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Abstract— In this paper, we propose a strategy for perform-
ing human-robot ergonomic handover in the case of partial
knowledge of the robot dynamics and in absence of assumptions
about the shape or mass of the object passed. In particular,
we propose a strategy for generating the reference for the
manipulator and a Deep Neural Network based Integral Sliding
Mode control with Adaptive discontinuous gain, in the paper
referred to as DNN-AISM. The DNN weights are adapted
on-line according to update laws derived directly from the
theoretical analysis, without relying on previously collected
data. The proposal is experimentally assessed relying on a
Franka Emika Panda robot and on an Xsens MTw IMU sensor,
producing highly satisfactory results.

Index Terms— human-robot interaction, integral sliding
mode, uncertain systems

I. INTRODUCTION

In the most recent years, the number of scenarios in
which humans and robots share their workspace has been
increased. In such scenarios, especially in the ones involving
physical Human Robot Interaction (pHRI) [1], it is important
to ensure safety for the human operators [2]. This means
that not only collisions must be avoided, implementing
collision avoidance strategies, e.g., the ones presented in [3]–
[5], but also that the interaction must cause the minimum
psychophysical stress to the human operator. Indeed, physical
stress caused by repetitive work and poor posture is the main
cause of muscoloskeletal disorders (MSDs), which consti-
tutes more or less the third of all registered occupational
diseases in the United States, the Nordic countries, and
Japan, as studied in works like [6] and [7].

For this reason, particular attention should be put
into ergonomics [8], designing comfortable and productive
workspaces. In the context of pHRI, this can be translated
into controlling the robotic counterpart so that it adapts to
the human operator movements, while performing the task
in a proficient way. One of the most common tasks which
involves collaboration of humans and machines is the so-
called handover, during which the human operator passes an
object to the robot or vice versa. In many contexts, such an
operation is performed in a fixed position and with a fixed
orientation. However, such a combination may not be the
most comfortable for the human operator, possibly causing
bad posture and causing greater psychophysical stress if the
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operation is performed for long periods of time. In the last
few years, several works in the literature addressed such a
problem with the objective of developing strategies which
ensured ergonomic handover. For example, in [9] the authors
developed a methodology that learns the most ergonomic
way of passing objects of a person relying on data retrieved
during the interaction, while in [10] a whole-body dynamic
model of the human operator is used to optimize for the
position of the co-manipulation task inside the workspace.

When a robotic manipulator grasps an object, this last
one exerts a generalized force on the robot joints. This
can be seen as disturbance that, if not compensated, could
interfere with the completion of the task. When dealing
with dynamical systems affected by disturbances, Sliding
Mode Control (SMC) has been proved to be an effective
technique, ensuring robustness against perturbations thanks
to the discontinuous control law [11].

However, classical SMC suffers from two main drawbacks,
which are the presence of chattering, whose amplitude is
associated to the gain of the discontinuous control, and that
the robustness is ensured only when the system states are
on the so-called sliding manifold, thus making the system
sensible to disturbances during a first transient. To cope with
this second problem, Integral Sliding Mode (ISM) control
has been proposed in [12], and its validity in the robot control
domain has been assessed [13].

To design an ISM controller, the knowledge of the plant
is required. However, in robotic applications such a condi-
tion may not be always fulfilled, due to the difficulties in
modelling terms like the Coriolis matrix and the vector of
frictions. A first solution would be to treat the unknown part
of the model as a disturbance and compensate it increasing
the discontinuous control gain. However, this could lead
to severe chattering which could damage the robot motors.
Another solution is the one presented in our previous work
[14], in which we proposed a Deep Neural Network based
ISM (DNN-ISM) control strategy that exploits two DNNs to
estimate the unknown drift term and the control effectiveness
matrix of the system. The weights of the DNNs are adjusted
on-line according to weight adaptation laws directly derived
from Lyapunov analysis. The main drawback of the work in
[14] is that it requires the knowledge of the bounds of the
DNNs approximation errors residuals and the worst possible
realization of the disturbance term.

