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Abstract— Recently, bandit optimization has received signifi-
cant attention in real-world safety-critical systems that involve
repeated interactions with humans. While there exist various
algorithms with performance guarantees in the literature,
practical implementation of the algorithms has not received as
much attention. This work presents a comprehensive study on
the computational aspects of safe bandit algorithms, specifically
safe linear bandits, by introducing a framework that leverages
convex programming tools to create computationally efficient
policies. In particular, we first characterize the properties of the
optimal policy for safe linear bandit problem and then propose
an end-to-end pipeline of safe linear bandit algorithms that only
involves solving convex problems. We also numerically evaluate
the performance of our proposed methods.

I. INTRODUCTION

Recently, bandit optimization has received significant at-
tention in real-world cyber-physical systems that involve
repeated interactions with humans. In such cases, a learner
repeatedly interacts with an unknown environment. During
each interaction, it selects an action from a given action set
and observes its corresponding reward. The learner’s goal is
to maximize the accumulated reward. However, these sys-
tems are bound by safety constraints that must be respected
during these interactions. Consequently, traditional bandit
algorithms may not be directly applicable in these contexts.
Indeed, proper and nontrivial modifications are necessary to
enable the use of bandit algorithms in safety-critical systems.
To achieve this, new research directions have emerged, focus-
ing on designing constraint bandit algorithms with provable
guarantees. In these settings, the environment is subject to a
set of unknown operational constraints. Depending on the
nature of these constraints, various constrained stochastic
bandit settings have been formulated and analyzed. In our
work, we concentrate on the linear stochastic bandit problem
that is constrained by a set of unknown linear constraints.

A linear bandit (LB) is a variant of the multi-armed bandit
(MAB) problem in which each action is associated with a
feature vector x and the expected reward of playing each
action is equal to the inner product of its feature vector and
an unknown parameter vector θ∗. Two efficient approaches
have been developed for LB: linear UCB (LUCB) [1]–[3]
and linear Thompson sampling [4], [5]. A diverse body of
related works on linear stochastic bandits has considered
the effect of safety constraints that need to be respected
during all the rounds of the algorithm. An algorithm is called
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stage-wise safe if the safety constraint is not violated with
high probability over all rounds. Such algorithms have been
proposed for for linear UCB [6] and for linear Thompson
sampling [7], [8]. In the more relaxed setting, where the
algorithm is allowed to violate the safety constraint for
some limited rounds, [9] has proposed safe algorithms with
a provable upper bound on the total number constraint
violations. Our setting is inspired by the work of [10], where
the agent’s objective is to produce a series of policies that
yield the highest expected cumulative reward, all the while
maintaining that the expected cost of the policy constructed
in each round stays below a specified threshold.

In this work, we investigate the computational aspects of
safe linear bandit algorithms. Various methods have been
developed as shown in [7], [10]–[14], which produce policies
with precise performance guarantees. In this paper, we utilize
convex programming tools to build a framework using these
algorithms, allowing for explicit computation of policies.
We aim to address two main challenges. First, standard
methods require solving a non-convex optimization problem
at each time step of the bandit algorithms. This poses
a computational challenge, as finding a globally efficient
solution for this class of problems can become NP-hard in
certain cases, as noted in [15]. Second, standard algorithms
necessitate optimization over a set of probability distribu-
tions. While straightforward for convex decision sets, the
complexity is dependent on the form of the decision set and
can pose challenges for some non-convex decision sets. Our
primary contribution is an end-to-end pipeline of algorithms
for constrained bandits with performance guarantees, which
only involve solving convex optimization problems. This
ensures computational efficiency as all the algorithms can
be efficiently implemented using only a convex solver. In
order to address the second aforementioned challenge, we
focus on decision sets that are a union of convex sets, each
described by convex inequalities.

Acknowledging the significance of our work in the broader
context of real-world applications, particularly in cyber-
physical systems, is crucial. Cyber-physical systems, which
integrate computational algorithms with physical processes,
necessitate a careful balancing of computational decisions
against physical limitations. Notable applications under-
score the relevance of our research, including personalized
medicine, where the aim is to customize treatments to opti-
mize patient recovery while managing constraints like dosage
limits and side effects. Similarly, in cloud computing, the
challenge lies in efficient resource allocation among tasks,
ensuring optimal performance without resource monopoliza-
tion. These examples highlight the essential role of advanced
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algorithms in addressing constrained linear bandit problems,
with implications for enhancing operational efficiency, safety,
and reliability across critical sectors. Though our focus here
is on the computational tools for safe linear bandits, the
foundational framework we propose is poised for application
across a spectrum of safety-critical systems, hinting at a
vast landscape of potential future research directions and
implementations.

