
Quantized Deep Neural Network Based Optimal Control of
Greenhouses on a Microcontroller

Kiran Kumar Sathyanarayanan1, Philipp Sauerteig1, Pablo Zometa3 and Stefan Streif1,2

Abstract— Growing crops in Controlled-Environment Agri-
culture (CEA) farms, such as greenhouses and vertical farms,
can help in meeting the demands of urban centers and achieving
climate goals. Recently, many advanced control techniques like
Model Predictive Control (MPC) and its variants have been
developed for energy-efficient operation and minimization of
resource utilization. However, real-time implementation of these
advanced strategies come along with certain computational
hardware requirements, thus, increasing the operating costs. In
this work, we propose to learn the MPC policy of a greenhouse
control by means of a Deep Neural Network (DNN) in order
to be implemented on a low-cost microcontroller. Additionally,
we use a feedback law to reduce undesired quantization effects.
The efficiency of our approach is exemplified by means of a
simulation study for greenhouse control.

I. INTRODUCTION

Energy-efficient and sustainable operation of CEA farms
requires automatic control of the climate influencing the crop
growth. This includes good control performance with respect
to crop growth on the one hand, but also minimal energy
usage on the other hand. While many control strategies have
been proposed by researchers for greenhouse control, MPC
performs best, resulting in energy reduction [1]. Hierarchical
Model Predictive Control (HMPC) in the crop production
process based on timescale decomposition eases the imple-
mentation of receding horizon predictive control [2], [3].

The requirement of high initial investments for fully
automated CEA systems and rising energy expenses, increase
the total costs of crop production [4]. Additionally, the imple-
mentation of advanced control strategies like MPC involves
solving complex optimization problems in real time placing
a strain on computational resources [5]. Cloud-based MPC
eases such shortcomings by solving the optimization problem
upon the reception of states from clients and returning
the inputs [6]. Such techniques led to the development of
Internet of Things (IoT) based control of greenhouses with
the help of wireless sensors and actuators [4]. However, the
implementation of cloud-based computation requires initial
investment or availing Control as a Service (CaaS).

Alternatively, the usage of DNNs to approximate the
solution of the predictive control problem is discussed, e.g.
in [7], [8]. Moreover, in [9] the authors approximate a robust
Nonlinear Model Predictive Controll (NMPC) scheme and
implement the DNN based controller on an MicroController

The authors are with 1Technische Universität Chemnitz, Chemnitz, Ger-
many, Automatic Control and System Dynamics Lab, 2Fraunhofer Institute
for Molecular Biology and Applied Ecology, Department of Bioresources,
Giessen, Germany, and 3Faculty of Engineering, German International Uni-
versity, Berlin, Germany. E-mail: {kiran.sathyanarayanan, philipp.sauerteig,
stefan.streif}@etit.tu-chemnitz.de; pablo.zometa@giu-berlin.de.

Unit (MCU) using single-precision floating-point arithmetic
during network inference. The efficiency of DNNs can be
further increased with the help of quantization. Quantization
is a method of store the network parameters using a fixed-
point representation instead of floating points [10]. The
quantized DNN executes faster, requires less memory and
energy, but the price to pay is a loss of numerical accuracy.

In this work, a two-level hierarchical control is imple-
mented for a semi-closed solar collector greenhouse. The
upper level generates suitable reference trajectories on solv-
ing an economic optimization problem based on day-ahead
weather forecasts. On the lower level, a reference-tracking
NMPC is employed to track the generated references on
satisfying the desired bounds.

The present paper investigates the use of quantized DNN
for the lower level NMPC. Correspondingly, the HMPC
problem is solved for around eight months to generate the
lower level NMPC state, control input, reference and distur-
bance data pairs for network training. Then, the reference
tracking in the HMPC is implemented by the approximate
DNN controller instead of the exact NMPC controller. There-
after, we extend the DNN controller with a simple LQR
controller to account for the errors caused by the quantization
approximation of the DNN. Based on hardware-in-the-loop
simulations of the proposed approach on an MCU, we show
that the quantized DNN along with LQR requires less mem-
ory while achieving a better tracking performance and being
several orders of magnitude faster than NMPC. The MCU
implementaion of the proposed approach can be deployed in
small food production units as discussed in [11], which is
more desirable in refugee camps and famine affected areas.

