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Abstract—This paper presents a novel observer-based ap-
proach to detect and isolate faulty sensors in nonlinear systems.
The proposed sensor fault detection and isolation (s-FDI)
method applies to a general class of nonlinear systems. Our
focus is on s-FDI for two types of faults: complete failure
and sensor degradation. The key aspect of this approach
lies in the utilization of a neural network-based Kazantzis-
Kravaris/Luenberger (KKL) observer. The neural network is
trained to learn the dynamics of the observer, enabling accurate
output predictions of the system. Sensor faults are detected by
comparing the actual output measurements with the predicted
values. If the difference surpasses a theoretical threshold, a
sensor fault is detected. To identify and isolate which sensor
is faulty, we compare the numerical difference of each sensor
measurement with an empirically derived threshold. We derive
both theoretical and empirical thresholds for detection and
isolation, respectively. Notably, the proposed approach is robust
to measurement noise and system uncertainties. Its effectiveness
is demonstrated through numerical simulations of sensor faults
in a network of Kuramoto oscillators.

I. INTRODUCTION

Sensor fault detection and isolation (s-FDI) plays a pivotal
role in ensuring the safe and efficient operation of numerous
industrial processes. We address two distinct types of sensor
faults: complete failure and sensor degradation. Complete
failure occurs when a sensor becomes entirely nonfunctional,
often due to mechanical breakdown or similar. In contrast,
sensor degradation results in a gradual decline in the sensor’s
measurement accuracy. When left undetected, these sensor
faults can lead to disruptive consequences for the system.
Effective s-FDI methods serve as a proactive solution, allow-
ing system operators to detect sensor faults early, localize the
faulty sensor, and take corrective action before they escalate
into issues that could result in costly damage or downtime.

The most widely adapted s-FDI methods to date are
primarily based on the concept of analytical redundancy,
which use the principle of residual generation to compare
the variance between a predicted system output to the actual
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measurement. Historically, these methods rely on explicit
mathematical models of the system under consideration,
as noted in [1]. This model-based approach was initially
developed for linear systems in the 1970s, exemplified by
pioneering work such as [2], which demonstrated the feasi-
bility of designing filters for detecting and localizing faults
within observable system dynamics. Subsequent refinements
and enhancements, as seen in [3], resulted in the famous
“Beard-Jones Fault Detection filter.”

Parallel to these developments, the framework of observer-
based fault detection schemes emerged for linear systems,
with an early reference being [4]. Over time, this approach
has gained recognition as one of the most successful methods
for s-FDI, leading to diverse research directions. For instance,
the application of sliding-mode observers for s-FDI by [5]–
[7] allowed explicit reconstruction of the sensor faults by
manipulating the output injection error. Nonlinear unknown
input observers have also been prevalent for s-FDI [1]. In
recent years, interval-based unknown input observers have
gained prominence. These observers rely on relaxed assump-
tions on system inputs and nonlinearities [8]–[11].

Another principal approach to analytical redundancy-based
s-FDI is by using data-driven methods. These methods do
not require explicit system models, relying instead on sensor
data to approximate the underlying dynamics and generate
residuals, as highlighted in [12]. For instance, [13] demon-
strated s-FDI using long short-term memory neural networks
(LSTM), where residuals were formed by comparing net-
work predictions based on past time-series data with ac-
tual measurements. Similar neural network-based approaches
have been proposed for various domains, including industrial
manufacturing processes, power plants, and unmanned aerial
vehicles, as indicated in [12], [14], [15].

Despite the rich diversity of existing s-FDI methods, it’s
important to acknowledge that, to the best of the authors’
knowledge, these techniques are often challenging to im-
plement in practice. Observer-based methods are constrained
by their assumptions about specific system structures, while
data-driven approaches require substantial sensor data, which
can be both difficult and costly to obtain.

In this paper, we tackle these challenges by introduc-
ing a novel learning-based approach to s-FDI using neu-
ral network-based nonlinear Luenberger observers, specifi-
cally Kazantzis-Kravaris/Luenberger (KKL) observers [16],
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[17]. KKL observers lift the original system to a higher-
dimensional state space, where the system behaves linearly
and is stable. The nonlinear transformation required by the
lift is obtained by solving a certain partial differential equa-
tion. The observer’s design is based on this transformed sys-
tem. To estimate the system’s state, an inverse transformation
is applied, to obtain the estimate in the original state space.
A notable advantage of KKL observers is their flexibility;
they do not rely on specific triangular structures or normal
forms of the system but rather depend on relatively mild
observability conditions, making them applicable to a broad
class of nonlinear systems.

