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Abstract— In this paper, the finite-time consensus problem for
single integrator multi-agent systems with fixed and undirected
communication topologies is investigated. A general class of
event-triggered controllers is proposed and a rigorous stability
analysis is provided, showing convergence of the error signals
in a finite time. An upper bound on the settling time is given.
Various examples showcasing controllers falling under the class
of controllers proposed in this paper are presented. Simulations
are provided to verify the theoretical results.

I. INTRODUCTION

Finite-time event-triggered consensus of multi-agent sys-
tems (MASs) has attracted significant research attention over
recent years, as it is ideal for practical implementations.
It combines the benefits of finite-time and event-triggered
controllers, giving swift convergence and predictable per-
formance [1] while conserving limited computational and
communication resources [2], [3].

Extensive research has been conducted on proposing
event-triggered consensus protocols to achieve finite-time
consensus in single integrator MASs [3]–[7]. These protocols
typically extend finite-time strategies to event-triggered ones.
Among the aforementioned papers, only [7] uses disagree-
ment vectors for convergence analysis, a technique widely
used in continuous finite-time consensus [1], [8]. However,
there has been limited research on the properties of MASs
under more general finite-time event-triggered controllers. To
our knowledge, [9] is among the few studies that explore
an inclusive class of controllers for achieving finite-time
consensus through an event-triggered approach. In contrast
to other works focusing on specific controllers, this study
establishes conditions sufficient to prevent Zeno behaviour
(an infinite number of events occurring in a finite period of
time) while not investigating control protocols for finite-time
convergence.

There has been some work on finite-time consensus con-
trollers [10], but these results cannot be directly extended to
event-triggered controllers. Similarly, there have been finite-
time event-triggered consensus protocols proposed for gen-
eral linear [11], [12] and nonlinear MASs [13], [14], although
a comprehensive study of these approaches is lacking.

In this paper, we propose a class of event-triggered con-
trollers for single integrator MASs under fixed, undirected
topologies and prove that they will reach consensus in finite-
time. An upper bound on the settling time is given. To the
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best of our knowledge, this is the first work examining finite-
time consensus for a class of event-triggered controllers.
All previously mentioned works examined a single proposed
controller. Yu et al. [9] have examined Zeno behaviour
for classes of controllers, but assumed that the controllers
reached finite-time consensus.

The main contributions can be summarised as follows:
1) A novel class of event-triggered controllers is proposed

and a detailed stability analysis is provided.
2) An upper bound on the settling time is obtained for

any controller within the proposed class.
The rest of the paper is organised as follows. Section II
presents mathematical theories and results that are used in
this paper. The details of the MAS and the controller class are
given in Section III. The stability proof for the proposed class
of controllers is presented in Section IV and a bound on the
settling time is given. Section V contains several examples
and simulations supporting the theoretical results. Finally,
conclusions are given in Section VI.

II. PRELIMINARIES

In this section, we review some relevant algebraic graph
theory and a Lyapunov-based finite-time stability theorem,
and present some useful mathematical results.

A. Algebraic Graph Theory

The interaction topology of a multi-agent system consist-
ing of n agents can be described by an undirected graph
G(A) = {V, E ,A}. The graph is composed of a set of
nodes V = {1, 2, · · · , n} where each node represents each
agent, an edge set E ⊆ V × V where each edge represents a
communication link between nodes, and an adjacency matrix
A = [aij ] where aij = 1 if (j, i) ∈ E , otherwise aij = 0. It is
assumed that there are no self loops in the G(A), i.e. aii = 0
for i ∈ V . If agents i and j can communicate, then they are
called neighbours. The set of neighbours for agent i is given
by Ni = {j : (i, j) ∈ E , j ̸= i}. The degree of each vertex
is the number of its neighbouring vertices and the degree
matrix of G(A) is D = diag{d1, d2, ..., dn} where di is
defined as the number of vertices neighbouring vertex i. The
Laplacian matrix of graph G(A) is given by L = D−A. For
an undirected graph, both L and A are symmetric matrices.
If there exists a path between all pairs of nodes in graph
G, the graph is connected. If G(A) is connected, then the
Laplacian matrix L has a simple eigenvalue 0, and 1n is the
corresponding eigenvector, where 1n is the n-dimensional
column vector with all elements being 1. The eigenvalues of
L are denoted as 0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λn(L).
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B. Lemmas

Lemma 1. [15] Consider the system ẋ = f(x), where f :
D → Rn is continuous on an open neighbourhood D ⊆ Rn

of the origin and f(0) = 0. Suppose there exists a continuous
function V : D → R such that the following conditions hold:

• V is positive definite
• There exist real numbers c > 0 and α ∈ (0, 1), and an

open neighbourhood V ⊆ D of the origin such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ V\{0}.

