2 |k| = 474.4. (15)

To calculate the ultimately bounded set, one first has to
calculate the quantity denoted as d̄1 in equation (12), i.e.,

d̄1 := sup
t,∆C

{
h1(t)

Ĉ +∆C

}
≈ 5× 10−2

10−3
= 50.

Then, it is possible to derive that, for k = 1, the corre-
sponding term γ appearing in equation (9) can be at most
1.4 × 103. This implies that for the considered case study,
the error bounds due to the unmatched disturbance are∣∣∣ṼC

∣∣∣ ≤ √
α4

α3
d̄1 ≈ 3× 10−3V (16a)∣∣∣ĨL∣∣∣ = k

∣∣∣ṼC

∣∣∣ ≤ 3× 10−3A, (16b)

defining the ultimately bounded sets as Ω1 = {|VC | ≤ 3 ×
10−3V } and Ω2 = {|IL| ≤ 3 × 10−3A}. The control law
is obtained as a classical relay type switching controller as
described in classical literature, i.e.,

u = −ρ sign (σ) .

The gain can be determined according to the reaching
condition σσ̇ ≤ −η |σ|, with η ∈ R>0 being an arbitrary
constant. In particular, in the simulation depicted in Fig. 2,
the chosen gain is ρ = 2, which is able to enforce a sliding
mode in finite time for the given initial condition. Moreover,
Fig. 2 also shows the ultimately bounded set Ω1 for VC and
Ω2 for IL defined in (16). Finally, Fig. 3 shows an equivalent
representation of the sets S, Ŝ, and Sr defined in Remark
3.3. More precisely, we show in Fig. 3 the areas on the plane
ṼC-ĨL where the line ĨL = −kṼC lies for all k ∈ Ŝ,S and
Sr, respectively. It is then clear that choosing k on the basis
of the nominal system, i.e., k ∈ Ŝ, could lead to an unstable
system, due to the uncertainty. The same Figure shows also
that the set satisfying the robustness condition (15), i.e., Sr,
is a subset of the truly stabilizing set S.

V. CONCLUSIONS

In this paper, we develop a novel procedure to design a
stabilizing sliding manifold for uncertain and perturbed linear
systems. In particular, a robustness condition based on the
Lyapunov equation associated with the nominal dynamics of
the controlled system is provided to design a manifold where

Fig. 2. Plots of voltage VC , current IL, control input u, and sliding variable
σ for the considered RLC circuit. The solid blue line are the state, input
and sliding variable, the dashed red lines are the reference values, while
the dash-dotted yellow line indicates the ultimately bounded set Ω1 and Ω2

given by (16).

stability is guaranteed despite model uncertainties, and both
matched and unmatched disturbances. Finally, the proposed
approach has been assessed in simulation on an electric RLC
circuit, showing satisfactory performance.
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