Our main contributions in this paper are
1) We develop a novel s-FDI algorithm using a neural

network-based KKL observer with no assumptions on
the system’s structure.

2) We derive a theoretical threshold for sensor fault de-
tection based on the residual, and devise an empirical
method to obtain a threshold for sensor fault isolation.

3) Through simulations, we show that the proposed method
can effectively detect and isolate sensor faults under
various circumstances while remaining robust to model
uncertainties and measurement noise.

The outline of this paper is as follows. Section II for-
mulates the s-FDI problem under some mild assumptions.
Section III presents the s-FDI method. Numerical results
are provided in Section IV with various fault cases. Lastly,
Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a nonlinear system

ẋ(t) = f(x(t)) + w(t) (1a)
y(t) = ϕ(t) [h(x(t)) + v(t) + ζ(t)] (1b)

where x(t) ∈ X ⊂ Rnx is the state, y(t) ∈ Rny is the output,
f : Rnx → Rnx and h : Rnx → Rny are smooth maps, and
w(t), v(t) are process and measurement noises, respectively.
The measured output (1b) might be affected by sensor faults
ϕ(t) and ζ(t), where

ϕ(t) =
[
ϕ1(t) . . . ϕny

(t)
]T ∈ {0, 1}ny

models the complete failure of sensor i when ϕi(t) = 0, and

ζ(t) =
[
ζ1(t) . . . ζny

(t)
]T ∈ Rny

models the degradation of sensor i, affecting its measurement
accuracy, when ζ(t) ̸= 0.

Note that a system with fault-free sensors at time t will
have ϕ(t) = 1ny

and ζ(t) = 0ny
. Any other value of these

signals represents a type of fault, such as sensor bias or
degradation when ζi(t) ̸= 0, for t ≥ T , or sensor failure
when ϕi(t) = 0, for t ≥ T , where i ∈ {1, . . . , ny} and
T ∈ R>0 is a time at which fault occurs.

Assumption 1. We assume the following regarding the
process and measurement noise:

(i) Essential boundedness: ∥w∥L∞ ≤ w̄ and ∥v∥L∞ ≤ v̄,
where w̄, v̄ > 0 are known and ∥ · ∥L∞ denotes the
essential supremum norm.

(ii) Bounded effect:

∃ψ ∈ K∞, ∥x(t;x0, w)− x(t;x0, 0)∥ ≤ ψ(w̄)

where x(t;x0, w) denotes the state trajectory of (1a)
initialized at x(0) = x0 and driven by the noise w(t).

Remark 1. Assumption 1(i) is a standard assumption in the
robust state estimation literature. It says that the signals w(t)
and v(t) almost always remain bounded, and the instances
at which w(t) or v(t) go unbounded are of zero Lebesgue
measure. On the other hand, Assumption 1(ii) requires that
the model f without a process noise does a good job of
describing the noisy system (1a). Such guarantees are usually
provided in the system identification literature, and the reader
is referred to [18], [19] for more details. ⋄

Given a system (1), a neural network-based Kazantzis-
Kravaris/Luenberger (NN-KKL) observer [20] is given by

˙̂z(t) = Aẑ(t) +By(t) (2a)

x̂(t) = T̂ ∗
η (ẑ(t)) (2b)

ŷ(t) = h(x̂(t)) (2c)

which takes output measurements y(t) as input and gives the
estimated state x̂(t) and predicted output ŷ(t). In (2a), A ∈
Rnz×nz is a Hurwitz matrix and B ∈ Rnz×ny is such that
the pair (A,B) is controllable. The observer state ẑ(t) ∈ Rnz

follows a nonlinear transformation ẑ = T̂θ(x̂). The neural
network T̂θ with parameters θ is an approximation of the
injective map T : X → Rny(2nx+1). On the other hand, in
(2b), T̂ ∗

η is a neural network approximation with parameters
η of T ∗ : Rnz → X , which is the left inverse of T . Note that
the observer is trained by considering fault-free sensors. We
refer to [20] for details on the design of NN-KKL observers.

Assumption 2. We assume the following regarding nonlinear
transformations T , T ∗ and their corresponding neural net-
work approximations T̂θ, T̂ ∗

η :

(i) Lipschitzness: T̂θ and T̂ ∗
η are Lipschitz continuous over

X and Z , respectively, where Z ⊇ T (X ), i.e.