Then the origin is finite-time stable, and the settling time T
is given by

T (x0) ≤
(V (x0))

1−α

c(1− α)
.

Lemma 2. [16] If xi ≥ 0 and 0 < p < 1, then(
n∑

i=1

xi

)p

≤
n∑

i=1

xp
i ≤ n1−p

(
n∑

i=1

xi

)p

Lemma 3. [17] If 1T
nx = 0 and L is the Laplacian of a

connected, undirected graph, then

xTLx ≥ λ2(L)x
Tx. (1)

III. PROBLEM FORMULATION

Consider a leaderless MAS with n identical agents, where
the communication topology is modelled by the connected,
undirected graph G. The dynamics of each agent i is given
by

ẋi(t) = ui(t), i = 1, ..., n, (2)

where xi(t) ∈ R and ui(t) ∈ R are the state and control
input of agent i, respectively. The vectors x and u denote
x = [x1, x2, ..., xn]

⊤ and u = [u1, u2, ..., un]
⊤.

The control protocol is given by

ui = −
n∑

j=1

aijf(xi(t
i
k)− xj(t

j
k′)) (3)

where tik is the last event time of agent i, and tjk′ is the last
event time of agent j. The function f cannot be the trivial
function f = 0, and must fulfil the following conditions:

• f is continuous,
• f(0) = 0,
• There exists some 1 ≤ c < 2 such that

xif(xi − xj) + xjf(xj − xi) ≥ |xi − xj |c. (4)

Examples of possible functions f are given in Section V.

Remark 1. The conditions of the function f are critical
to ensuring that convergence is reached in finite time. The
function f must be continuous, so that xi(t) is continuously
differentiable everywhere. If this is true, and f(0) = 0, then

the system requirements for Lemma 1 are met. Condition
(4) will be used in the convergence analysis, but can be
expressed as follows if f is odd.

sign(x− y)f(x− y) ≥ |x− y|c−1. (5)

In the standard consensus problem explained in [17] and
for a balanced graph, the average of the state vector x,
given by x̄, is an invariant quantity. In particular, leaderless
MASs converge to the average position x̄. Note that all
undirected graphs are balanced. Therefore the agent states
can be expressed as

x = x̄1+ δ (6)

where δ ∈ Rn satisfies
∑n

i δi = 0. The vector δ is called
the disagreement vector. Using the disagreement vector, the
closed-loop equation can be written as

δ̇i = −
n∑

j=1

aijf(δi(t
i
k)− δj(t

j
k′)). (7)

The measurement error is defined as

ei(t) =

n∑
j=1

aijf(δi(t
i
k)− δj(t

j
k′))

−
n∑

j=1

aijf(δi(t)− δj(t)).

(8)

Finally, the event trigger condition is given by

|ei(t)| ≤
1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

|δi(t)|c−1 (9)

where c is defined in (4), the matrix D is defined as D =

[dij ] ∈ Rn×n, dij = a
2
c
ij , and 0 < σ < 1. While λ2(L(D))

and x̄ are global information, both values are constant and
determined before the controller is applied. It is assumed that
all agents have this information.

IV. CONVERGENCE ANALYSIS

Theorem 1. For the MAS described in (2) under the pro-
posed controller (3) and the event condition (9), consensus
is achieved in a finite time for all initial conditions.

Proof. Throughout this proof, the dependence on t is omitted
for ease. By rearranging (8), we obtain

n∑
j=1

aijf(δi(t
i
k)− δj(t

j
k′) =

n∑
j=1

aijf(δi − δj) + ei (10)

and by substituting (10) in the closed-loop equation (7), we
have

δ̇i = −
n∑

j=1

aijf(δi − δj)− ei. (11)

Consider the following Lyapunov candidate,

V =
1

2
δ⊤δ =

1

2
∥δ∥2 =

1

2

n∑
i=1

δ2i (12)
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where ∥δ∥ denotes the Euclidean norm of δ. Taking the time
derivative of the Lyapunov candidate and substituting the
closed-loop equation (11) yields

V̇ =

n∑
i=1

δiδ̇i

=

n∑
i=1

δi

(
−

n∑
j=1

aijf(δi − δj)− ei

)
= −

n∑
i=1

n∑
j=1

δiaijf(δi − δj)−
n∑

i=1

δiei.

(13)

For the ease of analysis let

V̇1 = −
n∑

i=1

n∑
j=1

δiaijf(δi − δj) (14)

and

V̇2 = −
n∑

i=1

δiei (15)

so that V̇ = V̇1 + V̇2.