This paper proposes a strategy for performing the human-
robot handover operation in an ergonomic way, relying on
readings of an Inertial Measurement Unit (IMU) placed on
the back of the human operator’s hand. Since the robot is
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considered as a dynamical system with partially unknown
dynamics perturbed by the object grasped during the han-
dover operation, it is controlled with a novel version of
DNN-ISM controller. In particular, in this paper we introduce
a DNN-ISM controller with an adaptive discontinuous gain
(DNN-AISM), in order to relax the original assumption about
the knowledge of the bounds of the approximation error
residuals and disturbance term. The proposal is theoretical
analysed and experimentally assessed relying on a Franka
Emika Panda robot and an Xsens MTw IMU sensor.

Notation: Given a matrix M ∈ Rn×m, then vec(M) ∈
Rnm denotes the vectorization operation. Two real matrices
A ∈ Rn×m and B ∈ Rp×q , then A ⊗ B ∈ Rnp×mq is
their Kronecker product. Given k ∈ N>0 matrices Ml, with
l = 1, 2, . . . , k with compatible dimensions, then

∏←k
l=1Ml =

MkMk−1 . . .M1M0. Given a square matrix A ∈ Rn×n,
then λmin(A) and λmax(A) denote its smallest and largest
singular value, respectively.

II. PRELIMINARIES ON ROBOT MODELLING AND
INTEGRAL SLIDING MODE CONTROL

The aim of this section is to introduce the dynamical
model of the considered robotic manipulator, along with the
preliminary concepts on ISM control.
Consider an open-chain robotic manipulator characterized by
n ∈ N>0 joints. As detailed in [15], the dynamics of the
robotic arm is described by

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) +G(q) = τ + τh, (1)

where q, q̇, q̈ ∈ Rn are the vectors of the joint positions,
velocities, and accelerations, respectively, M : Rn → Rn×n

is the inertia matrix, which is symmetric and positive definite,
C : Rn × Rn → Rn×n is the matrix of the Coriolis
and centripetal effects, F : Rn × Rn → Rn is the vector
collecting the friction terms, G : Rn → Rn represents the
gravity components, τ ∈ Rn denotes the input torques, while
τh ∈ Rn is the vector of the torques induced by external
forces acting on the robot. In the case of the handover
operation, the last term is strictly related to the object grasped
by the robot during the interaction.
The model of the manipulator in (1) can be conveniently ex-
pressed in the state space formulation. In particular, defining
x =

[
q⊤ q̇⊤

]⊤ ∈ Ω , with q and q̇ measurable through
joint sensors and Ω ⊂ R2n being a compact set, and solving
(1) for q̈, one has that

ẋ =

[
q̇

−M(q)−1 (η(q, q̇)− τh) +M(q)−1τ

]
, (2)

where η(q, q̇) = C(q, q̇)q̇ + F (q, q̇) +G(q).
When the robot manipulates objects whose dynamical

parameters are not available, as it happens in the case
of handover operation, the vector τh is unknown. Hence,
the term M(q)−1τh act as a disturbance on the dynamical
system. The following assumption, common in the domain
of the sliding mode control, and reasonable due to the nature
of the problem, holds.

Assumption 1: There exists a constant δ̄ ∈ R>0 such that
supx∈Ω∥M(q)−1τh∥ ≤ δ̄.

In order to deal with systems subject to uncertainties, it is
possible to design an ISM controller

τ = τ0 + τr ∈ Rn, (3)

where τ0 ∈ Rn is a control law which stabilizes the system
in the case of τh = 0n, while τr ∈ Rn is the discontinuous
robustifying term defined as

τr = −ρ σ(x)

∥σ(x)∥
, (4)

with ρ ∈ R>0 being the discontinuous control gain, and
σ : Ω → Rn being the so-called integral sliding variable.
This last one is defined as

σ(x) = σ0(x) + z(x), σ(x(t0)) = 0, (5)

where t0 ∈ R≥0 is the initial time instant, σ0 : Ω → Rn

is the conventional sliding variable, and z : Ω → Rn is the
so-called transient variable. In particular, in the domain of
SMC theory, it is common to define the former term as the
linear combination of the system states, i.e.,

σ0 = C (x− x⋆), C =
[
C1 C2

]
, (6)

with C1, C2 ∈ Rn×n being symmetric and positive-definite
matrices selected by the controller designer and x⋆ =[
(q⋆)⊤ (q̇⋆)⊤

]⊤ ∈ Ω being a desired state for the robot. As
for the transient variable z, it is defined so that z(x(t0)) =
−σ0(x(t0)) and with dynamics

ż = −C
[

q̇ − q̇⋆

−M(q)−1η(q, q̇) +M(q)−1τ0 − q̈⋆

]
. (7)

As detailed in [12], if the discontinuous control gain ρ
is designed so that it dominates the worst realization of
the external disturbances, then a sliding mode σ = 0 is
established for each t ≥ t0.

