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Abstract— We consider finite games where the agents only
share their beliefs on the possible equilibrium configuration.
Specifically, the agents experience the strategies of their op-
ponents only as realized parameters, thereby updating and
sharing beliefs on the possible configurations iteratively. We
show that combining non-bayes updates with best-response
dynamics allows the agents to learn the Nash equilibrium, i.e.,
the belief distribution over the set of parameters has a peak
on the true configuration. Convergence results of the learning
mechanism are provided in two cases: the agents learn the
equilibrium configuration as a whole, or the agents learn those
strategies of the opponents that constitute such an equilibrium.

I. INTRODUCTION

In several game-theoretic scenarios the agents share their
decision variables and the entire Nash equilibrium (NE)
learning process is based on the fact that such decisions can
be accessed by the other agents (full-decision information).
To reduce the amount of shared information, it has been
assumed that only part of the neighbors’ decision variables
can be communicated, while the rest need to be inferred via
some communication rounds (partial-decision information).
In this second case, the seeking algorithm entails two learn-
ing dynamics, one to retrieve the missing information via a
consensus mechanism and one towards the NE [1]–[3].

Both in the full- and partial-decision information setups, a
key assumption establishes that the agents share the exact
decision variable. In other words, the communication is
deterministic and the problem can be solved with standard
consensus dynamics. However, this is not realistic. First,
untrustworthy agents might want to share wrong information,
especially in a competitive scenario. Secondly, there might be
some noise so that, even if the exact information is shared, it
can not be retrieved or received by the other agents. In these
cases, one can still assume that the agents have some insight
on the opponents’ possible strategies and that they can form
an opinion, i.e., a belief, on the outcome of such strategy.

In these situations where the exact parameter is unknown,
researchers often turn to (non-)bayesian learning to retrieve
at least a probability distribution on the set of parameters [4]–
[6]. Loosely speaking, Bayesian learning is used to update
the probability of a certain parameter being used as more
information becomes available [7], [8]. Since this requires
significant computational efforts, particularly in a distributed
setup [6], [9], non-bayesian mechanisms are then considered
also for large networks [4], [9].
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In this paper we consider the case where the agents can
not observe the true decision variable of the other agents, but
rather a realization of those decisions, i.e., a configuration of
parameters. The agents experience in fact a realized reward,
and know the likelihood of such reward corresponding to a
certain configuration. In this situation, learning a NE is tan-
gled with updating the beliefs on the possible configurations
and with learning the equilibrium one with high probability.
To this aim, we consider a finite game where the strategies
of the other players are perceived as parameters. The goal
of the agents is to learn the NE configuration by learning
also the probability of seeing these parameters realized. The
learning algorithm is inspired by [9], where a non-bayesian
learning step is paired with a best-response iteration that
allows the players to reach an NE. In [9], however, the agents
share their strategies and the uncertainty is provided by an
external parameter that affects all the payoff functions of
all the agents. In this work, instead, the decision variables
themselves are perceived as parameters and learned, together
with the equilibrium configuration. Our contributions can
then be summarized as follows:

• We derive a iterative algorithm allowing the agents to
build a probability distribution on the possible configu-
rations with the highest peak on the NE one (§III);

• We improve the results in [9] by accounting for the
centrality of the agents, i.e., considering how influential
the agents are in the communication network (§III);

• With a slight modification, the algorithm can be used
not only to retrieve the NE configuration as a whole,
but also to learn the strategies of the opponents that
correspond to the equilibrium strategy (§IV).

Compared to [9], we allow the agents to have their own
stepsize (instead of the same for everyone involved in the
game), include the influence of the agents by considering the
centrality, and propose a weaker identifiability assumption
that holds for any pair of parameters and not only with
respect to (w.r.t.) the true one. Finally, our learned parameter
is not an external factor (e.g., nature) but it corresponds to the
unknown strategies of the opponents or configuration thereof.

Notation: A matrix W = [wij ] ∈ RN×N is doubly
stochastic if both the sum over the rows and columns is
equal to one, i.e.,

∑N
i=1 wij = 1 for all j and

∑N
j=1 wij = 1

for all i. Given a set S, |S| indicates the cardinality of
the set. We denote with ∆(S) the simplex obtained as the
convex hull of the points in the finite set S, i.e., ∆(S) =

{
∑|S|
i=1 aisi :

∑|S|
i=1 ai = 1, ai ≥ 0 for all i = 1, . . . , |S|}.