The rest of the paper is organized as follows: Section
II presents some preliminary material. In Section III we
state the formal version of the problem we are addressing.
In Section IV-A, we provide characteristics of an optimal
policy, offering insight into what one might expect from
such a policy, and propose a method to compute such a
policy. Section IV-B introduces a general computationally
efficient algorithm with performance guarantees to address
the constrained bandit problem. In Section IV-C we pro-
pose a novel problem-dependent approach that improves the
performance bound of the previous section and can achieve
optimal performance for specific classes of problems. Section
V presents experiments that illustrate the performance of our
methods.

II. PRELIMINARIES

Before introducing the main problem formulation and our
results, we introduce a set of definitions and lemmas in this
section.

Notations. For a positive integer n, the set {1, 2, . . . , n}
is denoted by [n].

For a vector x ∈ Rd and positive definite matrix Σ ∈ Rd×d

we define ∥x∥Σ,p= ∥Σ1/2x∥p. In particular, in the case of
p = 2, we have ∥x∥Σ,2=

√
x⊤Σx.

Lemma 1 (Caratheodory’s theorem). Every point in the
convex hull of a set S ⊂ Rd can be expressed as a convex
combination of at most d+ 1 points from S.

Lemma 2 (Linear program basic feasible solution). The
linear program

maximize c⊤x

subject to Ax = b, x ≥ 0

has a solution with at most p non-zero entries, where A ∈
Rp×q is a fat full-rank matrix. This solution is called a basic
feasible solution.

Lemma 3 (Convex hull of the union of convex sets [16]).
Consider the problem

minimize f0(z)

subject to z ∈ conv

(
k⋃

i=1

Di

)
(1)

where Di = {x : fij(x) ≤ 0, j = 1, · · · , ki} and each
function fij : Rd → R is convex.

An approach to solving this problem is to solve the convex
program

minimize f0(z)

subject to αifij(xi/αi) ≤ 0, i ∈ [k], j ∈ [ki]

1⊤α = 1

α ≥ 0

z = x1 + · · ·+ xk

(2)

over the variables z, x1, · · · , xk ∈ Rd and α1, · · · , αk ∈ R.
If (z⋆, x⋆

1, · · · , x⋆
k, α

⋆
1, · · · , α∗

k) is an optimal solution of (2),
then z∗ is an optimal solution of (1).

III. PROBLEM FORMULATION

Initial setup. We consider the linear bandit with linear
constraints characterized by the reward parameter θ∗ ∈ Rd

and the cost parameter Γ∗ ∈ Rm×d. In each round t, the
agent is given a decision set Dt ⊂ Rd from which it has to
choose an action xt. We assume that Dt is the union of nt

convex sets D1
t , · · · ,D

nt
t , each of which being described via

convex inequalities, i.e.,

Dt =

nt⋃
i=1

Di
t, Di

t =
{
x : f ij

t (x) ≤ 0, j = 1, · · · , kit
}
.

(3)
Upon taking action xt ∈ Dt, the agent observes a reward

signal rt = θ⊤∗ xt+ηrt and a cost signal vector ct = Γ∗xt+ηct ,
where ηrt ∈ R and ηct ∈ Rm are random variables of reward
and cost noise, satisfying conditions that will be specified
later. The agent selects its action xt ∈ Dt in each round t
according to its policy πt ∈ ∆Dt at that round, i.e., xt ∼ πt.

Objective. The objective of the agent is to generate
a sequence of policies {πt}Tt=1 maximizing the expected
cumulative reward over T rounds. This should be achieved
while satisfying the linear constraints

Ex∼πt
(Γ∗x) ≤ τ, ∀t ∈ [T ], (4)

where the ith row of Γ∗ is represented by µ∗i. The vector
τ ∈ Rm is termed the constraint threshold vector and is
known to the agent. Additionally, the vector inequality in
(4) is interpreted element-wise.