Despite the effectiveness of the ISM methodology, it
presents two main drawbacks. The former is that it requires
the complete knowledge of the manipulator dynamics, which
is not always possible, mostly due to the difficulties in
modelling η(q, q̇). The latter is that, considering the worst
realization of the disturbance δ̄, there is the risk of applying
a discontinuous control law with unnecessary high gain on
the system, which, in the case of the robot, could cause
damage to the motors. In the next sections, modifications to
the classical ISM which address such problems are presented.

III. PRELIMINARIES ON DEEP NEURAL NETWORKS FOR
DYNAMICS APPROXIMATION

The aim of this section is to introduce the use of DNNs
as approximators for the unknown dynamics and the related
notation. In this paper, it is considered the case of a robotic
manipulator with partially unknown dynamics, performing
handover of object with unknown dynamic properties. In
other words, the terms η(q, q̇) and τh are not available to
the controller designer.
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According to the universal approximation property [16]
and taking into account the considerations in [17], it exists
an ideal DNN Φ : Ω → Rn, with k ∈ N≥2 hidden layers,
such that

η(q, q̇)− τh = Φ(x) + εΦ(x), (8)

where εΦ : Ω → Rn is the function approximation error.
Each layer of the DNN is characterized by Lj ∈ N>1

neurons, with L0 = 2n, and Lk+1 = n. The DNN can be
expressed in a more detailed manner as

Φ(x) = V ⊤k ϕk ◦ · · · ◦ V ⊤1 ϕ1 ◦ V ⊤0 x, (9)

where Vj ∈ RLj×Lj+1 , with j = 0, 1, . . . , k, are the ideal
weights of the network, while ϕj(·), with j = 1, 2, . . . , k
are the activation functions, chosen so that they are Lip-
schitz continuous. Due to the bounded nature of the term
estimated by the network (9), the following assumption can
be introduced.

Assumption 2: There exist unknown constants v̄, ε̄ ∈ R>0

such that ∥Vj∥ ≤ v̄ and supx∈Ω∥εΦ(x)∥ ≤ ε̄Φ, for j =
0, 1, . . . k.

The ideal network is unknown, hence the estimate of the
unknown drift dynamics is provided by an approximation of
the ideal DNN, i.e.,

Φ̂(x) = V̂ ⊤k ϕk ◦ · · · ◦ V̂ ⊤1 ϕ1 ◦ V̂ ⊤0 x, (10)

with V̂j ∈ RLj×Lj+1 being the estimate of the ideal weights.
In order to simplify the subsequent analysis, it is possible
to express the output of each layer of Φ(x) and Φ̂(x) in a
recursive fashion as

Φj = V ⊤j ϕj(Φj−1), Φ̂j = V̂ ⊤j ϕj(Φ̂j−1), (11)

for j = 1, 2, . . . , k, while Φ0 = V ⊤0 x and Φ̂0 = V̂ ⊤0 x.
In order to develop the adaptation laws for the estimated

weights in (10), the approximation error associated to each
layer j = 0, 1, . . . k is defined as Φ̃j = Φj − Φ̂j . Relying
on (11), adding and subtracting V ⊤ϕ̂j , and defining Ṽj =

Vj − V̂j , such an error can be expressed as

Φ̃j = Ṽ ⊤j ϕj(Φ̂j−1) + V ⊤j (ϕj(Φj−1)− ϕj(Φ̂j−1)), (12)

with Φ̃0 = Ṽ ⊤0 x. The term ϕj(Φj−1) is unknown. However,
it can be approximated using Taylor approximation around
Φ̂j−1. In particular, it holds that