∃ℓθ ∈ R>0, ∀x, x̂ ∈ X , ∥T̂θ(x)− T̂θ(x̂)∥ ≤ ℓθ∥x− x̂∥,
∃ℓη ∈ R>0, ∀z, ẑ ∈ Z, ∥T̂ ∗

η (z)− T̂ ∗
η (ẑ)∥ ≤ ℓη∥z − ẑ∥.

(ii) Uniform injectivity:

∃ρ ∈ K, ∀x, x̂ ∈ X , ∥x− x̂∥ ≤ ρ(∥T (x)− T (x̂)∥),
∃ρ∗ ∈ K,∀z, ẑ ∈ Z, ∥z − ẑ∥ ≤ ρ∗(∥T ∗(z)− T ∗(ẑ)∥).

Remark 2. Assumption 2(i) is satisfied if the activation
function of neural networks is chosen to be Lipschitz contin-
uous. Assumption 2(ii) relates to the existence of a KKL
observer [17]. Notice that uniformly injective T implies
the uniform injectivity of its inverse T ∗. It is important to
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remark that Assumption 2(i) and (ii) imply boundedness of
approximation errors, i.e.,

sup
x∈X

∥T (x)− T̂θ(x)∥ <∞, sup
z∈Z

∥T ∗(z)− T̂ ∗
η (z)∥ <∞

where Rnz ⊃ Z ⊇ T (X ). This holds because

∥T (x)− T̂θ(x)∥ ≤ ∥T (x)∥+ ∥T̂θ(x)∥ ≤ ρ∗(∥x∥) + ℓθ∥x∥

and X ⊂ Rnx is a compact set. Further improvement on
this bound can be achieved using the universal approximation
property of neural networks given enough data is generated
and an appropriate network architecture is chosen. ⋄

Observer-based s-FDI of nonlinear systems relies on the
design of observers that are accurate in state estimation and
output prediction. However, for general nonlinear systems,
designing observers is a challenging task. Therefore, we
consider an NN-KKL observer (2) proposed in [20], which
is designed using a physics-informed learning approach. The
focus of the present paper is on developing an s-FDI method
for general nonlinear systems using an NN-KKL observer (2).
Specifically, we address the following problems:
(P1) Detection: How to detect whenever a fault occurs in

one or more sensors?
(P2) Isolation: How to identify which sensor is faulty?

To solve the problems stated above, we define residuals
to compare a measured output from the system with a
predicted output from the NN-KKL observer. The residual
corresponding to ith sensor is defined as

ri(t)
.
= |yi(t)− ŷi(t)|
= |ϕi(t)[hi(x(t)) + vi(t) + ζi(t)]− hi(x̂(t))|.

(3)

Consider equally-distant discrete time samples t0, t1, t2, . . .
with δ = tk− tk−1 for k ∈ N, then we define a differentiated
residual of ith sensor as the absolute value of numerical
differentiation of the residual, i.e.,

r̃i(tk)
.
=

1

δ
|ri(tk)− ri(tk−1)| . (4)

Let τi ∈ R>0 denote a threshold for residual i such that,
in the steady state, ri(t) ≤ τi when there are no faults. Let
r∆ ∈ R>0 denote a threshold for r̃i such that, in the steady
state, r̃i(t) ≤ r∆ when sensor i is not faulty.

III. S-FDI USING NN-KKL OBSERVERS

In this section, we first derive theoretical bounds for the
sensor residuals. Then, we devise an empirical method to
compute the threshold for differentiated residuals. Finally,
we present the proposed s-FDI method.

A. Upper bounds of the residuals

We derive two upper bounds on the residuals1. The first
bound is straightforward but requires an additional stricter
assumption that both T̂θ and T̂ ∗

η are contractions, i.e., their
Lipschitz constants are less than 1. The second bound is more
general and relies on Assumption 1 and 2.

1The proofs are available in the extended version.

Proposition 1. Suppose the neural networks T̂θ and T̂ ∗
η are

Lipschitz continuous with ℓθ ∈ [0, 1) and ℓη ∈ [0, 1). Then,
in a fault-less case,

ri(t) ≤ ℓhi

ℓηξ(x) + ξ∗(z)

1− ℓθℓη
+ v̄ (5)

where ℓhi
is the Lipschitz constant of hi(x) for x ∈ X , v̄ is

given in Assumption 1(i), and

ξ(x)
.
= T (x)− T̂θ(x), and ξ∗(z) .= T ∗(z)− T̂ ∗

η (z) (6)

which are bounded for x ∈ X and z ∈ Z by Assumption 2(ii).