Section II recalls the greenhouse dynamics and the HMPC
scheme. The quantization of the DNN is discussed in Sec-
tion III. In Section IV, we devise an approach to efficiently
approximate the reference tracking problem using a quan-
tized DNN. Section V is dedicated to review the performance
of the proposed method, before we conclude the paper in
Section VI.

II. GREENHOUSE MODELING AND CONTROL

This section summarizes the Hierarchical Model Predictive
Control (HMPC) of the greenhouse using a mathematical
model of the greenhouse climate and the biomass yield.

A. System Description

We consider a Venlo-type semi-closed greenhouse
equipped with mechanical and electrical systems for climate
control. The greenhouse climate is defined in terms of

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 400



temperature T , carbon dioxide concentration C, and absolute
humidity H of the air inside the greenhouse. To develop
an HMPC framework for greenhouse control, we recall
the model of the greenhouse climate and the crop growth
developed in [12]. States, control inputs, and disturbances are
listed in Table I. Inputs are normalized to [0, 1] and unitless.

TABLE I: List of states, inputs, and disturbances

Symbol Description Unit

T temperature of air inside greenhouse ◦C
C CO2 of air inside greenhouse gm−3

H absolute humidity of air inside greenhouse gm−3

B fresh biomass weight of the crop kgm−2

uV ventilation input -
uC CO2 injection input -
uQh heater input -
uQc cooling input -

Tout temperature of outdoor air ◦C
Cout CO2 concentration of outdoor air gm−3

Hout absolute humidity of outdoor air gm−3

Qrad outdoor shortwave solar radiation Wm−2

We briefly recap the dynamic equations for greenhouse
climate and tomato growth, for details we refer to [12]. The
greenhouse air temperature is affected by various heat fluxes
and the energy balance equation is given by

kC,ghṪ = Qsun +Qvent +Qcov +Qtrans +Qheat −Qcool. (1)

Here, kC,gh is the total heat capacity of the greenhouse per
unit area, Qsun is the incoming solar radiation, Qvent is the
heat flux due to vent opening, Qcov is the convective heat
loss through the cover, Qtrans is heat energy absorbed due to
crop evapotranspiration, Qheat and Qcool are the heat fluxes
due to heating and cooling devices, respectively.

The absolute humidity of the air influenced by various
vapor fluxes is modeled via the mass balance equation

khḢ = Htrans −Hvent −Hcov +Hheat −Hcool, (2)

where kh is the ratio of greenhouse volume to area, Htrans
is the vapor flux due to crop transpiration, Hvent is the
humidity change due to air exchange via vent opening, Hcov
is the vapor condensation to the cover, Hheat and Hcool are
the vapor fluxes due to the heating and cooling devices,
respectively. Similarly, denoting the net CO2 consumption
due to photosynthesis by Cphot, the mass flux equation of
the CO2 concentration inside the greenhouse is

khĊ = Cinj + Cvent − Cphot. (3)

The CO2 exchange due to ventilation and the industrial CO2

supply is described respectively as

Cvent = ku,vent · uV(Cout − C), Cinj = uC · Cmax, (4)

where Cmax is the maximum injection rate.
Finally, the biomass production is given by

kA,sḂ = kB,CO2
· ϕCO2

, (5)

where ϕCO2 is the net photosynthesis rate of the canopy and
kB,CO2

is the conversion factor to convert consumed CO2 into
fresh-weight biomass.