Given two probability distributions P and P ′, the Kullback-
Leibler (KL) divergence is DKL(P‖P ′) = EP [log( PP ′ )]. The
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KL divergence is zero if and only if P = P ′ with probability
1. We use the acronym a.s. for almost surely.

II. PROBLEM SETUP

We consider N agents, indexed by the set N =
{1, . . . , N}, taking part to a finite game, i.e., each i ∈ N
makes a decision xi ∈ Xi with Xi finite subset of Rni . Each
agent aims at maximizing a reward function ui : Xi×X−i →
R, X−i =

∏
j∈N\{i} Xj , so that the game at hand is defined

by the following collection of optimization problems:

∀i ∈ N : max
xi∈Xi

ui(xi,x−i), (1)

emphasizing the mutual dependency of each ui from the
opponents’ decisions, x−i = col((xj)j∈N\{i}) ∈ X−i.

As a solution notion for the underlying game, we adopt the
well-known NE, which coincides with a collective strategy
x∗ = col((x∗i )i∈N ) so that, for all i ∈ N ,

ui(x
∗
i ,x
∗
−i) ≥ ui(zi,x∗−i), ∀zi ∈ Xi. (2)

We consider a scenario in which the agents do not have
access to the decision variables of the other participants,
which are hence seen as parameters. This framework may
correspond, for instance, to the case in which the agents are
not willing to communicate their exact decision directly due
to, e.g., privacy reasons. In particular, we assume that to
each agent corresponds a set Θi = {θ1

i , . . . , θ
Mi
i } ⊂ Rni of

possible values that such parameters can assume. These sets
of parameters are known to the other agents j ∈ N \ {i}.
Specifically, one can think of Θi as the set of possible
parameters that any other agent j ∈ N \ {i} can see
realized as a possible action of agent i. Note that, in general,
Mi 6= |Xi|, i.e., the actual number of possible decision
variables of agent i. All the opponents see the same Θi for
the possible parameters of agent i. We call configuration the
vector θ = col((θi)i∈N ) ∈ Θ =

∏
i∈N Θi collecting the

parameters of all the agents.
The agents have then access to the set of configurations

Θ, since they know sets Θi, i ∈ N , and aim at learning
the “true” one, i.e., the configuration corresponding to the
NE. Along the line of (2), the agents then want to learn a
configuration θ∗ ∈ Θ such that, for all i ∈ N ,

ui(x
∗
i ,θ
∗
−i) ≥ ui(zi,θ∗−i), ∀zi ∈ Xi, (3)

and θ∗ = col(x∗i ,θ
∗
−i), for all i ∈ N .

Assumption 1: A NE exists and it is unique. �
We assume that θ∗ in (3) corresponds to the NE x∗ in

(2), i.e., θ∗ = x∗. Moreover, θ∗ ∈ Θ, that is, the true
configuration lies in the parameter set that all the agents
can access. In words, this means that the agents have a
possibility to learn the equilibrium strategy of the other
participants, hence the equilibrium configuration once the
individual preference (1) is also taken into account.

We conclude this section by describing the communication
network that allows the agents to share some information,
i.e., their belief on the possible configurations, with their
neighbors. Specifically, we assume that the agents are con-
nected over a graph G = (N , E), where E is the set of edges,

namely for a given pair of agents i, j ∈ N , (i, j) ∈ E if
agent i communicates with agent j. We indicate the set of
neighbors of agent i in the graph G as Ni = {j ∈ N :
(i, j) ∈ E}. The connections on the graph are collected in the
weighted adjacency matrix W = [wij ]i,j∈N , where wij > 0
if (i, j) ∈ E and wij = 0 otherwise. To following assumption
guarantees some connectivity properties to G [9].

