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Abstract— This paper characterizes a new parametrization
of nonlinear networked incrementally L2-bounded operators in
discrete time. The distinctive novelty is that our parametrization
is free – that is, a sparse large-scale operator with bounded
incremental L2 gain is obtained for any choice of the real
values of our parameters. This property allows one to freely
search over optimal parameters via unconstrained gradient
descent, enabling direct applications in large-scale optimal
control and system identification. Further, we can embed prior
knowledge about the interconnection topology and stability
properties of the system directly into the large-scale distributed
operator we design. Our approach is extremely general in that
it can seamlessly encapsulate and interconnect state-of-the-art
Neural Network (NN) parametrizations of stable dynamical
systems. To demonstrate the effectiveness of this approach,
we provide a simulation example showcasing the identification
of a networked nonlinear system. The results underscore the
superiority of our free parametrizations over standard NN-
based identification methods where a prior over the system
topology and local stability properties are not enforced.

I. INTRODUCTION

Interconnected systems are composed of multiple subsys-
tems interacting over physical or cyber coupling channels
and encompass diverse engineering applications like intel-
ligent buildings, power grids, and transportation networks.
Typically, effective control and monitoring of interconnected
systems hinge on precise models of the subsystems. Failure
to accurately and promptly identify the dynamics of a single
subsystem can trigger network-wide instability, primarily
because of uncertainty propagation through the coupling
channels. This renders conventional system identification
methods tailored for single-agent systems unsuitable for this
scenario [1].

To improve on this matter, we want to exploit the prior
knowledge about the model that we want to identify in terms
of its structure and stability properties to define a class of
distributed operators that capture such a structure while also
ensuring some stability properties. More in detail, in this
work we focus on the stability property known as incremental
L2-boundedness, which is a particular case of incremental
dissipativity.

When dealing with linear models, incremental L2-
boundedness [2] can be enforced by imposing Linear Ma-
trix Inequality (LMI) constraints. This approach has been
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extended to certain families of non-linear systems via the
Linear Parameter Varying framework [2]. In system identi-
fication, this means that if we want to enforce incremental
L2-boundedness we end up with a constrained optimization
problem. However, this is not desirable for several reasons
such as poor scalability, feasibility issues, and computational
efficiency.

With this in mind, in this paper, we introduce a new
parametrization of distributed incremental L2-bounded oper-
ators. The parameterization is free in the sense that for any
value of the parameters, the resulting distributed operator is
incrementally L2-bounded. Consequently, this parametrized
set of operators can be applied to system identification
without the need to impose additional constraints for in-
cremental L2-boundedness, hence allowing one to solve an
unconstrained optimization problem.

Related works: Dissipativity theory has found applications
in a wide range of control problems [3], [4]. It offers a
unified framework for analyzing stability and performance in
nonlinear systems [3]. Several frameworks exist to analyze
these properties [5]–[7] and ensure global stability of nonlin-
ear systems [8], [9]. However, the dissipativity and stability
properties of the subsystems can be preserved or altered
when the systems are combined [10]. Different works have
derived sufficient conditions to provide guarantees on input-
output properties for generic interconnected systems [11],
[12]. This framework has recently been exploited to enforce
robustness in Neural Networks (NNs) by analyzing them
from a dynamical system perspective. Recurrent Equilib-
rium Networks (RENs) [13]–[15] achieve incremental L2-
boundedness through a specific parameterization, enabling
unconstrained training while guaranteeing stability. While
NNs have found attractive applications in various fields,
including the identification of dynamical systems [16]–[18],
their full potential is not yet fully understood. While certain
NN architectures can offer dissipative properties, it remains a
challenge to develop a parameterization method that ensures
these properties are maintained when the network has a
specific interconnection topology.

Contributions: The main contribution of this paper is the
development of a free parametrization for interconnected
incremental L2-bounded operators. Specifically, we derive
an explicit mapping from a set of freely chosen parameters
to a set of parametrized sub-operators such that their inter-
connection through a desired topology is also incrementally
L2-bounded. This result is fully compatible with any free
parametrization of the single sub-operators, as long as these
parametrizations ensure a finite incremental L2-bound for
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each sub-operator as well. This allows for the exploitation
of pre-existing state-of-the-art parameterizations of incre-
mentally L2-bounded sub-operators (such as RENs [13]),
thus opening the door to unconstrained optimization over
distributed operators that also enjoy such a stability property.
This is key as it enables the use of distributed NN operators
in large-scale nonlinear system identification as well as
control applications [19] while ensuring stability properties
throughout the whole training phase.