Consequently, the policy πt that the agent chooses in each
round t ∈ [T ] must reside within the set of feasible policies
defined over the action set Dt, i.e.,

Πt =

{
π ∈ ∆Dt : E

x∼π
(Γ∗x) ≤ τ

}
. (5)

Optimizing for the maximum expected cumulative reward
over T rounds can be rephrased as minimizing the con-
strained pseudo-regret across T rounds

RΠ(θ∗, T ) =

T∑
t=1

E
x∼π∗

t

(
θ⊤∗ x

)
− E

x∼πt

(
θ⊤∗ x

)
, (6)

where πt, π
∗
t ∈ Πt for all t ∈ [T ]. Here, π∗

t signifies the
optimal feasible policy during round t, defined as

π∗
t = max

π∈Πt

E
x∼πt

[
θ⊤∗ x

]
. (7)
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It is worth emphasizing that π∗
t refers to the optimal omni-

scient feasible policy, one that is achievable by an agent that
is informed of the hidden parameters θ∗ and Γ∗. This should
be distinctly recognized from the best achievable policy by
an agent observing only noisy rewards and costs.

Assumptions. We operate under the following assump-
tions in our setting, which are standard in the linear bandit
literature.

Assumption 1. The constraint parameter matrix Γ∗ ∈ Rm×d

is fat and full-rank, i.e., m < d and rank(Γ∗) = m.

Assumption 2. For all t ∈ T , the reward and cost noise
random variables ηrt , ηct are conditionally R-sub-Gaussian,

E [ηrt |Ft−1] = 0, E [exp (αηrt ) |Ft−1] ≤ exp
(
α2R2/2

)
,

E
[
ηct,i|Ft−1

]
= 0, E

[
exp

(
αηct,i

)
|Ft−1

]
≤ exp

(
α2R2/2

)
for any α ∈ R, i ∈ [m], where Ft is the filtration that
includes all events (x1:t+1, η

r
1:t, η

c
1:t) up to round t.

Assumption 3. There is a known constant S > 0, such that
∥θ∗∥≤ S and ∥µi∗∥≤ S2 for all i ∈ [m].

Assumption 4. The decision set Dt is bounded. Specifically,
maxt∈[T ] maxx∈Dt

∥x∥≤ L.

Assumption 5. For all t ∈ [T ] and x ∈ Dt, the mean rewards
and costs are bounded, i.e., θ⊤∗ x ∈ [0, 1] and µ⊤

i∗x ∈ [0, 1]
for i ∈ [m].

Assumption 6. There exists a universally safe action x0 ∈ Dt

for all t ∈ [T ] associated with the cost vector c0 ∈ Rm. This
means that Γ∗x0 = c0 < τ . For the sake of clarity, we
assume that c0 = 0 and that its value is known. Extending
this to the cases where c0 ̸= 0 is known, or c0 is unknown,
is straightforward. See [17] for further details on these
scenarios.

Summary. To summarize, the problem data includes the
reward vector θ∗, the constraint matrix Γ∗, the constraint
threshold vector τ , the problem horizon T , the observation
noise sub-Gaussian parameter R, the reward and cost upper
bound parameter S, the known safe action x0, and the
decision sets D1, . . . ,DT , where each Dt is characterized by
a set of integers nt, k

1
t , . . . , k

nt
t and a set of convex functions

f i,j
t with i ∈ [nt], j ∈ [kit].

Note that we are working within the specified class of
decision sets, i.e., sets in the form of a union of convex
sets each described by convex inequalities, exclusively for
computational purposes. Nevertheless, it is important to
highlight that our theoretical results and theorems remain
valid for any arbitrary choice of decision sets.

IV. MAIN RESULTS

A. The optimal feasible policy

At each time step t, the optimal feasible policy π∗
t is

obtained by solving the following optimization problem:

maximize
π∈∆Dt

E
x∼π

(
θ⊤∗ x

)
subject to E

x∼π
(Γ∗x) ≤ τ

(8)

While the reward and cost parameters θ∗ and Γ∗ are unknown
in the bandit setting, it is valuable to understand the structure
of the optimal feasible policy π∗

t even when these parameters
are known. Specifically, the optimization in (8) considers
probability distributions over the decision set Dt, and since
Dt can be any arbitrary set, characterizing the optimal feasi-
ble policy can be a complex task. The subsequent theorem,
an extension of Lemma 5 in [17], provides a characterization
of the optimal feasible policy π∗

t .

Theorem 1. There exists an optimal feasible policy π∗
t that

solves (8) with finite support of at most m+ 1 elements.