The resulting dynamical system is of input-affine form and
is summarized as

ẋ(t) = f(x(t),d(t)) + g(x(t),d(t))u(t) (6)

with state vector x =
[
T C H B

]⊤
, input vector

u =
[
uV uC uQh

uQc

]⊤
, and disturbance vector d =[

Tout Cout Hout Qrad
]⊤

.
The greenhouse climate directly affects the crop produc-

tion. Crop growth may be inhibited by a very high or low
greenhouse air temperature [13]. Furthermore, low humidity
ceases the photosynthesis process due to stomatal closure and
high humidity causes molds to grow on the plants [14]. Stud-
ies by, e.g. [15] show that elevation of the CO2 concentration
can compensate for low radiation intensities. The constraints
of the states and inputs due to actuators is expressed as
x(t) ∈ X ⊂ R4 and u(t) ∈ U ⊂ R4, respectively.

B. Optimal Greenhouse Control
We recap the HMPC framework of greenhouse control

in [12]. The control framework consists of an open-loop
economic optimization on the upper level and a reference
tracking NMPC on the lower level. With an objective to
maximize yield at economic costs, the upper level generates
optimal reference input uref and state xref trajectories for a
single day based on the forecast data of d. The optimization
problem (7) is considered with sampling time δt > 0, and the
prediction horizon tf = Nδt with N ∈ N+. The stage and
terminal costs for the reference-tracking NMPC are given as

l(x(t),u(t)) = ∥x(t)− xref(t)∥2Q + ∥u(t)− uref(t)∥2R,
V (x(tf)) = ∥x(tf)− xref(tf)∥2P ,

respectively, with weighting matrices Q ⪰ 0, R ≻ 0,
and P ⪰ 0. The Optimal Control Problem (OCP) solved
repeatedly within the NMPC scheme reads as

argmin
u

∫ tf

t0

l(x(τ),u(τ))dτ + V (x(tf)) (7)

s.t. ẋ(τ) = f(x(τ),d(τ)) + g(x(τ),d(τ))u(τ)

x(t0) = x0, u(τ) ∈ U , x(τ) ∈ X ,

where x0 is the initial value. Although the OCP is formulated
in continuous time, our NMPC implementation is done in
discrete time. The discretization of the OCP (7) results in
u∗ = (u∗

0, · · · ,u∗
N−1)

⊤, with u∗
0 being applied to (6). The

NMPC feedback controller based on (7) can be expressed as

u = fMPC(w), (8)

with w =
[
x xref uref d

]⊤
, and w ∈ R16.

III. QUANTIZED DEEP NEURAL NETWORK APPROACH

This section shortly recaps the fundamental concepts of
neural networks with the aim to approximate the lower level
reference-tracking NMPC. Following that, the process of
quantization to convert and store the network parameters as
fixed-point arithmetic is discussed.

401



A. Feedforward Neural Network

The feedforward Neural Network (NN), also known as
multi-layer perceptron, consists of an input layer, an output
layer, and L hidden layers that can approximate any function
mapping with arbitrarily small error [16]. For L ≥ 2 one
speaks of a Deep NN (DNN). The function mapping fNN :
Rnw → Rnu of a feedforward NN is of the form

fNN(w, θ, L, nl) = HL+1 ◦ gL ◦HL ◦ · · · ◦ g1 ◦H1(w), (9)

where w is the NN input, nl is the number of neurons in each
hidden layer l, and θ is the vector containing the unknown
NN parameters. The component Hl of the NN consists of
an affine function Hl = WlHl−1 + bl, where Hl−1 is the
output of the previous hidden layer with H0 = w, bl is
the bias vector, and Wl is the weight matrix of layer l.
Moreover, gl is the activation function of the layer l. With
the greenhouse system being highly nonlinear, we choose the
most commonly used nonlinear activation function ReLU,
which computes the elementwise maximum between 0 and
Hl, i.e., gl = max(0, Hl).