NOTATION

Throughout the paper, we denote with N the set of non-
negative integers. Ia×b is the identity matrix with dimensions
a× b and with 0a×b we denote a zero matrix of size a× b,
while Ia and 0a are square matrices with size a. Positive
semidefinite matrices A are denoted as A ⪰ 0 and A[ij]

denotes the element of matrix A corresponding to row i and
column j. We denote with blkdiag(A,B) a block diagonal
matrix created by aligning the matrices A and B along the
diagonal and with colj∈N (vj), with N ⊆ N a vector which
consists of the stacked subvectors vj where j ∈ N while
v0:T denotes a sequence of v(t) with t ranging from 0 to T .
The set of functions or sequences from X to Y is denoted
by YX.

II. PRELIMINARIES

The L2-gain is a fundamental concept in the stability
analysis and control of dynamical systems and it has been
applied to ensure stability properties in networks of sys-
tems [11], [20]. We leverage this concept to derive trainable
incrementally L2-bounded distributed operators. Now we
recap some basic definitions regarding L2-gain based on
results presented in [2], [21].
We consider parametrized discrete-time systems Σθ in the
form:

Σθ :


x(t+ 1) = fθ(x(t), u(t)), x ∈ Rn, u ∈ Rm

y(t) = hθ(x(t), u(t)), y ∈ Rp

x(0) = x0, t = 0, . . . , T

,

(1)
where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, θ ∈ Rq are the
system state, input, output and parameter respectively. fθ :
Rq × Rn × Rm 7→ Rn and hθ : Rq × Rn × Rm 7→ Rp
are, instead, assumed to be Lipschitz continuous functions
depending on θ, such that fθ(0, 0) = 0 and hθ(0, 0) = 0 for
all θ, and such that for all initial conditions x0 ∈ Rn there
is a unique solution (x, u, y) ∈ (Rn × Rm × Rp)N.
We define the set of solutions of (1) as

B := {(x, u, y) ∈ (Rn × Rm × Rp)N|(x, u, y) satisfies (1)}.

Notice that the system Σθ given by (1) can be seen as a
parametrized operator that, for a fixed value of the parameter,
takes as input an initial condition x(0) ∈ Rni as well
as a sequence u0:T and outputs a sequence y0:T for any
given T ∈ N. In this sense, we will also use the notation
y0:T = Σθ(x0, u0:T ) to highlight the mapping operated by
Σθ. Notably, recursive operators, such as (1), can be viewed

as deep neural networks unrolled in time. Consequently,
these operators can serve as operators in learning problems
and be optimized through Backpropagation Through Time
(BPTT) [19]. We can provide the following definitions.

Definition 1: (L2-gain) [4] The operator Σθ given by (1)
has a finite L2-gain≤ γ if it is dissipative with respect to the
supply rate s(u, y) = γ2∥u∥2 − ∥y∥2; that is, there exists a
storage function V : Rn → R+ such that for all t ∈ N

V (x(t+ 1))− V (x(t)) ≤ s(u(t), y(t)), (2)
The storage function V can be interpreted as a model of the
stored “energy” in the system w.r.t. a single point of neutral
storage (minimum energy).

Definition 2: (Incremental Li2 gain [2]) The operator
Σθ in the form (1) is said to have a finite incremental
L2-gain γ, denoted as Li2-gain, if for all t ∈ N and
(x, u, y), (x̂, û, ŷ) ∈ B it is dissipative with respect to the
supply rate s(u, û, y, ŷ) = γ2∥u−û∥2−∥y−ŷ∥2; that is, there
exists an incremental storage function V : Rn × Rn → R+

with V (0, 0) = 0 such that for all t ∈ N:

V (x(t+ 1), x̂(t+ 1))− V (x(t), x̂(t)) ≤
s (u(t), û(t), y(t), ŷ(t)) . (3)

We can now introduce the following set of parameters θ:

Φγ = {θ ∈ Rq | Σθ has finite Li2-gain γ}. (4)