Proof: First, observe that while (8) is an optimization
over all choices of distributions π ∈ Dt, the only component
of π that plays a role in the optimization is Ex∼π(x). Thus,
letting z = Ex∼π(x), solving (8) is equivalent to first solving

maximize
z

θ⊤∗ z

subject to Γ∗z ≤ τ

z ∈ conv(Dt)

(9)

to find a solution z∗, and then find a distribution π∗
t ∈

∆Dt
such that Ex∼π∗

t
(x) = z∗. Note that the constraint

z ∈ conv(Dt) has to be included in the new optimization
problem since if z∗ /∈ conv(Dt), then there is no distribution
π ∈ ∆Dt whose expected value is z∗.

Now, let z∗ be the solution of (9). Since z ∈ conv(Dt),
we know that z is given by a convex combination of a
finite number of elements in Dt. Moreover, according to
Caratheodory’s theorem presented in Lemma 1, one such
convex combination exists with at most d+ 1 points. Thus,
a set of points z1, · · · , zd+1 ∈ Dt and a set of non-negative
scalars α1, · · · , αd+1 exist such that z∗ =

∑d+1
i=1 αizi = Zα

and
∑d+1

i=1 αi = 1, where Z ∈ Rd×(d+1) is a matrix whose
ith column is zi and α ∈ Rd+1 is a vector whose i entry is
αi. Next, we form the following optimization problem:

maximize
β∈Rd+1

θ⊤Zβ

subject to ΓZβ ≤ τ

1⊤β = 1, β ≥ 0

(10)

Note that if β is a solution of (10), then zβ = Zβ is a solution
of (9). The final step would be to show that a specific solution
β∗ for (10) exists with at most m+1 non-zero entries. This
step is taken via Lemma 2, according to which (10) has a
basic feasible solution that has no more than m+1 non-zero
elements. Note that (10) can be converted to the form given
by Lemma 2 by adding slack variables. Now, letting β∗ be
a basic feasible solution of (10), the optimal feasible policy
π∗
t with a support of at most m+ 1 elements is given by

P
x∼π∗

t

(x = z) =

{
β∗
i z = zi

0 otherwise
(11)

where zi is the ith column of Z. This completes the proof.
The proof of Theorem 1 provides a straightforward algo-

rithm to compute the optimal feasible policy π∗
t given θ∗ and

Γ∗. Algorithm 1 provides the steps to achieve this goal.
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Algorithm 1 Computation of the optimal feasible policy

Input: θ∗ ∈ Rd,Γ∗ ∈ Rm×d, τ ∈ Rd
+

1: Solve (9) and find z∗ ∈ conv (Dt)
2: Find Z =

[
z1 · · · zd+1

]
∈ Rd×(d+1) and α ∈ Rd

+ such
that z∗ = Zα and 1⊤α = 1

3: Find β∗, a basic feasible solution of (10)
4: return π∗

t according to (11)

With the decision set described in (3), lines 1 and 2 of
the algorithm can be implemented simultaneously using the
result of Lemma 3. According to Lemma 3, this can be done
by solving the convex optimization problem

minimize θ⊤z

subject to Γz ≤ τ

αifij(xi/αi) ≤ 0, i ∈ [k], j ∈ [ki]

1⊤α = 1, α ≥ 0

z = x1 + · · ·+ xk

(12)

and finding the optimal z∗ =
∑k

i=1 αizi, where zi = xi/αi

and xi, αi are solutions of (12). Note that in this case,
instead of expressing z∗ in terms of at most d + 1 points,
it is expressed in terms of k points. Based on how d
and k compare, this can be a computational advantage or
disadvantage. However, it does not affect the overall flow
of Algorithm 1 as all the steps can be implemented and the
only difference is that d+ 1 gets substituted by k.

While we have addressed the implementation issue in line
2 of Algorithm 1 for a special case, we do not have a general
computationally efficient method to implement it without
further knowledge of the set Dt and its representation.

Finally, line 3 of Algorithm 1 can be implemented using
the Simplex method, and line 4 is constructed based on
the output of line 3, which concludes our full algorithmic
pipeline to calculate the optimal feasible policy π∗

t .

B. Computationally-tractable algorithms with performance
guarantees for linear bandits with linear constraints

In the literature, there are numerous formulations of
linearly-constrained linear bandits [6], [7], [10], [12], [18],
[19]. Many associated algorithms [7], [10], [18], [19] follow
similar strategies. Specifically, they establish confidence re-
gions for both reward and cost parameters. These algorithms
strive to optimistically maximize the reward, while taking
a pessimistic stance regarding the cost. This means they
account for the worst-case scenario that the cost parameter
corresponds to the least favorable value within the confidence
region.