Assumption 2: The graph G is connected and the adja-
cency matrix W is doubly stochastic. �

III. LEARNING THE EQUILIBRIUM CONFIGURATION

Since the agents can access only the parameters and not the
true decision variables of the other agents, they experience
a realized reward

yi(xi,θ
c
−i) = ui(xi,θ

c
−i) + ε(xi,θ

c
−i) (4)

after the parameters are realized in certain configuration c ∈
C = {1, . . . ,M},M =

∏
i∈N Mi. The term ε(xi,θ

c
−i) rep-

resents a noise term that might depend on the configuration
θc = col(xi,θ

c
−i). In words, once a certain configuration is

realized, the agents experience the corresponding reward that
depends on agent i’s choice and on the realized parameters
of the other agents. Let fi(yi | xi, θc−i) be the likelihood
function of the realized reward yi, where to ease the notation
we have removed the dependency of yi on xi and θc−i.

To measure the informative content of the parameters, we
consider the KL divergence among the likelihoods of the
realized rewards, and define for each agent i ∈ N the set of
reward equivalent configurations w.r.t. the NE one:

Θ̄i(x
∗
i ) = {θc ∈ Θ |

DKL(fi(y
∗
i | x∗i , θ∗−i)‖fi(y∗i | x∗i , θc−i)) = 0},

where y∗ is the reward realized at a NE configuration.
Specifically, these sets collect the configurations that are
more likely to give the same reward as the NE configuration.

The parameters in these sets are locally indistinguishable
to agent i. Therefore, to learn the true parameter, we assume
that at least one agent can identify the true parameter.

Assumption 3: For every θc1 6= θc2 , c1, c2 ∈ C, there
exists at least one agent i ∈ N for which DKL(fi(yi |
xi,θ

c1)‖fi(yi | xi,θc2)) > 0 for all xi ∈ Xi. �
Assumption 3 does not require that one of the agents can

distinguish θ∗ from all other θc, c ∈ C, but rather that for
any two configurations there is at least one agent that can
distinguish them. Assumption 3 is also a sufficient condition
for the global identifiability of θ∗ [10]. In fact, it holds that:⋂

i∈N
Θ̄i(x

∗
i ) = {θ∗}.

The following example is meant to introduce the quantities
above, and will be also used to run numerical experiments.

Example 1: Consider a three players repeated game de-
scribed by the following tables, where Player 1 (P1) plays
rows, Player 2 (P2) plays columns and Player 3 (P3) picks
the tables. The goal is to maximize the obtainable reward:
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P3

P1

P2
1

B

T

L R

0,0,0 5,7,3
10,10,10 6,6,11

P3

P1

P2
2

B

T

L R

3,7,5 9,6,6
5,7,5 4,4,4

The set of possible configurations coincides with
Θ = {(T, L, 1), (T,R, 1), (B,L, 1), (B,R, 1), (T, L, 2),
(T,R, 2), (B,L, 2), (B,R, 2)} and the only NE is (B,L, 1).
With some abuse of notation, we let coincide here the
parameters with the decision variables (although they might
differ in practice). For the sake of this example, assume
that the likelihood gives the same probability to all rewards
greater or equal than 6, e.g., when the agents’ reward is fairly
high. Then, the sets of reward equivalent configurations are:

Θ̄1(B) = {(B,L, 1), (B,R, 1)},
Θ̄2(L) = {(B,L, 1), (T, L, 2), (B,L, 2)},
Θ̄3(1) = {(B,L, 1), (B,R, 1)},

and their intersection contains the NE configuration only. �
To learn the true configuration, the agents keep a private

belief µi ∈ ∆(Θ) and a posterior belief bi ∈ ∆(Θ) based
on the realized reward. Given the private belief, the agents
then compute the expected reward to update their decisions:

ui(xi, µi) =

M∑
c=1

ui(xi,θ
c
−i)µi(θ

c). (5)

The expected reward can be used successively to update the
local strategy, following a standard best-response paradigm:

BRi(µi) = argmaxxi∈Xi
ui(xi, µi). (6)

Algorithm 1 reports the main steps of this first procedure
derived, including the update of the belief and the decisions.