In a learning problem, such as in system identification, we
aim to fit a set of data by tuning the parameters of an operator
Σθ by minimizing a certain, differentiable, loss function.
However, it’s often desirable to also preserve the stability
properties of the underlying system, obtaining a constrained
optimization problem. By considering a constraint on the
incremental L2-boundedness of the system, we can write the
identification problem as follows:

min
θ

L (y0:T , ỹ0:T )

s.t. yi0:T = Σθ
(
x̃i0, ũ

i
0:T

)
, i = 1, . . . ns (5a)

θ ∈ Φγ , (5b)

where (ũi0:T , ỹ
i
0:T , x̃

i
0) denote finite sequences of input-

output measurements and the initial condition, and ns is the
number of trajectories considered. For instance, for system
identification purposes, one might want to minimize the sum
of the squared residuals over all the sequences, i.e.,

L (y0:T , ỹ0:T ) =

ns∑
i=1

∥yi0:T − ỹi0:T ∥2 (6)

The problem (5) is a constrained optimization problem

that, when Σθ is a linear operator, features linear convex
constraints (5b) that can be written as LMIs [22]. This is not
desirable because of poor computational efficiency as well
as scalability and feasibility issues. Notice that when Σθ is
a non-linear operator, all these issues are exacerbated even
further, as the general problem tends to become non-convex
and non-linear even in the constraints.
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For these reasons, one would like to cast the problem (5) as
an unconstrained optimization problem by getting rid of (5b),
even at the cost of restricting the set of feasible parameters.
This is key as it will open the door for the utilization of
parametrized families of highly non-linear operators in the
form (1), such as neural networks, which can be optimized
very efficiently by solving an unconstrained optimization
problem with standard backpropagation and unconstrained
gradient descent methods. All of this can be obtained by
freely parametrizing the set Φγ .

Definition 3: Given a non-empty set Ψ ⊆ Ra, a
parametrization of Ψ is a mapping ψ : Θ ⊆ Rq 7→ Ψ. the
parametrization ψ is called free if Θ = Rq .

We will consider a free parametrization of the set Φγ ,
that is, a mapping ψ(ξ, γ) : Rq 7→ Φγ where ξ are the free
parameters. In other words, θ = ψ(ξ, γ) ∈ Φγ , ∀ξ ∈ Rq or,
equivalently, Σψ(ξ,γ) has Li2-gain γ, ∀ξ ∈ Rq . Notice that
here γ is fixed but could also be treated as an additional free
parameter of ψ through a proper mapping such as γ = z2

where z ∈ R is the new parameter.
Notice that if one can exhibit such a free parametrization,

then that can be used to reformulate (5) as an unconstrained
problem by optimizing over the new parameter ξ as the
constraint (5b) is satisfied for any value of ξ by definition.

Remark 1: One remarkable example of such free parame-
terization is given by operators called Recurrent Equilibrium
Networks (RENs) in [14], which result from the closed-loop
interconnection of a discrete-time linear dynamical system
with a static non-linearity. RENs extend various non-linear
operators, including Recurrent Neural Networks (RNNs)
and standard feed-forward neural networks. A significant
contribution of [14] lies in presenting a free parametrization
for a class of RENs with stability and dissipativity properties,
such as Li2-boundedness. Because of such features, REN
operators can be efficiently optimized in a learning problem
using unconstrained techniques.

Remark 2: There is usually a “price to pay” for trans-
forming the problem (5) into an unconstrained one via a
free parametrization. This stems from the fact that, usually,
the map ψ is not surjective and it effectively describes only
a subset of Φγ , which in turn means that we are restricting
ourselves to optimize over a subset of Li2-bounded operators.
This is also true for REN operators. However, as it is shown
in [14], the advantages of having a free parametrization
greatly outweigh such a drawback.

Notice that so far we have considered only one single
centralized operator Σθ but, as mentioned in the introduction,
we would like to use a distributed operator to better capture
the interconnectedness of real systems and we want to do
that while preserving the Li2-boundedness property. The
free parametrization approach outlined earlier has never
been generalized to distributed operators built by several
interconnected sub-operators. It is worth mentioning that
simply connecting Li2-bounded sub-operators will not work,
in general, as the resulting operator could fail to be Li2-
bounded.

Σθ1

ΣθN

. . .

M

y

u ed

ΣMθ

Fig. 1: Interconnection of N operators Σθi .