In this section, we discuss the Optimistic-Pessimistic Lin-
ear Bandit (OPLB) Algorithm introduced by [17], which
serves as our foundational algorithm. We elucidate its work-
ings, identify computational barriers, and tackle these chal-
lenges by introducing computationally-tractable algorithms
backed by performance guarantees. It is worth noting that,
although our solutions are tailored to a specific formulation
of the linearly constrained linear bandit problem, they can

be readily extended to other formulations, given that they all
encounter the same computational challenge.

Consider a linear bandit with linear constraints as de-
scribed in III. For simplicity we assume m = 1. Conse-
quently, the constraint matrix Γ∗ ∈ Rm×d simplifies to a
row vector, which we denote by µ⊤

∗ ∈ Rd. This implies that
only one linear constraint, µ⊤

∗ x ≤ τ , is present. Extending
this to the general case with m constraints is straightforward.

At each round t ∈ [T ], given the past actions {xi}t−1
i=1 ,

observed rewards {ri}t−1
i=1 , and cost signals {ci}t−1

i=1 , we
construct the Gram matrix

Σt = λI +

t−1∑
i=1

xix
⊤
i . (13)

Then we compute the ℓ2-regularized least squares estimates
of θ∗ and µ∗ using the regularization parameter λ. These are
given by

θ̂t = Σ−1
t

t−1∑
i=1

rixi, µ̂t = Σ−1
t

t−1∑
i=1

cixi. (14)

As suggested by OPLB, we construct the confidence sets

Cθt,ℓ2 =

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Σt,2
≤ ρβt

}
,

Cµt,ℓ2 =
{
µ ∈ Rd : ∥µ− µ̂t∥Σt,2

≤ βt

}
,

(15)

where ρ = 1 + 2
τ−c0

, βt = R
√

d log 1+(t−1)L2/λ
δ +

√
λS,

and ∥.∥Σt,2 is defined in Sectin II.
According to the principal theorem presented in [20], with

probability at least 1− δ, the unidentified parameters θ∗ and
µ∗ are contained within the sets Cθt,ℓ2 and Cµt,ℓ2 , respectively.

The final step of OPLB is to solve the problem

maximize
π∈∆Dt ,θ∈Rd

E
x∼π

(
θ⊤x

)
subject to θ ∈ Cθt,ℓ2

π ∈ Πt,

(16)

where

Πt = {π ∈ ∆Dt
: E
x∼π

(
µ⊤x

)
≤ τ, ∀µ ∈ Cµt,ℓ2} (17)

is the pessimistic set of safe policies.

Proposition 1. The optimization problem (16) is equivalent
to

maximize
z∈Rd

ρβt

√
z⊤Σtz + θ̂⊤t z

subject to βt

√
z⊤Σtz + µ̂⊤

t z ≤ τ

z ∈ conv(Dt).

(18)

Proof: First, we define z = Ex∼π(x). Instead of
tackling an optimization problem over a set of probability
distributions, we aim to find the expected value. This step
needs the condition z ∈ conv(Dt). This reasoning follows
the same lines as the proof of Theorem 1. The remainder of
the proof, which explains the specific forms of the objective
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function and the constraint, directly stems from Proposition
1 in [17].

Once equation (18) is solved and the optimal solution z∗ =∑d+1
i=1 αizi is identified as a convex combination of elements

from Dt, the optimal feasible policy π∗
t is expressed by

P
x∼π∗

t

(x = z) =

{
αi if z = zi

0 otherwise.
(19)

The following theorem, a central result from [17], offers
a regret bound on the algorithm’s performance.

Theorem 2 (Theorem 2 of [17]). Assuming the conditions
presented in the problem formulation of Section III are
satisfied, the regret of OPLB, with a probability greater than
1− 2δ, is bounded by

RΠ (θ∗, T ) ≤
2L(ρ+ 1)βT√

λ

√
2T log (1/δ)

+ (ρ+ 1)βT

√
2Td log (1 + TL2/λ).