A. Convergence results

To obtain convergence of the beliefs, updated according to
Algorithm 1, we start by assuming that the realized rewards
have bounded information content:

Assumption 4: For each i ∈ N , the likelihood function
fi(yi | xi, θc−i) is continuous in xi for all c ∈ C. Moreover,
there exist L > 0 such that

max
i∈N

max
θ
c1
−i,θ

c2
−i∈Θ−i

max
xi∈Xi

sup
yi

∣∣∣∣log
fi(yi | xi, θc1−i)
fi(yi | xi, θc2−i)

∣∣∣∣ ≤ L. �
Concerning the non-bayesian update of the posterior be-

liefs, we assume next that the exponent is vanishing with the
number of iterations:

Assumption 5: For every agent i ∈ N , the stepsize se-
quence {α(t)

i }t∈N is such that 0 < α
(t)
i < 1 for all t ≥ 0,∑∞

t=1 α
(t)
i =∞ and

∑∞
t=1(α

(t)
i )2 = 0. �

According to [9], we thus have the following result.

Algorithm 1: Configuration Learning Algorithm

Initialization: x(0)
i ∈ Xi for i ∈ N and µ(0)

i = 1
M 1M

for i, j ∈ N , θc ∈ Θ

Iteration t: For configuration θc ∈ Θ, Agent i
1) Updates the posterior belief:

b
(t)
i (θc) =

fi(y
(t)
i | x

(t)
i , θc−i)

α
(t)
i µ

(t)
i (θc)∑

c∈C fi(y
(t)
i | x

(t)
i , θc)α

(t)
i µ

(t)
i (θc)

2) Receives b(t)` (θc) from ` ∈ Ni and updates the
private belief:

µ
(t+1)
i (θc) =

exp(
∑N
`=1 wi` log b

(t)
` (θc))∑

c∈C exp(
∑N
`=1 wi` log b

(t)
` (θc))

3) Updates strategy:

x
(t+1)
i ∈ BRi(µ

(t+1)
i )

Lemma 1: Let Assumption 1 and 5 hold true. Then, for
all c ∈ C, it holds that:

1

N

N∑
i=1

µ
(t)
i (θc)

µ
(t)
i (θ∗)

→ νc a.s., as t→∞,

where νc ≥ 0 is a nonnegative random variable. �
Lemma 1 states that the average belief ratio converges to a
random variable a.s.. We note that despite θ∗ is used for the
convergence analysis (here and later on) the agents do not
ned to know it in advance. In fact, in Algorithm 1 all the
parameters follow the same updating rule. Next, we show
that the agents reach consensus on a common belief, which
however may differ from the true one:

Theorem 1: Let Assumptions 1, 2, 4, 5 hold. Then, the
belief sequence {µ(t)

i }t∈N, i ∈ N generated by Algorithm 1
converges a.s. to a common belief µ of the form

µ(θc) =
νc∑M
c=1 ν

c
for all c ∈ C

where νc is as in Lemma 1. �
Proof: The proof follows the same steps as that of [9,

Th. 1], by adapting to the agent-wise stepsize α(t)
i and by

assuming that, w.l.o.g., θc = θ∗ for c = 1.
Since the agents beliefs converge to a common belief, we

now revise the NE definition, given such common belief µ.
Definition 1: A NE with common belief µ is a collective

strategy x∗(µ) = col((x∗i (µ))i∈N ) such that, for all i ∈ N ,

ui(x
∗
i (µ), µ)) ≤ ui(zi, µ), ∀zi ∈ Xi,

where ui(·, µ) is defined as in (5). �
Assumption 6: Given a common belief µ, the collective

strategy x(t) generated by the best response in (6) converges
a.s. to x∗(µ), as t→∞. �

Remark 1: The assumption above simply states that, if the
collective decision do not converge to a NE with constant
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Fig. 1. Private belief of Player 1 over the iterations. Each solid line
represents the mean value associated to each component of µ1, while the
shaded area of the same colour the resulting variance, both obtained by
running 100 numerical experiments of the game in Example 1.

belief, i.e., the common belief, then convergence will also
fail when the beliefs are updated at each iteration [8]. �

Next, we introduce the notion of network divergence:
Definition 2 (Network divergence): Given a common be-

lief µ, for all c ∈ C the network divergence is defined as

Z(θ∗, θc) =

1

N

N∑
i=1

DKL(fi(yi | x∗i (µ), θ∗−i)‖fi(yi | x∗i (µ), θc−i)). �

Then, we state our first main result establishing the con-
vergence of the common belief to the true parameter:

Theorem 2: Let Assumptions 1-6 hold true. Then, we
have the following: for each i ∈ N ,

1) limT→∞
1∑T

t=1 α
(t)
i

log
µ
(T+1)
i (θ∗)

µ
(T+1)
i (θc)

= Z(θ∗,θc);

2) µ
(t)
i (θ∗)→ 1 as t→∞. �

Proof: The proof follows similarly to that of [9, Th. 2]
by replacing the stepsize with the agent-wise ones.