ϕj(Φj−1) = ϕj(Φ̂j−1)+ϕ
′
j(Φ̂j−1)Φ̃j−1+O2(Φ̃j−1), (13)

where ϕ′j(Φ̂j−1) ∈ RLj×Lj is the Jacobian of ϕj(·) com-
puted in Φ̂j−1, while O2(Φ̃j−1) denotes the terms of order
two [18]. For sake of readability, it is possible to define
ϕj := ϕj(Φj−1), ϕ̂j := ϕj(Φ̂j−1), and ϕ̂′j := ϕ′j(Φ̂j−1).
Exploiting Vj = V̂j + Ṽj and substituting (13) into (12), one
obtains

Φ̃j = Ṽ ⊤j ϕ̂j + V̂ ⊤j ϕ̂
′
jΦ̃j−1 +∆j , (14)

where ∆j := Ṽ ⊤j ϕ̂
′
jΦ̃j−1 + V ⊤j O2(Φ̃j−1). Then, since

Ṽ ⊤j ϕ̂j ∈ RLj+1 , it holds that Ṽ ⊤j ϕ̂j = vec(Ṽ ⊤j ϕ̂j) =

vec(ϕ̂⊤j ṼjIj+1), thus, the identity Ṽ ⊤j ϕ̂j = (ILj+1
⊗

ϕ̂⊤j )vec(Ṽj) is valid [19]. Substituting this last one in (14),
the approximation error can be written as

Φ̃j = (ILj+1 ⊗ ϕ̂⊤j )vec(Ṽj) + V̂ ⊤j ϕ̂
′
jΦ̃j−1 +∆j , (15)

with Φ̃0 = (IL1
⊗ x⊤)vec(Ṽ0). Finally, relying on [20,

Lemma 1], it is possible to iterate and obtain the expression
of the approximation error for the last layer of the DNN, i.e.,

Φ̃k =

k∑
j=0

Λjvec(Ṽj) +

k∑
j=1

Ξj∆j , (16)

where the terms Ξj ∈ Rn×Lj+1 and Λj ∈ Rn×(LjLj+1) are
defined as

Ξj =

←k∏
l=j+1

V̂ ⊤l ϕ̂
′
l, Λj = Ξj(ILj+1

⊗ ϕ̂⊤j ), (17)

with Λ0 = Ξ0(IL1
⊗ x⊤).

IV. THE PROPOSED ERGONOMIC HANDOVER STRATEGY

The main objective of the proposed strategy is to control
the robot so that it reaches the most comfortable pose for
the human operator, grasps an object with unknown shape
and mass, and places it into a predefined location. The aim
of this section is to describe how such task is performed.

As the above description suggests, it is possible to divide
the task into two phases: the hand reaching phase and
the object placement phase. The hand reaching strategy,
summarized in the block scheme depicted in Fig. 1, is now
described.

IMU
Sensor

oh

ph

(18)

Rcalib

Rb
h eor as in

(19)

Rb
ee

−
+

q⋆ = q + νJ(q)+e
Forward

Kinematics pee

Robot

q

DNN-AISM
τ

Fig. 1: The block diagram of the hand reaching strategy.

In this paper, we assume that the position ph ∈ R3 in
which the human operator places the hand for performing
the handover operation is known a priori. For example,
it could be defined before the start of the task by hand
guiding the robot end-effector into a position which is
considered comfortable for the operator. On the other hand,
the comfortable orientation for the hand cannot be assumed
a priori, since it could depend on different aspects, such as
the shape of the object passed during the interaction. In this
work, such an orientation is determined relying on readings
of an IMU sensor placed on the back of the operator’s hand.
In particular, such a sensor provides a set of orientation
angles oh =

[
α β γ

]⊤
with respect to its own frame

at the moment of the calibration. As suggested from Fig.
1, the values of ph and oh are used as starting point in the
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calculation of a reference q⋆ ∈ Rn for the manipulator joint
positions, following the procedure which described hereafter.

At first, the rotation matrix Rb
h ∈ SO(3), which expresses

the orientation of the operator’s hand with respect to the fixed
base frame is calculated as

Rb
h = RcalibRz(γ)Ry(β)Rx(α), (18)

where Rx, Ry , Rz ∈ SO(3) represent the basic rotations
around the sensor axes, while Rcalib ∈ SO(3) is the matrix
which express the orientation of the hand frame with respect
to the base frame at the moment of the calibration.