(20)

While the outlined approach offers a comprehensive
pipeline to tackle the constrained bandit problem, a primary
obstacle arises from the computational complexity of solving
the main optimization problem (16) or its equivalent (18). As
noted in [15], the unconstrained variant of this problem, with
a decision set that is represented as a polytope defined by
the intersection of halfspaces, is NP-hard. This implies that
searching for a universally applicable computational tech-
nique, irrespective of the decision set’s nature, may be futile.
Furthermore, as elaborated in Section IV-A, optimizing over
probability distributions (or equivalently, with the constraint
z ∈ conv (Dt)) introduces its own set of challenges.

To navigate the first challenge, we propose a modified
OPLB that, while computationally feasible, yields a more
relaxed regret bound. This modification ensures a universally
efficient algorithm. Later in Section IV-C, we present an
alternative technique for addressing the original problem
(18), which is suitable for specific cases but not universally.
To tackle the second challenge, analogous to Section IV-A,
we utilize the technique introduced in Lemma 3.

To make the OPLB more computationally efficient, we
modify the confidence sets. Instead of using the confidence
set Cθ

t,ℓ2
presented in (15), we switch to a confidence set

using the ℓ1 norm and an adjusted radius. Specifically, we
define the confidence set as

Cθt,ℓ1 =

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Σt,1
≤ ρ
√
dβt

}
, (21)

where ρ and βt retain their previous definitions and ∥.∥Σ,1

is detailed in Section II. Note that, as will be shown in a
subsequent lemma, an ℓ1 confidence set for µ∗ is unneces-
sary. Instead, we can continue using the Cµt,ℓ2 as previously
defined.

Lemma 4. For any t ∈ [T ] and any δ > 0, the following
holds:

P
(
θ∗ ∈ Cθt,ℓ1

)
≥ 1− δ. (22)

Proof: For any vector x ∈ Rd, we have that ∥x∥1≤√
d∥x∥2. This yields∥∥∥Σ1/2

(
θ − θ̂

)∥∥∥
1
≤
√
d
∥∥∥Σ1/2

(
θ − θ̂

)∥∥∥
2
.

Given that the right-hand side is bounded by
√
dρβt for any

θ ∈ Cθt,ℓ2 , it follows that Cθt,ℓ2 ⊆ C
θ
t,ℓ1

. By the main theorem
of [20], we know that θ∗ ∈ Cθt,ℓ2 with a probability of at
least 1− δ, which concludes the proof.

In the modified version of OPLB that incorporates the ℓ1
confidence region, we address a new problem given by

maximize
z∈Rd,θ∈Rd

θ⊤z

subject to θ ∈ Cθt,ℓ1
z ∈ St

z ∈ conv (Dt) ,

(23)

where St = {z ∈ Rd : µ⊤z ≤ τ, ∀µ ∈ Cµt,ℓ2}. Once this
problem is solved and the optimal solution z∗ =

∑d+1
i=1 αizi

is identified as a convex combination of elements from Dt,
the optimal feasible policy π∗

t is given by (19).

Proposition 2. The optimization problem (23) can be de-
composed and solved by addressing 2d individual convex
optimization problems.

Proof: We can express (23) in the following format:

maximize
θ∈Rd

f(θ)

subject to θ ∈ Cθt,ℓ1 ,
(24)

where the function f is defined as:

f(θ) = max
z∈Rd

θ⊤z

s.t. z ∈ St

z ∈ conv (Dt) .

(25)

Given that f is convex and the region Cθt,ℓ1 forms a polytope
in Rd, we realize that the solutions of (24) occur at the
vertices of the polytope, and it suffices to evaluate f at the 2d
vertices to solve this problem. Each evaluation corresponds
to solving a convex optimization problem as shown in (25),
which completes the proof.

Proposition 2 demonstrates that the modified OPLB can
be efficiently solved. The subsequent step is to ascertain a
guarantee for the regret bound. The theorem below provides
this guarantee.

Theorem 3 (Modified OPLB regret bound). Given that the
conditions outlined in Section III are met, the regret of the
modified OPLB employing the ℓ1 confidence region for the
reward parameter θ∗, with a probability exceeding 1 − 2δ,
can be upper-bounded as

RΠ (θ∗, T ) ≤
2L(ρ+ 1)βT√

λ

√
2Td log (1/δ)

+ (ρ+ 1)βT d
√
2T log (1 + TL2/λ).

(26)

Proof: By examining the proof of Theorem 2, it
becomes apparent that the regret bound depends on the
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confidence region radius of the reward parameter θ∗, namely
ρβT , without specifically relying on the value of ρβT .
Further inspection reveals that the confidence region radius
of the cost parameter µ∗ has no bearing on the bound. In
the modified OPLB approach, the initial radius is scaled by
a factor of

√
d, while the latter remains unchanged. Hence,

in the expression (20), substituting βt with
√
dβt results in

the updated bound presented in (26), which completes the
proof.