Remark 2: As a by-product of learning the true parameter,
derived from its beliefs converging to 1, we obtain also
convergence to the NE configuration of the game in (1). �

Example 1 (Cont’d): We corroborate Theorem 2 by run-
ning Algorithm 1 on the three players game. The config-
urations are numbered from left to right, top to bottom,
hence the NE (B,L, 1) corresponds to configuration c = 3.
Specifically, we conduct 100 numerical instances of Ex-
ample 1 by randomly choosing each x

(0)
i and likelihood

fi(yi | xi, θc−i) associated to the eight possible realized
costs, in each configuration, for every player i ∈ {1, 2, 3}.
The stepsize, instead, is identical for each agent and is set to
1/(t+100), while all the agents are allowed to communicate
with each other. In Fig. 1, we show how the private belief
of Player 1 changes through the iterations (Players 2 and
3 feature a similar behaviour), while Fig. 2 shows the final
private belief for all the players. The configuration with the
highest belief correctly coincides with the NE one. �

Fig. 2. Private beliefs of the three players after 104 iterations of
Algorithm 1. The highest peaks correspond to the NE configuration.

B. Learning the NE configuration with influential agents

If one is interested in considering the influence an agent
has within the network, Assumption 2 can be replaced with
a stronger one relying on the centrality of the network [10].

Assumption 7: The graph G is strongly connected. �
Then, the following holds true:
Lemma 2 (Fact 1, [10]): If W is irreducible, then its sta-

tionary distribution π = col((πi)i∈N ) is the normalized left
eigenvector associate to the eigenvalue 1, i.e., π = πW . All
components of π are strictly positive and if W is aperiodic,
it holds that limt→∞W t(i, j) = πj for all i, j ∈ N . �

Definition 3 (Weighted Network divergence): Given a
common belief µ, for all c ∈ C the weighted network
divergence is defined as

Zπ(θ∗,θc) =
N∑
i=1

πiDKL(fi(yi | x∗i (µ), θ∗−i)‖fi(yi | x∗i (µ), θc−i)),

where the subscript π indicates that the centrality is taken
into account. �

Armed with these new assumptions and definitions, we can
state a additional convergence results for our Algorithm 1:

Lemma 3: Let Assumptions 1 and 5 hold true. Then, for
all c ∈ C, it holds that

N∑
i=1

πi
µ

(t)
i (θc)

µ
(t)
i (θ∗)

→ νc a.s., as t→∞,

where νc ≥ 0 is a nonnegative random variable. �
Proof: The proof follows the same steps as the one of

[9, Lemma 2] by taking the average with weights πi.
Theorem 3: Let Assumptions 1, 4, 5 and 7 hold true.

Then, the belief sequence {µ(t)
i }t≥0, i ∈ N generated by

Algorithm 1 converges a.s. to a common belief µ of the
form

µ(θc) =
νc∑M
c=1 ν

c
for all c ∈ C

where νc is as in Lemma 3. �
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Proof: The proof follows the same steps as the one for
[9, Th. 1], by noting that

∑
i∈N πi = 1 and using Lemmas

2 and 3 for the weighted average.
Theorem 4: Let Assumptions 1, 3-7 hold true. Then, we

have the following: for each i ∈ N ,

1) limT→∞
1∑T

t=1 α
(t)
i

log
µ
(T+1)
i (θ∗)

µ
(T+1)
i (θc)

= Zπ(θ∗,θc);

2) µ
(t)
i (θ∗)→ 1 as t→∞.

Proof: The proof follows by combining [9, Th. 2]
and [10, Th. 1], in particular using the fact that
limt→∞W t(i, j) = πj for all i, j ∈ N .

IV. LEARNING THE STRATEGIES OF THE OTHER AGENTS

We now focus on the scenario in which the agents infer
the NE configuration by learning the single strategies of
their opponents. Although the realized rewards still relate
to the configurations as in (4), we consider here the effect of
opponent j ∈ N\{i} on such reward, i.e., the likelihood read
as fij(yi | xi, θ

kj
j ). Note that we put particular emphasis on

the fact that the parameter θkjj ∈ Θj , kj ∈ Mj was played
by agent j, i.e., we do not focus on the configuration but on
what the single agents play and on how this affect agent i.