We introduce a free parametrization for distributed operators
in the next Section.

III. SETTING, MODELS, AND PROBLEM FORMULATION

We consider N parametrized sub-operators indexed by i ∈
N with N = {1, . . . , N}

Σθi :


xi(t+ 1) = fθi(xi(t), ui(t)),

yi(t) = hθi(xi(t), ui(t)), t = 0, . . . , T

xi(0) = x0i

,

(7)
where xi(t) ∈ Rni , ui(t) ∈ Rmi , yi(t) ∈ Rpi , θ ∈ Rq are the
system state, input, output and parameter respectively.
These operators are interconnected, as shown in Fig. 11, to
accommodate an exogenous input d ∈ Rm and performance
output e ∈ Rp. More in detail, the interconnection topology
is described by the matrix M̄ that relates the sub-operators
inputs and performance outputs as:[

u
e

]
= M̄

[
y
d

]
=

[
M Im
Ip 0m

] [
y
d

]
, (8)

where u = colN (ui) ∈ Rm, y = colN (yi) ∈ Rp. The matrix
M̄ describes how each sub-operator input ui is coupled with
each sub-operator output yi as well as with the exogenous
input di. More in detail, by developing (8) we get u =My+
d and e = y. The first equation states that the input u of each
sub-operator is a fully generic linear combination of the sub-
operator’s output y via the matrix M plus the exogenous
input d, which is an additive to each input. As we indicated
before, this choice constrains d to have the same dimension
of u, which is a hypothesis that we aim to relax in future
work by considering a more general form for the matrix M̄ .

The second equation e = y describes the fact that the
performance output of the interconnected operator coincides
with all the outputs of each sub-operator.

The coupling of each sub-operator Σθi via (8) produces
an operator ΣMθ that, with a slight abuse of notation, can be
written as

ΣMθ :


x(t+ 1) = fθ (x(t),My(t) + d(t))

y(t) = hθ (x(t),My(t) + d(t))

x(0) = x0, t = 0, . . . , T

, (9)

1Notice that this is a special case of the framework introduced in [11].

653



where x(t) = coli∈N (xi(t)) ∈ Rn, θ = coli∈N (θi) ∈ Rq
and the functions fθ and hθ are the stacked sub-functions fθi
and hθi applied block-wise. We assume that the coupling,
and therefore the operator ΣMθ , is well-defined, i.e., the
equation y(t) = hθ (x(t),My(t) + d(t)) admits a unique
solution y(t), given x(t) and d(t), for t = 0, . . . , T . Now
we are ready to state the problem we aim to solve:

Problem 1: Consider the operator ΣMθ as defined in (9).
We aim to find a free parametrization of the set

ΦγM = {θi, i ∈ N | ΣMθ has finite Li2-gain γM}. (10)

In other words, we want to find some mapping from a set of
free parameters to a set of parameters for each sub-operator
such that their coupling ΣMθ has finite Li2-gain. This enables
free tuning of sub-operators while preserving Li2-gain for
the interconnected operator, hence allowing one to solve
problem (5) with any unconstrained optimization algorithm.

IV. MAIN RESULTS

To tackle the problem, first of all, we consider sub-
operators verifying Σθi ∈ Φγi , i ∈ N and such that
they are dissipative with a positive definite, continuously
differentiable incremental storage function Vi(·, ·) and the
quadratic supply rate:

si(ui, ûi, yi, ŷi) =[
ui − ûi
yi − ŷi

]⊤ [
γ2i Imi 0mi×pi
0pi×mi

−Ipi

]
︸ ︷︷ ︸

Xi

[
ui − ûi
yi − ŷi

]
. (11)

The goal is now to certify the validity of a prescribed Li2
gain γM for the interconnected operator ΣMθ , or in other
words, its dissipativity with respect to the quadratic supply
rate: [

d− d̂
e− ê

]⊤ [
γ2MIm 0m×p
0p×m −Ip

]
︸ ︷︷ ︸

W

[
d− d̂
e− ê

]
. (12)

Now, let us consider the following candidate incremental
storage function, defined as the weighted sum of the local
storage functions

V (x, x̂) = α1V1 (x1, x̂1) + · · ·+ αNVN (xN , x̂N ) , (13)

with αi > 0. Thus, following the results in [11], we want to
satisfy the following inequality