Remark 3. The assumption of Proposition 1 that both Lips-
chitz constants are less than one can be satisfied by regular-
izing the weights of neural networks during training. For in-
stance, an l-layer ReLU network with W (1), . . . ,W (l), which
are the weight matrices of the neural network layers, has a
Lipschitz constant ℓ = ∥W (1)∥ . . . ∥W (l)∥. By regularizing
weights such that the maximum singular value of each weight
matrix is less than one, it can be ensured that ℓ < 1. ⋄

Recall z = T (x) and ẑ = T̂θ(x), where

ż(t) = Az(t) +Bh(x̄(t))

with x̄(t) .= x(t;x0, 0) the noise-free state trajectory, and the
dynamics of ẑ(t) is given in (2a).

Lemma 1. Suppose the matrix A is Hurwitz and diagonaliz-
able with eigenvalue decomposition A = V ΛV −1. Then, the
error z̃(t) := z(t)− ẑ(t) satisfies

∥z̃(t)∥ ≤ ∥z̃0∥κ(V )e−ct

where c > 0, ψ in Assumption 1(ii), and ℓh is the Lipschitz
constant of h(x) for x ∈ X .

Using the above lemmas, we can obtain a general upper
bound on the residuals under Assumption 1 and 2.

Proposition 2. Suppose the matrix A is diagonalizable with
eigenvalue decomposition A = V ΛV −1. Then, in a fault-less
case,

ri(t) ≤ v̄ + ℓhi

[
ξ∗(z) + ℓηκ(V )e−ct∥z̃0∥

+κ(V )
c ∥B∥(1− e−ct)(ℓhψ(w̄) +

√
ny v̄)

] (7)

where v̄ is from Assumption 1(i), ℓhi
is the Lipschitz constant

of hi(x) for x ∈ X , ξ∗(z) is defined in (6), κ(V ) is the
condition number of V , and z̃0 = z̃(0).

B. Fault detection by computing a theoretical threshold for
the residuals

After learning the NN-KKL observer on the training
datasets Xtrain ⊂ X and Ztrain ⊂ Z , generate a test dataset
Xtest ⊂ X by simulating a noise-less (w ≡ 0, v ≡ 0) and
fault-free (ϕ ≡ 1, ζ ≡ 0) system (1a). Then, following the
methodology presented in [20], we can generate Ztest ≈
T (Xtest), where Ztest ⊂ Z . The datasets Xtest and Ztest are
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then used to estimate the approximation errors incurred by
T̂θ and T̂ ∗

η . Define

ϵ̂
.
= max

x∈Xtest,
z∈Ztest

∥∥∥z − T̂θ(x)
∥∥∥ , ϵ̂∗

.
= max

x∈Xtest,
z∈Ztest

∥∥∥x− T̂ ∗
η (z)

∥∥∥ .
Then, Proposition 2 leads to

lim sup
t→∞

ri(t)

≤ v̄ + ℓhi

[
ξ∗(z) +

κ(V )

c
∥B∥(ℓhψ(w̄) +

√
ny v̄)

]
.

Therefore, in this case, we can choose the threshold to be

τi = v̄ + ℓhi

[
ϵ̂∗ +

κ(V )

c
∥B∥(ℓhψ(w̄) +

√
ny v̄)

]
. (8)

Fault detection: At a steady state when t becomes large, it
holds that ri(t) ≤ τi when there are no sensor faults. When
the residual ri(t) surpasses τi, it signifies that the measured
output is significantly different from the predicted output.
Since τi has been computed using tight inequalities, sensor
faults can be detected by measuring the residuals ri(t) and
raising an alert whenever ri(t) > τi for any i and any t ≥ 0.

C. Fault isolation by computing an empirical threshold for
differentiated residuals

As described in the previous subsection, a sensor fault is
detected whenever the residual ri(t) surpasses the threshold
τi. However, ri(t) surpassing τi and having the largest value
among other residuals do not mean that sensor i is faulty.
This is because a fault in sensor j distorts the output yj(t),
which is filtered through the observer dynamics and then
transformed by (hj ◦ T̂ ∗

η )(·). Since the neural network T̂ ∗
η is

not diagonal, a fault in sensor j could induce a large residual
ri(t) even when sensor i is not faulty. This phenomenon can
also be observed in the third row of Fig. 2 in Section IV.
Because of the inter-dependencies due to non-diagonal T̂ ∗

η ,
the transients after the occurrence of a fault may persist above
the threshold, leading to an inability to exactly isolate the
sensor faults from the residuals. Therefore, fault isolation is
done by evaluating differentiated residuals r̃i(tk).