Also in this case, we define the set of reward equivalent
parameters w.r.t. the optimal one, for each i and j ∈ Ni:

Θ̄ij(x
∗
i ) = {θj ∈ Θj :

DKL(fij(yi | x∗i , θ∗j )‖fij(yi | x∗i , θj)) = 0}.

The parameters in these sets are locally indistinguishable
to agent i. To learn the true parameter, we shall therefore
assume that the latter is globally identifiable, for each agent.

Assumption 8: For every θj 6= θ∗j , j ∈ N , there exists at
least one agent i for which DKL(fij(yi | x∗i , θ∗j )‖fij(yi |
x∗i , θj)) > 0 for all xi ∈ Xi. �
Thus, for all j ∈ N ,

⋂
i∈N Θ̄ij(xi) = {θ∗j }, i.e., even if the

single agents can not locally distinguish the true parameter
for the strategy of the j-th one, globally it is identifiable.

Example 2: Consider the game in Example 1 where
Player 1 (P1) plays rows, Player 2 (P2) plays columns and
Player 3 (P3) picks the tables, maximizing the obtainable
reward. Here, the sets of reward equivalent parameters,
according to the same likelihood used in Example 1, are

Θ̄12(B) = {L,R} Θ̄13(B) = {1}
Θ̄21(L) = {B, T} Θ̄23(L) = {1, 2}
Θ̄31(1) = {B} Θ̄32(1) = {L,R}

In this case, it is clear why Assumption 8 is needed: if
either P1 or P3 cannot distinguish θ∗2 = L, the equilibrium
configuration might not be found. �

Then, to learn the true parameter, the agents keep a private
belief µi,j ∈ ∆(Θj) and a posterior belief bi,j ∈ ∆(Θj) on
the parameters of agent j, based on the realized reward.

Given the private belief, the agents can compute the
expected reward to update their decision variables:

ui(xi, µi,−i) =

M∑
c=1

ui(xi, θ
c
−i)µi,−i(θ

c
−i), (7)

Algorithm 2: Strategy Learning Algorithm

Initialization: x(0)
i ∈ Xi for i ∈ N and

µ0
i,j = 1

Mj
1Mj

for i, j ∈ N

Iteration t: For parameter θkjj ∈ Θj , Agent i
1) Updates the posterior belief:

b
(t)
i,j (θ

kj
j ) =

fi,j(y
(t)
i | x

(t)
i , θ

kj
j )α

(t)
i µ

(t)
i,j (θ

kj
j )∑

θj∈Θj
fi,j(y

(t)
i | x

(t)
i , θj)α

(t)
i µ

(t)
i,j (θj)

2) Receives information b(t)`,j(θ
kj
j ) from `, j ∈ Ni and

updates the private belief:

µ
(t+1)
i,j (θ

kj
j ) =

exp(
∑N
`=1 wi` log b

(t)
`,j(θ

kj
j ))∑

θj∈Θj
exp(

∑N
`=1 wi` log b

(t)
`,j(θj))

3) Updates strategy:

x
(t+1)
i ∈ BRi(µ

(t+1)
i,j )

where µi,−i(θ
c
−i) =

∏
j 6=i,c∈Ckj

µi,j(θ
c
j) and Ckj = {c ∈

C : θc = [θc1, . . . , θ
c
j−1, θ

kj
j , θ

c
j+1, . . . , θ

c
N ]} is the set of

configurations where agent j communicates the parameter
θ
kj
j ∈ Θj . In words, µi,−i is the collective belief of agent
i on the parameters of the other agents composing the
configuration θc, i.e., it is the probability of the configuration
θc obtained as the product of the θcj , j ∈ N composing it.
Note that θcj , j ∈ N , are independent as the communication
noise is independent on the actions chosen by the agents.
The belief and the decisions are then updated according to
the set of instructions summarized in Algorithm 2, where the
best-response is computed considering the reward in (7).

A. Convergence

Results similar to §III-A hold with some modifications of
the assumptions required. Let us start with the likelihood.