First, consider V̇1. The following equation holds for
all undirected graphs,

n∑
i=1

n∑
j=1

δiaijf(δi − δj) =

n∑
j=1

n∑
i=1

δjajif(δj − δi)

=

n∑
i=1

n∑
j=1

δjajif(δj − δi)

=

n∑
i=1

n∑
j=1

δjaijf(δj − δi)

(16)

as aij = aji, ∀i, j = 1, · · · , n for undirected graphs.
Therefore (14) can be expressed as

V̇1 = −
n∑

i=1

n∑
j=1

δiaijf(δi − δj)

= −1

2

n∑
i=1

n∑
j=1

(
δiaijf(δi − δj) + δjaijf(δj − δi)

)
= −1

2

n∑
i=1

n∑
j=1

aij

(
δif(δi − δj) + δjf(δj − δi)

)
. (17)

From the property of the function f given in (4), Equation
(17) can be written as

V̇1 ≤ −1

2

n∑
i=1

n∑
j=1

aij |δi − δj |c

= −1

2

n∑
i=1

n∑
j=1

(
a

2
c
ij(δi − δj)

2
) c

2

≤ −1

2

( n∑
i=1

n∑
j=1

a
2
c
ij(δi − δj)

2
) c

2

(18)

where the last inequality results from Lemma 2. Let D be
defined as the adjacency matrix given by D = [dij ] ∈ Rn×n,

dij = a
2
c
ij . Therefore, L(D) is the graph Laplacian matrix of

G(D). Then V̇1 can be written as

V̇1 ≤ −1

2

(
2δ⊤L(D)δ

) c
2

. (19)

From the definition of δ, 1T
n δ = 0 and so Lemma 3 can be

applied.

V̇1 ≤ −1

2

(
2λ2(L(D))δ⊤δ

) c
2

= −1

2

(
2λ2(L(D))× 2× 1

2
δ⊤δ

) c
2

= −1

2

(
4λ2(L(D))

) c
2

V
c
2 .

(20)

Next, V̇2 must be bounded as follows

V̇2 = −
n∑

i=1

δiei

= −δ⊤e

≤ ∥ − δ⊤e∥
≤ ∥δ∥∥e∥

=
∥δ∥∥e∥V c

2

V
c
2

=
∥δ∥∥e∥V c

2

1
2

c
2 ∥δ∥ 2c

2

≤ 2
c
2 ∥δ∥1−c∥e∥V c

2 .

(21)

Substituting the event trigger condition (9) into the previous
inequality yields

∥e∥ =

(
n∑
i

|ei|2
) 1

2

≤

(
n∑
i

( 1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

|δi(t)|c−1

)2
) 1

2

=

(( 1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

)2 n∑
i

(
|δi|c−1

)2) 1
2

=

(( 1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

)2
) 1

2
(

n∑
i

(
|δi|c−1

)2) 1
2

=
1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

(
n∑
i

|δi|2(c−1)

) 1
2

=
1
2σ(4λ2(L(D)))

c
2

2
c
2n(2−c)

n1−(c−1)

(
n∑
i

|δi|2
) 1

2 (c−1)

=
1
2σ(4λ2(L(D)))

c
2

2
c
2

∥δ∥c−1 (22)

Therefore,

V̇2 ≤ 2
c
2 ∥δ∥1−c ×

1
2σ(4λ2(L(D)))

c
2

2
c
2

∥δ∥−(1−c) × V
c
2

≤ 1

2
σ(4λ2(L(D)))

c
2V

c
2 .

(23)
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As V̇ = V̇1 + V̇2, V̇ can be bounded using (20) and (23) as
follows.

V̇ ≤ −1

2
(4λ2(L(D)))

c
2V

c
2 +

1

2
σ(4λ2(L(D)))

c
2V

c
2

≤ − (1− σ)

2
(4λ2(L(D)))

c
2V

c
2 .

(24)

It is clear that

V̇ +
(1− σ)

2
(4λ2(L(D)))

c
2V

c
2 ≤ 0 (25)

as required by Lemma 1 and therefore the MAS reaches con-
sensus in finite time for all initial conditions. Furthermore,
using the same lemma, the settling time T is given by

T ≤ 1

η(1− c
2 )

V (x0)
(1− c

2 ) (26)

where η = (1−σ)
2 (4λ2(L(D)))

c
2 . It should be noted that the

choice of controller only affects the value of c, so different
controllers using the same c value will give the same upper
bound for the settling time.

V. SIMULATIONS

Simulations are given to verify the theoretical proof of
Theorem 1. We present four functions that satisfy the con-
ditions for f and simulate the MAS subject to controller (3)
using these example functions. The controllers are all applied
to the same leaderless MAS described by (2) with five agents
and communication topology given by Figure 1. The value
of event trigger threshold is σ = 0.6 and the initial positions
of the agents are given by x0 = [2, 1,−1, 4,−5]

⊤. As the
controllers are all applied to the same system, the results can
be directly compared.