Our aim is to approximate the control policy (8) by defin-
ing the mapping uD = fNN(w, θ). After defining an architec-
ture, the NN is trained by minimizing the specified loss func-
tion to determine the optimal Wl and bl. Note that the length
Nθ of the parameter vector θ = (b1,W1, · · · , bL+1,WL+1)

⊤

determines the memory footprint of the network.
To train our network, we rely on a training data matrix

D ∈ Rnw×ND , which is obtained by running the NMPC
problem for various initial conditions. Here, ND represents
the number of training data points and nw is the number of
components of a data point w. Normalizing the training data
helps to enhance the numerical properties of the network.
The normalization operation on the data matrix D at row i
and column j of the network wj

i is defined by

w̃j
i = N (wj

i , µi, σi) := (wj
i − µi)σ

−1
i ,

where µi is the mean and σi is the standard deviation
of the row (parameter) i. The above transformation results
in a normalized data matrix DN with µ̃i = 0 and σ̃i = 1,
i.e., each parameter of w is normalized. Similarly, inverse
transformation wj

i = N−1(w̃j
i , µi, σi) := w̃j

iσi + µi, is
applied during the NN inference to recover the output in
the range of the training data.

B. Quantized DNN (QDNN)

Quantization is the process of reducing the precision of
parameters θ and activations gl of a NN such that they
consume less memory. The main advantages of quantization
are reduced memory, lower network latency, and better power
efficiency. However, the QDNN suffers from precision loss,
underflow and overflow during the inference [10].

The trained neural networks generally use single-precision
floating point to store the parameter vector θ. In general,
quantization involves storing the θ in 8-bit scaled integer data
types (i8) to support the NN inference using a low-power mi-
crocontrollers or FPGA. Out of many available quantization

methods, we used uniform asymmetric quantization [10]. In
this method, the normalized inputs w̃ of the network are
transformed from a floating point number to an integer via

ŵ = Q(w̃, S, Z) := i8(w̃/S)− Z, (10)

where S is a real-valued scaling factor, Z is an integer zero
point or zero offset, and the i8 function maps a floating
point to an 8-bit integer representation through a rounding
operation. In asymmetric quantization, the min/max of the
real-valued signal is used as clipping range for finding the
scaling factor S. Similar to quantization, the output of the
QDNN û must be dequantized to a floating-point normalized
output ũ using

ũ = Q−1(û, S, Z) := S(û+ Z). (11)

However, the output of Q−1 suffers from precision loss
resulting in inference error. Here, the scaling and offset
parameters in (10) are determined using the normalized data
DN . In the consecutive section, we provide a linear-quadratic
regulator to account for the precision loss.

IV. QUANTIZED DEEP NEURAL NETWORK BASED NMPC

Now, the QDNN described in Section III is used to
approximate the solution to the NMPC problem presented
in Section II. Furthermore, the augmentation of an online
feedback linear-quadratic regulator (LQR) to improve the
accuracy of the reference tracking is discussed. We denote
the approach as QDNN+LQR.

A. Feedback Compensation

The main motivation for using a QDNN is that it can
be deployed on platforms with limited computational ca-
pabilities, like microcontrollers. To improve the closed-loop
performance of such networks without significantly increas-
ing the computational demands, a simple online feedback
compensation term can be added. In [17], two proportional
controllers are used to reduce the error introduced by a
QDNN in a robotic path-following application. Although it
may be possible to similarly apply a combination of several
independent single-input single-output (SISO) controllers
(e.g., proportional integral) to compensate for errors in the
QDNN that approximates (8), it may be difficult to tune
such independent controllers due to the interdependencies
of the states in the system dynamics (6). To overcome
such limitations, here we propose to use a linear multi-
input multi-output (MIMO) controller, specifically a linear-
quadratic regulator.

B. Linear-Quadratic Regulator (LQR)

An LQR is a MIMO control method based on the same
optimal control principles as MPC, however, without state
and control constraints. The LQR problem is stated as:

u∗ =argmin
u

∫ ∞

0

ℓ(x(τ),u(τ))dτ

ℓ(x,u) = x⊤Qx+ u⊤Ru,

ẋ = Ax+Bu.