N∑
i=1

αi [Vi(xi(t+ 1), x̂i(t+ 1))− Vi(xi(t), x̂i(t))] ≤

N∑
i=1

αi

[
ui − ûi
yi − ŷi

]⊤
Xi

[
ui − ûi
yi − ŷi

]
. (14)

By rewriting the right-hand side of (14), we obtain:

u1 − û1
...

uN − ûN
y1 − ŷ1

...
yN − ŷN



⊤

X(αiXi)



u1 − û1
...

uN − ûN
y1 − ŷ1

...
yN − ŷN


, (15)

where
X(αiXi) =

[
ΓN,m 0
0 −AN,p

]
, (16)

with ΓN,m = blkdiag{α1γ
2
1Im1

, . . . , αNγ
2
NImN

} and
AN,p = blkdiag{α1Ip1 , . . . , αNIpN }.
The storage function (13), serves as a storage function for the
interconnection and, if the right-hand side of (14) is negative
semidefinite in y, when u is eliminated by considering u =
My, then the interconnection is Lyapunov stable [11, Thm.
3.1]. The right-hand side of (14), rewritten as in (15), is
dominated by the performance supply rate (12) if

u− û
y − ŷ

d− d̂
e− ê


⊤ [

X(αiXi) 0
0 −W

]
u− û
y − ŷ

d− d̂
e− ê

 ⪯ 0, (17)

when the variables u and e are constrained by (8).
Substituting

u
y
d
e

 =


M Im
Ip 0p×m
0m×p Im
Ip 0p×m

[
y
d

]
, (18)

in (17) we obtain the following performance condition [11]:
M I
I 0
0 I
I 0


⊤ [

X(αiXi) 0
0 −W

]
M I
I 0
0 I
I 0

 ⪯ 0 (19)

where X(αiXi) is as defined in (16). For the sake of
simplicity, from now on we omit the size of identity and zero
matrices. The previous computations prove the following
proposition adapted from [11].

Proposition 1: If there exist αi > 0, i ∈ N , such that (19)
holds, then the operator ΣMθ has a finite incremental Li2-gain
γM .
Now we have all the tools needed to derive our main result.

Theorem 1: The set ΦγM is non-empty and admits a
free parametrization such that each sub-operator Σθi is
parametrized by θi = ψi (ξi, ν(zi)) with i ∈ N and with
free parameters, ξi ∈ Rqi , zi ∈ R where ν(zi) : R 7→ R+ is
given by:

ν(zi) =

√
1

1 + maxj∈ Npi

(∑
k |M[kj]|

)
+ zi2

·

√
γ2M

maxj∈ Nui

(∑
k |M[jk]|

)
γ2M + 1

, (20)

654



tank 1

tank 2

tank 3

Fig. 2: Triple-tank system with recirculation pump.

where M[ij] is the element in the i-th row and j-th column
in matrix M and

Nui
= set of indices of u associated with Σθi , i ∈ N ,

Nyi = set of indices of y associated with Σθi , i ∈ N .
(21)

The proof of Theorem 1 can be found in [23].
Theorem 1 allows us to tackle a learning problem, such

as system identification, by solving an unconstrained opti-
mization problem using a distributed operator that takes into
account the sub-structure of the model that we want to learn
while ensuring an Li2-boundedness property of the operator
at each step of the optimization process.

Remark 3: It is worth mentioning that incorporating the
gain γM as an extra free parameter within the proposed
parametrization can offer added flexibility when employing
this parametrization in a training framework.

Remark 4: Following up Remark 2, we can notice that the
free parametrization that we obtained through the mapping
ν(z) is not surjective as we have introduced various degrees
of conservatism, for example by using Gershgorin Theorem,
which gave us a sufficient but not necessary condition
for the positive semi-definiteness of the matrix obtained
from (19) (see the proof in [23] for the details). Additional
conservatism is present in the parametrization ψ itself. In
other words, the free parametrization given by ψi(ξi, ν(zi))
allows one to optimize only over a subset of Li2-bounded
sub-operators that, once interconnected via the matrix M ,
define an Li2-bounded distributed operator. As mentioned
before, this drawback is greatly outweighed by the advantage
of allowing one to solve an unconstrained optimization
problem, as shown in the following example.