Assumption 9: For each i ∈ N , the likelihood function
fi(yi | xi, θ

kj
j ) is continuous in xi for all θkjj ∈ Θj , j ∈

N \ {i}. Moreover, there exists L > 0 such that

max
i∈N

max
θ
k1
j ,θ

k2
j ∈Θj

max
xi∈Xi

sup
yi

∣∣∣∣∣log
fij(yi | xi, θk1j )

fij(yi | xi, θk2j )

∣∣∣∣∣ ≤ L. �
Then, we can state the equivalent of Lemma 1 and

Theorem 1 also for this different case:
Lemma 4: Let Assumption 1 and 5 hold true. Then, for

all θkjj ∈ Θj , j ∈ N \ {i}, it holds that

1

N

N∑
i=1

µ
(t)
ij (θ

kj
j )

µ
(t)
ij (θ∗j )

→ ν
kj
j a.s., as t→∞,

where νkjj ≥ 0 is a nonnegative random variable. �
Theorem 5: Let Assumptions 1, 2, 5, 9 hold true. Then,

the belief sequence {µ(t)
ij }t∈N, i ∈ N generated by Algo-
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Fig. 3. Private belief of Player 1 on the strategies played by agents 2 and
3 over the iterations. Each solid line represents the mean value associated
to each component of µ1,j , j ∈ {2, 3}, while the shaded area of the
same colour the resulting variance, both obtained by running 100 numerical
experiments of the game in Example 2.

rithm 2 converges a.s. to a common belief µj of the form

µj(θ
kj
j ) =

ν
kj
j∑Mj

kj=1 ν
kj
j

for all θkjj ∈ Θj , j ∈ N \ {i}

where νkjj is defined as in Lemma 4. �
Proof: The proof follows the same steps as [9, Th. 1]

and by assuming w.l.o.g. that θkjj = θ∗j for kj = 1.
Theorem 5 ensures consensus of the beliefs on the strate-

gies of agent j, however, it does not guarantee that the agents
have learnt the true parameter. For the latter to happen, we
first need to revise the definition of network divergence and
adapt it to the agent-wise setup considered in this section.

Definition 4 (Agent-wise network divergence): For all
θ
kj
j , j ∈ N , the network divergence is defined as

Zj(θ
∗
j , θ

kj
j ) =

1

N

N∑
i=1

DKL(fij(yi | x∗i (µ), θ∗j )‖fij(yi | x∗i (µ), θ
kj
j )),

with µ = col((µj)j∈N ) common belief as in Theorem 5. �
Also in this case, if the best-response dynamics in Algo-

rithm 2 converges once fixed the common beliefs (Assump-
tion 6), we shall also have convergence to the true parameter:

Theorem 6: Let Assumptions 1, 2, 5, 6, 8 and 9 hold true.
Then, the following hold: for each i ∈ N ,

1) limT→∞
1∑T

t=1 α
(t)
i

log
µ
(T+1)
ij (θ∗j )

µ
(T+1)
ij (θ

kj
j )

= Zj(θ
∗
j , θ

kj
j );

2) µ
(t)
i,j (θ

∗
j )→ 1, for all j ∈ N \ {i}, as t→∞. �

Proof: The proof follows the same steps as that of [9,
Th. 2] by simply extending the dimension of the problem to
the new set of parameters.

Example 2 (Cont’d): We verify the results of this section
by running Algorithm 2 on the three players game in Exam-
ple 2, according to the methodology employed to generate
Figs. 1–2. In Fig. 3 we report the private belief of Player 1

Fig. 4. Private beliefs of the three players after 104 iterations of
Algorithm 2. The highest peaks correspond to the NE configuration.

and its update over the iterations the iterations (µ(t)
2,j and µ(t)

3,j

for Player 2 and 3, respectively, show a similar behaviour),
while Figure 4 show the final (i.e., after 104 iterations)
private belief for all the players. The strategies with the
highest beliefs correctly identify the NE configuration. �

V. CONCLUSIONS

In this paper we have shown that the NE configuration can
be learnt through a non-bayesian learning. Future work will
concentrate to consider games in fully continuous settings
and different decision dynamics besides the best-response
one, thus investigating whether the learning processes can
be extended to more involved, yet realistic, cases of interest.
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