(12)

402



The optimal control input that minimizes the value of the
cost above is given by the feedback law u∗ = −Kx, where
K = R−1B⊤P , and P is the solution to the continuous-
time algebraic Riccati equation. For stabilizable (A,B), and
Q ⪰ 0 and R ≻ 0, the closed-loop system ẋ = (A−BK)x
is guaranteed to be globally asymptotically stable [18]. Note
that in contrast to NMPC (7), in the LQR problem (12):

1) input and state constraints are not considered,
2) the system must be linear,
3) we stabilize around the origin (no reference tracking),
4) an explicit expression for the control law is obtained,
5) an infinite horizon is used, which guarantees stability.

In the context of CEA, the last two points may be considered
advantageous, however, points 1), 2), and 3) are important
limitations. Note that we do not propose to replace the
NMPC setup described in Section II with an LQR, but rather
to use the LQR to improve the QDNN approximation of the
NMPC presented in Section III. In the following, we discuss
the limitations mentioned above in more detail and how they
relate to the problem described in Section II.

1) Input and state constraints: In our setup, the control
input is subject to box constraints. These constraints can
be enforced by saturating the input. The theoretical global
stability guarantees of the LQR are no longer valid, however.
In practice, with a suitable selection of matrices Q and R, the
closed-loop system remains locally stable (see Section V).
The state constraints cannot be enforced by an LQR, but by
careful selection of the matrices Q and R, together with the
QDNN base behaviour, an acceptable closed-loop response
can be achieved that mostly respects the state constraints.

2) Linearization: Linearization of the nonlinear sys-
tem (6) is done around an equilibrium point, i.e. a point
x̄, ū, d̄ such that ẋ = f(x̄, d̄) + g(x̄, d̄)ū = 0. Due to the
nonlinear interdependencies among the states, in particular,
the biomass (5), it was not possible to find an equilibrium
point for system (6). Observe, however, that the biomass
does not directly depend on the inputs. In fact, the inputs
have a direct and faster effect on the rate of change of
the other state variables, which in turn affect the rate of
change of the biomass. Thus, in the following we consider
that Ḃ = 0, and we reduce our nonlinear system to only
consider the variables temperature T , CO2 concentration C,
and absolute humidity H as in (1)–(3). Note that, Ḃ = 0
implies Cphot = 0, thus, (3) reduces to

kV,ghĊ =Cinj + Cvent. (13)

We introduce a new state variable x = [T C H]⊤ ∈ R3,
and accordingly a new reference xref ∈ R3 (i.e., without the
biomass reference). The control input vector u, its reference
uref, and the disturbance d remain unchanged. Thus, the
reduced nonlinear system is

ẋ = h(x,d,u) = f(x,d) + g(x,d)u. (14)

The reduced system (14) has infinitely many equilibrium
points. Furthermore, it still contains nonlinear interdepen-
dencies among the new states variables. Here, to simplify

the search for a suitable equilibrium point among infinite
possibilities, we propose to use average values of the distur-
bance variables for a specified period in the past (i.e., using
historical weather data): outdoor temperature Tout, outdoor
CO2 concentration Cout, outdoor solar radiation Qrad, and
outdoor humidity Hout. We denote the respective average
values of these variables as (·)avg. Furthermore, to minimize
the energy costs associated to the inputs, we would like to use
ū = 0. However, that input together with the d̄ = davg makes
it again impossible to find an equilibrium point of (14). Thus,
here we use the control input variables ūV = ūC = ūQh

= 0,
and leave ūQc

as a free variable. To further simplify the
equations at the equilibrium point, we set the variables
T = T avg

out , C = Cavg
out . Thus, an equilibrium point of (14),

where ūQc and H̄ are unknown, can be computed as

x̄ =[T avg
out Cavg

out H̄]⊤,

ū =[0 0 0 ūQc
]⊤,

d̄ =[T avg
out Cavg

out Havg
out Qavg

rad ]
⊤.