Then, the orientation error between the the operator’s hand
and the actual orientation of the end-effector, is denoted as
eor ∈ R3 and computed as in [21, Chapter 3]. In particular,
define R = (Rb

ee)
⊤Rb

h ∈ SO(3), with Rb
ee ∈ SO(3)

being the rotation matrix which describes the end-effector
orientation with respect to the base frame, then

eor = −θRb
ee

[
W32 W13 W21

]⊤
, (19)

where θ = cos−1
(
1
2 (tr(R)− 1)

)
∈ R, while W ∈ R3×3 a

skew-symmetric matrix defined as W = 1
2 sin(θ)

(
R−R⊤

)
.

The vector of the pose error e ∈ R6 can be then defined
as e =

[
(pee − ph)⊤ e⊤or

]⊤
, where pee ∈ R3 denotes the

position of the end-effector with respect to the base frame.
At this point, the reference for the joint positions q⋆ ∈ Rn

is computed according to

q⋆ = q + νJ(q)+e, (20)

where q ∈ Rn is the vector of the actual joint positions,
ν ∈ R>0 is a design parameter, while J(q)+ ∈ Rn×6 is
the Moore-Penrose pseudo-inverse of the geometric Jacobian
matrix of the manipulator and it is computed as J(q)+ =

J(q)⊤
(
J(q)J(q)⊤

)−1
. The joint reference is then passed to

the DNN-AISM controller, described in detail in the next
section. As soon the ∥e∥ is sufficiently small, the end-
effector is controlled so that it grasps the object. If the
grasping procedure is carried out successfully, the robot is
controlled to fulfill the second phase of the task, i.e., the
object placement phase.

In such a phase, the robot is controlled to reach a prede-
fined location configuration qplace ∈ Rn, hence a reference
q⋆ = qplace is provided to the DNN-AISM controller. As
soon as ∥q − q⋆∥, the end-effector is controlled so that it
releases the object. As soon the object is released, the robot
is controlled again as in the first phase.

V. THE DNN-AISM CONTROL SCHEME

The objective of this section is to present the DNN-AISM
control scheme depicted in Fig. 2, used to drive the robot
toward the reference configuration.

The use of the DNN in (10) allows to estimate the
dynamics of the transient variable in (7) as

˙̂z = −C
[

q̇ − q̇⋆

−M(q)−1Φ̂(x) +M(q)−1τ0 − q̈⋆

]
, (21)

and hence define the sliding variable as σ = σ0 + ẑ. The
nominal part of the control law τ0 ∈ Rn, appearing in (21)

τr = −ρ̂ σ
∥σ∥

Gain adaptation
in (25)

+

+

Robot
x +

−

x⋆

τ0 in (22)

Φ̂ in (10)˙̂z in (21)
∫

+

+

σ

σ0 in (6)

Weights adaptation in (23)

Fig. 2: The block diagram of the proposed DNN-AISM control.

and (3), is chosen so that it stabilizes the robot around the
reference configuration q⋆ ∈ Rn, whose definition is detailed
in Section IV. In particular, τ0 is designed as

τ0 = −M(q)
(
Φ̂(x) +Kp(q − q⋆) +Kdq̇

)
, (22)

with Kp, Kd ∈ Rn×n being diagonal matrices with positive
entries. The weights of the DNN Φ̂ are characterized by
dynamics given by

vec(
˙̂
V j) = proj

(
ΓjΛ

⊤
j M(q)−⊤C⊤2 σ

)
, (23)

where Γj ∈ RLjLj+1×LjLj+1 is the diagonal matrix with
positive entries and it represent the learning rate, while proj
denotes the projection operator defined as in [22, Appendix
E] and it ensures that that vec(Vj) ∈ Bj , with Bj being
Bj =

{
θj ∈ RLjLj+1 : ∥θj∥ ≤ sv

}
.

The presence of Assumption 2, the use of proj operator
in (23), and the fact that the activation functions ϕj(·) are
chosen with bounded gradients, imply the validity of the
following fact

Fact 1: There exist an unknown constant sc ∈ R>0 such
that ∥

∑k
j=1 Ξj∆j∥ ≤ sc.