Based on our empirical observations, a spike is generated
in the differentiated residual r̃i(tk) whenever an abrupt fault
(ϕi(t) = 0 or ζi(t) ̸= 0) is introduced in sensor i at time
tk. The explanation for this spike is that the fault in the
output gets numerically differentiated. However, isolation is
tedious when the fault signal ζi(t) is very smooth and of
low magnitude. Nevertheless, it is reasonable to assume that
faults are irregular and non-smooth signals.

Consider the test datasets Xtest and Ztest, where we denote
the state trajectories xj(tk)

.
= x(tk;x

j
0, 0) that are initialized

at p initial points x(0) = xj0, for j = 1, . . . , p, and the
corresponding observer estimates as x̂j(tk)

.
= x̂(tk; T̂ ∗

η (zj0)).
We simulate the NN-KKL observer and compute the residuals
rj1(tk), . . . , r

j
ny
(tk), for k = 0, . . . , T , where T ∈ N and

rji (tk) = |yi(tk;xj)− ŷi(tk; x̂
j)|.

Here, tT > 0 is chosen large enough to allow the observer to
converge to a neighborhood of the original state. Then, the
corresponding differentiated residuals r̃j1(tk), . . . , r̃

j
ny
(tk),

for k = 1, . . . , T , are obtained using (4). Let tc, for c < T ,
denote the minimum time at which the observer is in the
steady state. Then an empirical threshold for differentiated
residuals is computed as follows:

r∆ = max
k∈{c,...,T}, j∈{1,...,p}

i∈{1,...,ny}

r̃ji (tk). (9)

Fault isolation: Given that the learned NN-KKL observer
estimates the system state accurately, it holds that r̃i(t) ≤ r∆
at steady state when tk is large enough. Therefore, when the
differentiated residual r̃i(t) surpasses the empirical threshold
r∆, an alert can be raised that sensor i is probably faulty.

IV. SIMULATION RESULTS

Our approach is demonstrated in this section using numer-
ical simulations. We show that s-FDI of a highly nonlinear
system can be achieved using NN-KKL observers, even in the
presence of additive process and measurement noises. Both
types of faults, sensor degradation represented by the fault
signal ζi(t) ̸= 0 and sensor failure represented by ϕi(t) = 0
in the system output (1b), are demonstrated.
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Fig. 1: Estimated and true trajectories of states θ7 and θ8
under the influence of process and sensor noise.

A. Kuramoto Model

We consider the Kuramoto model for demonstrating our
s-FDI method. The Kuramoto model describes the phenom-
ena of synchronization in a multitude of systems, including
electric power networks, multi-agent coordination, and dis-
tributed software networks [21]. The dynamics of a network
with n nodes are given as

θ̇i(t) = ωi +
∑n

j=1 aij sin(θi(t)− θj(t)) (10)

where θi(t) ∈ S1 is the phase angle of node i = 1, .., n, ωi ∈
R is the natural frequency of node i, and aij ≥ 0 denotes the
coupling between node i and j. The state trajectories of (10)
are often represented graphically as sin(θi) to better illustrate
their synchronization.

B. Experimental Setup

For (10), we consider a network of 10 nodes with randomly
generated natural frequencies ωi and couplings aij . The
measurements are chosen as y =

[
θ1 θ2 θ3 θ4 θ5

]T
. A

set of 50 initial conditions is generated randomly in Xtrain ⊂

10
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Fig. 2: (a) Complete failure of sensor 4. (b) Degradation of sensors 1 and 5 at different time points with abrupt faults. (c)
Smooth sigmoidal fault in sensor 2. (d) Gradually increasing white noise in sensor 3. (e) Gradually increasing sinusoidal
signal in sensor 3.