A detailed description of how Theorem 1 can be leveraged
for the training of a network of Li2-bounded operators can
be found in [23].

V. NUMERICAL EXAMPLE

In this section, we validate our results on the identification
of the interconnected nonlinear dynamical system shown
in Fig. 2. The system is composed of three interconnected
tanks and a recirculation pump that allows the water to flow
from the third tank to the first. The pump itself cannot be
controlled and continuously moves water from the last tank
to the first. Additionally, an external controlled pump feeds

into the first tank. The first-principles model, describing the
dynamics of the system, is

ḣ1 = − a1
A1

√
2gh1 + k1

a3
A1

√
2gh3 + kc

v

A1

ḣ2 = − a2
A2

√
2gh2 + k2

a1
A2

√
2gh1 (22)

ḣ3 = − a3
A3

√
2gh3 + k3

a2
A3

√
2gh2

where Ai is the cross-section of the i-th tank, ai is the
cross-section of the outlet holes, ki is the percentage of
flow flowing in the next tank, hi is the water level and
v is the inlet flow to tank 1. The parameters employed in
the simulation are listed in [23]. The system (22) has been
discretized using a Forward Euler scheme with a sampling
time Ts = 0.1. A dataset of (ṽ, h̃) pairs was collected by
exciting the system with a random input signal v with values
in [10, 100]. Note that the simulated output measurements
have been corrupted by white noise, i.e., h̃ = h + w.
The dataset was divided into two subsets: the identification
set, which represented 70% of the entire dataset and was
used for training, and the remaining portion of the dataset,
which was employed to cross-validate the identified model.
To identify the system (22), we validate the efficacy of
the parametrization provided by Theorem 1 by considering
the interconnection of three RENs models [13], [14]. Each
REN is parametrized following the method described in [14],
ensuring that each resulting sub-operator possesses a finite
Li2-gain and, therefore, belongs to the set Φγ . Employing the
proposed approach, we interconnect the RENs as follows:

u =


h3
v
h1
h2

 =


0 0 1
0 0 0
1 0 0
0 1 0


︸ ︷︷ ︸

M

 h1
h2
h3

+


0
v
0
0


︸ ︷︷ ︸

d

. (23)

To evaluate the efficacy of the proposed approach, we
conducted numerical experiments comparing the system
identification results obtained using the proposed approach
and different neural networks architecture that ignores the
topology of the system. Specifically, we used a Mean
Square Error (MSE) as loss function and we compared
the proposed approach to a single REN, and a RNN [24],
another dynamical operator with no guarantees regarding
L2-boundedness. Fig. 4 shows the obtained loss on the
independent validation dataset as a function of the number of
tunable parameters in the considered models. For the com-
parison, all three architectures were implemented in PyTorch
with a learning rate of η = 10−2 and trained for E =
500 epochs. The implementation of the proposed approach
can be found at: https://github.com/DecodEPFL/
DistributedREN. As evident from Figure 4, the proposed
architecture, leveraging prior knowledge of the system topol-
ogy, achieves significantly improved performance in terms
of prediction error on the validation dataset with a notably
reduced number of tunable parameters, which are essentially
optimization variables in the optimization problem. As ex-
pected all models exhibit better performance as the number
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Fig. 3: Comparison of the open-loop prediction of the trained
distributed RENs built with the proposed parametrization
(blue dashed line) versus ground truth (red continuous line)
on an independent validation dataset.
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Fig. 4: Comparison of validation loss as a function of tunable
parameters for the proposed approach with three RENs (red
“◦”), the REN (blue “△”) and the RNN (green “⋄”).

of tunable parameters increases. Fig. 3 shows the predicted
states of the identified model in blue and the trajectories of
the validation dataset in red.

VI. CONCLUSIONS

We have introduced a novel free parametrization for in-
cremental L2 operators for the identification of distributed
systems by leveraging prior knowledge of system behavior
and sparsity pattern. A natural extension of the approach
would involve exploring additional forms of dissipativity for
interconnected systems. Moreover, the potential application
of these operators as distributed controllers, mirroring the
sparsity pattern of the plant, holds promise for enhancing
closed-loop properties based on dissipativity theory. The
versatility and potential impact of this methodology offer
exciting prospects for the continued development and re-
finement of identification and design control strategies in
complex distributed nonlinear systems.
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