A. Example 1

First consider the function

f = sig(y − z)α (27)

where sig(x)α = sign(x)|x|α and 0 < α < 1. The function
(27) satisfies condition (4) as shown below.

ysig(y − z)α + zsig(z − y)α

= ysign(y − z)|y − z|α + zsign(z − y)|z − y|α

= ysign(y − z)|y − z|α+
zsign(−(y − z))| − (y − z)|α

= ysign(y − z)|y − z|α+
z(−sign(y − z)|y − z|α)

= |y − z|αsign(y − z)(y − z)

= |y − z|α+1

(28)

where c = α+ 1.

The system was simulated using the following controller,

ui = −
n∑

j=1

aijsig(xi(t
i
k)− xj(t

j
k′))

α (29)

where α = 0.3. The trajectories are shown in Figure 2.
The settling time upper bound was found by substituting

1 2 3

4

5

Fig. 1: Communication topology for simulated examples
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Fig. 2: Simulated trajectories under controller (29)

the system and controller parameters into (26), yielding
T ≤ 12.9607, which is reflected in the simulated trajectories.

B. Example 2

Now consider the function

f =

{
y − z (y − z) < −1, (y − z) > 1

sig(y − z)
1
5 −1 ≤ y − z ≤ 1

(30)

It is clear that f is continuous and f(0) = 0. The function
is odd, so (5) may be used. This function fulfils the require-
ments as

sign(y − z)f(y − z) ≥ |y − z|1.5−1 (31)

for all y, z ∈ R. Equation (31) is proved below.
First consider the case (y−z) < −1 or (y−z) > 1, where

is is clear that sign(y − z)(y − z) = |y − z| ≥ |y − z| 12 for
|y− z| > 1. Then consider the case where −1 ≤ y− z ≤ 1.
Then

sign(y − z)sig(y − z)
1
5 = |y − z| 15

≥ |y − z| 12
(32)

for |y − z| ≤ 1.

The same MAS was simulated, and the trajectories are
shown in Figure 3. For this controller, the settling time is
limited by T ≤ 11.0054.
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Fig. 3: Simulated trajectories under controller using function
(30)
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Fig. 4: A graph of (33)

C. Example 3

Now consider the function

f =



|y − z| tanh(y − z)− (3 tanh 1−
tanh 1)

(y − z) < −1

3 tanh (y − z) −1 ≤ y − z ≤ 1

|y − z| tanh(y − z) + (3 tanh 1−
tanh 1)

(y − z) > 1

(33)
From Figure 4, f is continuous and f(0) = 0. It can be

shown that

sign(y − z)f(y − z) ≥ |y − z|1.9−1 (34)

for all y, z ∈ R. This is similar to the proof for (31) and
is shown graphically in Figure 5. Once more, the system
under a controller using (33) as f was simulated, with results
given in Figure 6. The bound on the settling time is given
by T ≤ 20.2428.

-3 -2 -1 0 1 2 3
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Fig. 5: A graph comparing sign(y − z)f(y − z) and |y −
z|1.9−1 where f = (33)
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Fig. 6: Simulated trajectories under controller using function
(33)

D. Example 4

Finally consider the function

f =


x− (3 ln 2− 1) (y − z) < −1

3sign(y − z) ln (|y − z|+ 1) −1 ≤ y − z ≤ 1

x+ (3 ln 2− 1) (y − z) > 1
(35)

Similarly to (33), it can be shown that

sign(y − z)f(y − z) ≥ |y − z|1.9−1. (36)

for all y, z ∈ R. Once again, this is similar to the proof
for (31) and can be seen in a graph. The system under this
controller was simulated, with results given in Figure 7.
The settling time was found to satisfy T ≤ 20.2428, which
is the same as the previous example because the same value
of c was used as previously mentioned.

It is clear from Figures 2, 3, 6, and 7 that the system
reaches consensus under all the simulated controllers within
the bound of the settling times given in (26). The system
always converges to the same position, which is the average
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Fig. 7: Simulated trajectories under controller using function
(35)

of the initial agent positions. While the bound on the settling
time depends on only the value of c from the function f ,
from the simulations it can be seen that the system reaches
consensus faster if the value of |ui| is greater, particularly
for larger values of |xi(t

i
k) − xj(t

j
k′)|. Figures 2 and 3

demonstrate this as the system converges more quickly
under the controller using (30) and

|sig(y−z)0.3| ≤

{
|y − z| (y − z) < −1, (y − z) > 1

|sig(y − z)
1
5 | −1 ≤ y − z ≤ 1

(37)
for all y, z ∈ R.

VI. CONCLUSION

In this paper, we proposed a class of event-triggered
controllers for single-integrator MASs with undirected com-
munication topologies. The class of controllers was shown
to reach consensus in finite-time, and an upper bound on
the settling time was obtained. Numeric simulations were
presented to demonstrate the effectiveness of the proposed
controllers. Future work includes extending the controller
class to higher dimension systems and investigating a class
of controllers for general linear and nonlinear MASs.
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