(15)

By replacing the equilibrium points (15) in the nonlinear
system (14), and equating to zero, we obtain a system
of nonlinear equations. Note that ūV = 0 and ūC = 0
in (4) implies Cvent = 0 and Cinj = 0 respectively, which
together make Ċ = 0 in (13). Thus, system (14) reduces
to following system of two nonlinear equations with two
unknowns: Ṫ (ūQc

, H̄) = 0, Ḣ(ūQc
, H̄) = 0, which can be

readily solved by a nonlinear root-finding algorithm.
Finally, linearizing (14) around (15), results in

ẋ = A(x− x̄) +B(u− ū), with (16)

A =
∂h

∂x
|x̄,d̄,ū, B =

∂h

∂u
|x̄,d̄,ū, (17)

which are used to find K from (12) for a given Q and R.
3) Stabilization around the origin: To obtain the familiar

linear state space form ż = Az+Bv, we perform a change
of coordinates in (16), i.e., z = x − x̄, and v = u − ū. A
regulator like the LQR, with v = −Kz, attempts to stabilize
the system around the origin, i.e. around z = 0 and v = 0.

Note that the origin of system ż = Az + Bv is the
equilibrium point x̄, ū of system (16) given in (15). In other
words, the LQR control action u− ū = −K(x− x̄) moves
the system state towards the equilibrium point. However,
as described in Section II, we want to follow the reference
trajectories xref and uref, respectively.

As stated at the beginning of this section, we are only
interested in adding a minor correction to the control input
ũ inferred by the QDNN network, that is:

u = ũ+ ulqr, with ulqr = −K(x− xref). (18)

The rationale for this is that we only want to add a minor
compensation ulqr if we are far from our state reference.
The selected equilibrium point is based on average values of
the current environment conditions and, thus, the Jacobian
matrices A and B in (17) contain information of how the
states approximately change for any state, disturbance, and
a given input close to the selected equilibrium point. In

403



our results, we see that this practical approach is able to
improve the performance of the QDNN. Further theoretical
considerations are beyond the scope of this work.

V. SIMULATION AND RESULTS

In this section, we show the potential of the approach
developed in the previous sections by means of a numerical
case study. In our HMPC setup, the upper level OCP is
solved subject to input constraints 0 ≤ u ≤ 1 and soft
constraints on states 18 ≤ T ≤ 26 ◦C, 500 ≤ C ≤ 900
ppm, and 9.219 ≤ H ≤ 21.928 gm−3. The constraint on
the state C is generally mentioned in ppm. Additionally,

X = [14, 30]× [300, 1000]× [1.206, 30.356]× [0, 100]

defines a hard box constraint set [12]. The DNN is trained
with 285,000 data pairs D, of which 80% used for training
and the remainder for testing the network accuracy. Also,
the infeasible solutions of the MPC are excluded from D.
The weighing matrices for the lower level NMPC are chosen
as Q = 100 · I4, R = I4, and P = Q. For the LQR we
selected the diagonal matrices Q = diag(2e2, 1e3, 1e2)
and R = diag(1e3, 1e0, 1e6, 1e8).

For the linearization of system (14), an equilibrium point
(15) is found using T avg

out = 21, Cavg
out = 0.5833, Havg

out = 16,
Qavg

rad = 170, which correspond to a three-month average (i.e.,
one season) using historic weather data near the greenhouse
location. Averaging over shorter periods (e.g., a month) may
improve the closed-loop performance, at the expense of
higher use of computational resources.

A. Reference Tracking via QDNN+LQR

Figure 1 shows the state evolution and Figure 2 presents
the control inputs during a single day (Nsim = 24·60 = 1440
steps) for different implementations. In all figures, we show
the open-loop economic MPC reference (ref) together with
the closed-loop NMPC (mpc) with N = 5, δt = 60s from
the HMPC framework in Section II. Additionally, simulations
using the quantized deep neural network (qdnn) and the same
network with a LQR compensation (qdnn+lqr) are shown.