Since from Assumption 2 and Fact 1 it is only possible
to conclude that the approximation error ε and the residual
term

∑k
j=1 Ξj∆j are bounded, it is possible to say that there

exist a ISM controller gain ρ⋆ ∈ R>0 that is able to dominate
such terms.

Since ρ⋆ is unknown, an estimate of it can be used, having

τr = −ρ̂ σ

∥σ∥
, (24)

where ρ̂ is characterized by the dynamics

˙̂ρ = µ∥σ∥λmax{C2M(q)−1} sign(∥σ∥ − εσ), (25)

with ρ̂(t0) = 0, µ ∈ R>0 being the adaptation rate, εσ ∈
R>0 being a leaking factor which allows ρ̂ to decrease when
∥σ∥ < εσ . Then, it is convenient to define the error between
the optimal and the estimated gain, i.e., ρ̃ = ρ⋆ − ρ̂.

To facilitate the subsequent analysis, it is possible to pro-
vide a formulation for σ̇ = σ̇0+ ˙̂z. In particular, considering
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q̇⋆ = q̈⋆ = 0n, substituting (21), (3), (9), (10), and then (16),
it holds that

σ̇ = −C2M
−1

[
k∑

j=0

Λjvec(Ṽj)+

k∑
j=1

Ξj∆j+ε−τr

]
, (26)

with the dependence on q and x being omitted for sake of
readability. The main theoretical result about the DNN-AISM
controller is now introduced.

Theorem 1: Consider the robotic manipulator described
by the dynamics in (2), the control law τ = τ0+ τr, with τ0
and τr defined respectively as in (22) and (24), the sliding
variable σ = σ0+ ẑ, with ẑ as in (21), the weight adaptation
law (23) and the discontinuous gain dynamics (25). Then,
a practical sliding mode on Ωσ := {σ ∈ Rn : ∥σ∥ ≤ εσ} is
enforced.

Proof: The above theorem can be proven by performing
Lyapunov analysis on the candidate function

L(x) = 1

2
σ⊤σ +

1

2

k∑
j=0

vec(Ṽj)
⊤Γ−1j vec(Ṽj) +

ρ̃2

2µ
, (27)

inspired by the adaptive control theory [23], and whose time
derivative is given by

L̇(x) = σ⊤σ̇ −
k∑

j=0

vec(Ṽj)
⊤Γ−1j vec(

˙̂
V j)−

ρ̃ ˙̂ρ

µ
. (28)

Substituting (26) and then (24), the above equation can be
written

L̇ = −σ⊤C2M
−1

{ k∑
j=0

Λjvec(Ṽj) +

k∑
j=1

Ξj∆j + εΦ

}
+

− ρ̂σ⊤C2M
−1 σ

∥σ∥
−

k∑
j=0

vec(Ṽj)
⊤Γ−1j vec(

˙̂
V j)−

ρ̃ ˙̂ρ

µ
.

Since from [22, Appendix E] it holds that, given a generic
vector ψ ∈ RLjLj+1 , it holds that −vec(Ṽj)Γ

−1proj(ψ) ≤
−vec(Ṽj)Γ

−1ψ. Then, if the adaptation law (23) is substi-
tuted in the above equation, the term

∑k
j=0 Λjvec(Ṽj) is

canceled and it holds that

L̇ ≤ −σ⊤C2M
−1

{ k∑
j=1

Ξj∆j + εΦ

}
− ρ̃ ˙̂ρ

µ
+

− ρ̂σ⊤C2M
−1 σ

∥σ∥
. (29)

Then, substituting ρ̂ = ρ⋆− ρ̃ and bounding the first term of
the above inequality with its worst realization, i.e., the one
which makes L̇ positive, (29) can be written as

L̇ ≤ ∥σ∥λmax{C2M
−1}(c̄+ ε̄Φ)− ρ⋆λmin{C2M

−1}∥σ∥+

+ ρ̃σ⊤C2M
−1 σ

∥σ∥
− ρ̃ ˙̂ρ

µ
. (30)

By virtue of the adaptation law and initial condition for the
gain reported in (25) it is possible to state that ρ̃ > 0 for all
t ≥ t0.