[−2, 2]10. We choose Runge-Kutta-4 as our numerical ODE
solver to simulate (10) and (2a) over a time interval of [0, 30],
partitioned into 4000 sample points for each trajectory. The
neural network T̂ ∗

η is chosen as a dense feed-forward net-
work, consisting of 3 hidden layers of 250 neurons with
ReLU activation function. Model training is facilitated by
data standardization and learning rate scheduling. Following
[22], the matrices of (2a) are chosen as

A = Λ⊗ Iny , B = Γ⊗ Iny

where Λ ∈ R(2nx+1)×(2nx+1) is a diagonal matrix with diag-
onal elements linearly distributed in [−15,−21], Γ ∈ R2nx+1

is a column vector of ones, and Iny is the identity matrix of
size ny × ny . Here, nx and ny are 10 and 5, respectively,
and nz = ny(2nx + 1) = 105.

The estimation capabilities of the observer under fault-
free conditions are demonstrated in Fig. 1, which shows the

estimated and true trajectories of two (randomly chosen) un-
measured states θ7 and θ8 over a time interval of [0, 20], with
noise terms w(t), v(t) ∼ N (0, 0.02). The figure demonstrates
that the estimation error is stable under noise and neural
network approximation error.

C. Numerical Results

We now apply the learned neural network-based KKL
observer to perform s-FDI. The theoretical thresholds τi of
the residuals ri(t) computed by (8) are shown in the third
row of Fig. 2. On the other hand, the empirical threshold
r∆ = 4.74 is computed using (9) according to the method
described in Section III-C. We choose N = 100 initial
conditions to create Xtest ∈ [−2, 2]10 and to compute r∆
using (9). Fig. 2c–2e demonstrate the detection and isolation
capabilities of our method under various faults. In the figure,
the rows correspond to the measured and estimated state
trajectories, the fault signal, the residuals ri = |yi − ŷi| and
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the finite difference approximation (4) respectively.
In Fig. 2a, we show that our method is capable of detecting

sensor shutdowns due to complete failure, which we demon-
strate by modeling the fault in sensor 4 with ϕ4(t) = 0.
Fig. 2b illustrates the situation when more than one fault is
present. Sensors 1 and 5 are disturbed by ζ1(t) = 1, at t ≥ 5,
and ζ5(t) = 1, at t ≥ 15. Each fault is distinctly detectable
at the moment of occurrence.

In Fig. 2c, sensor 2 is disturbed by a smooth sigmoidal
fault term ζ2(t) introduced at t = 5. Because of the
smooth sigmoidal signal as a fault, the observer does not
detect any anomaly and continues to follow the measured
state trajectories, thus generating a small residual. Although
introducing an abrupt fault as in Fig. 2a and 2b induces
a transient in the observer, causing a large residual to be
generated, introducing a smooth fault in Fig. 2c resulted in
only detection but not isolation. Due to the stability of the
observer, it attempts to track the faulty trajectories after the
occurrence of the fault, leading to a decrease in the residual
magnitudes subsequently.

Fig. 2d and 2e illustrate the case when the fault signal
on sensor 3 is introduced gradually. In Fig. 2d, we simulate
a fault in sensor y3 which is a gradually increasing white
noise. In Fig. 2e, the fault is a sinusoidal signal that gradually
increases its magnitude from 0 to 5. Here, due to a gradual
increase in the fault signals’ magnitudes, it can be observed
that both detection and isolation are successfully performed
but with a small delay.

V. CONCLUSION AND FUTURE WORK

We have introduced a novel sensor fault detection and
isolation method tailored for a general class of nonlinear
systems. For s-FDI, we leverage a neural network-based
Kazantzis-Kravaris/Luenberger (KKL) observer for residual
generation. We derived theoretical upper bounds for the
residuals obtained by comparing measured outputs with those
predicted by the observer. These upper bounds serve as the
foundation for analytically computing thresholds. When a
residual crosses its corresponding threshold, it indicates the
detection of sensor faults. However, the critical task of fault
isolation relies on the numerically differentiated residuals
rather than the usual residuals. To this end, we introduced
an empirical methodology, involving experimentation with
the learned KKL observer, to calculate the threshold for the
differentiated residuals.

We demonstrated the efficacy of our approach on a network
of Kuramoto oscillators by evaluating various fault scenarios,
including sensor degradation and complete failure. The com-
prehensive set of simulations provides compelling evidence
of the method’s robustness and effectiveness in fault detection
and isolation within autonomous nonlinear systems.

The theory of KKL observers extends to non-autonomous
systems, and adapting our method to those systems remains
an open research topic. It is also of interest to study the
performance of the method in real applications, especially in
systems where conventional solutions are known to fail.
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