Observe that the NMPC follows the open-loop reference
rather closely, in most cases obeying the hard constraints X .
The QDNN implementation shows large deviations in the
states, with CO2 violating the hard constraint. However, in
most cases, the LQR brings the states closer to the reference
without hard constraint violation. The saturated control input
variables show a similar behavior on reference tracking.

The closed-loop performance S is given by the selling
cost of yield Ss minus the production costs Sp (energy cost
+ injected CO2 cost), i.e., S = Ss − Sp and

Ss = q⊤(x(Nsim)− x(0)), Sp =

Nsim−1∑
i=0

r⊤u(i),

with q⊤ = [0 0 0 600] and r⊤ = [0.0061 0.041 0.56 0.56].
Table II summarizes the performance of the different

implementations, where higher values of S indicate higher
profit. Note that in Figure 1, although the QDNN has the

Fig. 1: Comparison of the convergence of states using
NMPC, QDNN and QDNN+LQR tracking the reference
trajectories. The red and green dashed lines indicate the soft
and hard constraints on the states, repectively.

TABLE II: Closed-loop performance

Implementation Ss Sp S
Reference 156.94 2.38 154.56
MPC 156.80 5.36 151.44
QDNN 175.95 55.27 120.68
LQR 166.17 26.26 139.91

highest yield (Ss = 175.95), it does so with much higher
production costs (Sp = 55.27) as seen in the Figure 2.
The LQR compensation, although it does not consider the
biomass dynamics (5), it improves the overall performance
S of the QDNN by around 20%.

B. Implementation on a Microcontroller

The QDNN+LQR scheme is deployed on an STM32F407
MCU, which runs a Cortex-M4F processor core with 168
MHz clock frequency. The Cortex-M4F includes a single-
precision floating-point unit and 1 MB nonvolatile memory.

The QDNN consists of 5 layers with roughly 3800
parameters, with 1 parameter requiring 1 byte (8-bit) of
storage. Additional information about the network, like the
parameters of the uniform asymmetric quantization, requires
around 400 bytes of flash memory. Thus, a quantized network
uses less than 5 kB of the MCU’s flash memory. In compar-
ison, a non-quantized network requires 4 bytes (32-bit for
single precision float) to store each parameter. The inference
time of the quantized network on the MCU is on average
approximately 200 microseconds. Currently, and to the best
of our knowledge, there are no NMPC solvers that can be

404



Fig. 2: Comparison of the control inputs (ventilation,
CO2 injection, heating, cooling) using NMPC, QDNN and
QDNN+LQR with respect to the reference trajectories.

run on an MCU out of the box. Thus it is not possible to
directly compare the computation times of an optimization-
based NMPC on a MCU. However, simulations on PC
typically report around 3 orders of magnitude reduction on
the computation time of a DNN-based NMPC approximation
compared to an optimization-based NMPC [9], [17].

Regarding the LQR, note that the Riccati equation is only
solved once, and can be done offline. The LQR online com-
pensation consists only of the operations in (18), where the
most demanding computation is the matrix vector operation
K(x − xref), with K ∈ R4×3 constant. The computational
requirements of the LQR are, therefore, negligible compared
to the neural network inference. Note that the performance
of the QDNN+LQR can be improved by adaptive LQRs at
the expense of memory usage and setup complexity.

VI. CONCLUSIONS AND OUTLOOK

The paper proposed a method to implement hierarchical
control of greenhouse climate on a low-cost microcontroller.
We showed a method to train the quantized DNN to mimic
the lower level nonlinear tracking MPC and to design the
error compensation controller. A numerical case study with
the hardware-in-the-loop implementation showed the poten-
tial of our approach to reduce the computational burden and
memory requirement while maintaining a reasonable overall
performance. Although the tracking accuracy is slightly
compromised, the proposed approach may still be good for
heterogeneous microclimate control in small CEA farms,
where the external disturbances can be well maintained.
Future research will address the effectiveness of season-
based linearizations or similar approach to further improve

the performance of the LQR. Additionally, investigating
nonlinear approaches to improve the performance of QDNN
should be considered.