Define now the ideal discontinuous controller gain ρ⋆ ∈
R>0 as one which dominates the residual approximation
terms as

ρ⋆ >
λmax{C2M

−1}(c̄+ ε̄Φ)

λmin{C2M−1}
+ ϱ,

with ϱ ∈ R>0 being an arbitrary constant. This allows us to
rewrite the above inequality as

L̇ ≤ −ϱ∥σ∥ − ρ̃∥σ∥λmax{C2M
−1} sign (∥σ∥ − εσ)+

+ ρ̃λmax{C2M
−1}∥σ∥.

It is now essential to distinguish among two cases.
First, if ∥σ∥ > εσ , one has that sign (∥σ∥ − εσ) = 1, and

thus L̇ can be rewritten as

L̇ ≤ −ϱ∥σ∥ − ρ̃∥σ∥λmax{C2M
−1}+ ρ̃λmax{C2M

−1}∥σ∥
≤ −ϱ∥σ∥.

While if ∥σ∥ < εσ , sign (∥σ∥ − εσ) = −1, and thus one has

L̇ ≤ −ϱ∥σ∥+ 2ρ̃∥σ∥λmax{C2M
−1},

meaning that nothing can be said about the behaviour of
σ when ∥σ∥ < εσ . The two conditions imply that σ is
ultimately bounded in the set Ωσ := {σ ∈ Rn : ∥σ∥ ≤ εσ},
thus implying the enforcement of a practical sliding mode.

VI. EXPERIMENTS AND RESULTS

Fig. 3: The instants in which the handover operation is performed.
The robot adapts the pose of its end-effector so that it follows the
orientation of the IMU sensor.

The proposed ergonomic handover approach has been val-
idated experimentally1 relying on the Franka Emika Panda,
a collaborative robot with n = 7 degrees of freedom, along
with a MTw Awinda IMU, both visible in Fig. 3. In the
experiment, the human operator is required to perform the
handover of four different object with different shape and
mass, unknown to the controller. In particular, the objects
have been chosen so that the mass varies between few grams
up to 1.5 kilograms.

1Video available at https://youtu.be/dF2I-OOw1DY
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The DNN employed to compensate the partially unknown
dynamics is structured so that L0 = 14, L1 = L2 = 16, L3 =
7. Hence, it is characterized by k = 2 hidden layers, each
composed by 16 neurons, all activated using the hyperbolic
tangent function, which is Lipschitz continuous. The weights
of the DNN weights are adjusted according to (23), with Γj ,
for j = 0, 1, 2, being defined as the identity matrix with
suitable dimensions. As for the controller, the gain matrices
in (22) are selected as Kp = Kd = 5 · I7×7, the coefficients
used to compute the conventional sliding variable are σ0 are
C1 = C2 = I7×7, while the discontinuous control gain ρ̂ is
updated according to (25), with µ = 0.85 and εσ = 0.3.
Finally, the reference q⋆ has been generated considering
ph =

[
0.47 0.18 0.47

]⊤
, and choosing ν = 0.6 in (20).

The results of the experiment are presented in Fig. 4 and
in Fig. 5. In particular, the former shows that the proposed
DNN-AISM controller is able to drive the pose error inside a
boundary layer around zero, hence performing the ergonomic
handover task. Moreover, Fig. 5 depicts the norm of the
integral sliding variable σ and the discontinuous control gain
ρ, showing that, apart from the phases in which the robot
picks or places an object, changing τh, ∥σ∥ is successfully
driven inside the set Ωσ , ensuring a practical sliding mode,
always maintaining a reasonably small discontinuous gain.

Fig. 4: Time behavior of the pose error. The yellow areas denote
the time transients in which an object is grasped by the robot.

Fig. 5: Time behaviour of the norm of the integral sliding variable
(above) and the discontinuous control gain (below). The green area
indicates the set Ωσ .

VII. CONCLUSIONS

In this paper, we proposed a strategy for performing the
handover task ensuring a high degree of ergonomics for the
human operator. To cope with the dynamics uncertainties
introduced by the manipulated objects, a DNN based ISM
controller with adaptive discontinuous gain is proposed. In
particular the weights of the DNN are adjusted according to
adaptation laws obtained thorough Lyapunov analysis. The

proposal has been experimentally assessed performing the
handover task with a Franka Emika Panda robot, measuring
the hand orientation with an MTw Awinda IMU, obtaining
satisfactory results.
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