REFERENCES

[1] M. Zhang, T. Yan, W. Wang, X. Jia, J. Wang, and J. J. Klemeš,
“Energy-saving design and control strategy towards modern sus-
tainable greenhouse: A review,” Renewable and Sustainable Energy
Reviews, vol. 164, p. 112602, 2022.

[2] E. Van Henten and J. Bontsema, “Time-scale decomposition of an
optimal control problem in greenhouse climate management,” Control
Engineering Practice, vol. 17, no. 1, pp. 88–96, 2009.

[3] R. van Ooteghem, “Optimal control design for a solar greenhouse,”
Ph.D. dissertation, 2007, wageningen University, Wageningen, The
Netherlands. 304 p.

[4] M. Ahamed, M. Sultan, R. Shamshiri, M. Rahman, M. Aleem, and
S. Balasundram, “Present status and challenges of fodder production
in controlled environments: A review,” Smart Agricultural Technology,
vol. 3, p. 100080, 2023.

[5] A. Badji, A. Benseddik, H. Bensaha, A. Boukhelifa, and I. Hasrane,
“Design, technology, and management of greenhouse: A review,”
Journal of Cleaner Production, vol. 373, p. 133753, 2022.

[6] A. Alexandru, M. Morari, and G. Pappas, “Cloud-based MPC with
encrypted data,” in 2018 IEEE Conference on Decision and Control
(CDC), 2018, pp. 5014–5019.

[7] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10, pp.
1443–1451, 1995.

[8] S. Pon Kumar, A. Tulsyan, B. Gopaluni, and P. Loewen, “A deep learn-
ing architecture for predictive control,” IFAC-PapersOnLine, vol. 51,
no. 18, pp. 512–517, 2018, 10th IFAC Symposium on Advanced
Control of Chemical Processes ADCHEM 2018.

[9] S. Lucia and B. Karg, “A deep learning-based approach to robust
nonlinear model predictive control,” IFAC-PapersOnLine, vol. 51,
no. 20, pp. 511–516, 2018, 6th IFAC Conference on Nonlinear Model
Predictive Control NMPC 2018.

[10] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network in-
ference,” in Low-Power Computer Vision. Chapman and Hall/CRC,
2022, pp. 291–326.

[11] M. Padmanabha, L. Beckenbach, and S. Streif, “Model predictive
control of a food production unit: A case study for lettuce production,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 771–15 776, 2020, 21st
IFAC World Congress.

[12] K. Sathyanarayanan, P. Sauerteig, and S. Streif, “Deep neural
network based optimal control of greenhouses,” arXiv preprint
arXiv:2311.04077, 2023.

[13] M. Ahamed, H. Guo, L. Taylor, and K. Tanino, “Heating demand and
economic feasibility analysis for year-round vegetable production in
canadian prairies greenhouses,” Information Processing in Agriculture,
vol. 6, no. 1, pp. 81–90, 2019.

[14] R. Shamshiri, J. Jones, K. Thorp, D. Ahmad, H. Man, and S. Taheri,
“Review of optimum temperature, humidity, and vapour pressure
deficit for microclimate evaluation and control in greenhouse culti-
vation of tomato: a review,” International agrophysics, vol. 32, no. 2,
pp. 287–302, 2018.

[15] D. Dannehl, H. Kläring, and U. Schmidt, “Light-mediated reduction
in photosynthesis in closed greenhouses can be compensated for by
CO2 enrichment in tomato production,” Plants, vol. 10, no. 12, p.
2808, 2021.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[17] P. Zometa and T. Faulwasser, “Quantized deep path-following control
on a microcontroller,” in 2023 European Control Conference (ECC),
2023, pp. 1–6.

[18] B. Anderson and J. Moore, Optimal control: linear quadratic methods.
Courier Corporation, 2007.

405