With Theorem 3, we now possess a comprehensive frame-
work for tackling the constrained bandit problem using
algorithms that are computationally efficient. It’s important
to highlight that a key step in this process is the evaluation
of the function f as defined in (25). Although this is a
convex optimization problem, one cannot overlook that its
two constraints, in their most general form, may introduce
complications unless they are further simplified.

The primary constraint, z ∈ St, can be replaced by the
more direct constraint βt

√
z⊤Σtz + µ̂⊤z ≤ τ , following

the guidelines of Proposition 1. The latter constraint, z ∈
conv (Dt), while complicated in general, is navigated for the
class of decision sets studied in this work using the technique
introduced in Lemma 3. Consequently, the task of evaluating
the function f from (25) simplifies to solving

f(θ) = max
z∈Rd

θ⊤z

s.t. βt

√
z⊤Σtz + µ̂⊤

t z ≤ τ

αifij(xi/αi) ≤ 0, i ∈ [k], j ∈ [ki]

1⊤α = 1, α ≥ 0,

z = x1 + · · ·+ xk.

(27)

The procedure is concisely summarized in Algorithm 2.

Algorithm 2 Modified OPLB

Input: T ∈ N, δ ∈ R+, γ ∈ R+, τ ∈ R
1: for t = 1 to T do
2: Observe rt, ct and compute θ̂t and µ̂t using (14)
3: z∗ ← Solve (23) using Proposition 2 and (27)
4: Construct πt using z∗ according to (19)
5: Play the action xt ∼ πt

6: end for

C. The upper bound maximization method

Recall (18) which presents the original problem with
ℓ2 confidence sets that we initially sought to solve. Since
solving this problem is challenging, our first approach was
to present an ℓ1 relaxation to this problem, as discussed
in Section IV-B. In this section we introduce a problem-
dependent method that has the potential to exactly solve (18).
The following theorem provides the tools that we need for
this method.

Theorem 4. Let g1, g2 : Rd → R be arbitrary functions and
let C ⊆ Rd be an arbitrary set. Consider the optimization

problems

maximize
z∈Rd

g1(z)

subject to g1(z) ≤ g2(z)

z ∈ C

(28)

and

maximize
z∈Rd

g2(z)

subject to g1(z) ≤ g2(z)

z ∈ C.

(29)

If z∗ is an optimal solution for (29) and g1(z
∗) = g2(z

∗),
then z∗ is also an optimal solution for (28).

Proof: Suppose z̃ is an optimal solution for (28) and
z∗ is not. Then, g1(z̃) > g1(z

∗) = g2(z
∗) ≥ g2(z̃).

The first inequality stems from the optimality of z̃ and the
non-optimality of z∗ for (28), the equality follows directly
from the assumption of the theorem, and the last inequality
arises because z∗ maximizes g2. This leads to g1(z̃) >
g2(z̃), a violation of the constraint g1(z) ≤ g2(z), thus a
contradiction. This concludes that z∗ is an optimal solution
for (28).

This theorem allows us to solve (29) instead of (28). If the
condition g1(z

∗) = g2(z
∗) holds, then we have an optimal

solution for (28) as well. This may be quite useful if (29) is
more tractable than (28).

We now apply the result of Theorem 4 to (18). For clarity,
we restate this problem as follows:

maximize
z∈Rd

ρβt

√
z⊤Σtz + θ̂⊤t z

subject to βt

√
z⊤Σtz + µ̂⊤

t z ≤ τ

z ∈ conv(Dt).

(30)

Setting g1(z) = ρβt

√
z⊤Σtz + θ̂⊤t z, g2(z) = ρτ + (θ̂t −

ρµ̂t)
⊤z, and C = conv(Dt), (30) becomes a particular

instance of (28). Consequently, the counterpart of (29) in
our setting is

maximize
z∈Rd

ρτ +
(
θ̂t − ρµ̂t

)⊤
z

subject to βt

√
z⊤Σtz + µ̂⊤

t z ≤ τ

z ∈ conv(Dt),

(31)

which is a convex optimization problem. This provides a
potentially more efficient approach to solve the original
OPLB problem with ℓ2 confidence sets and yield exact
solutions. It involves solving (31), a convex optimization
problem amenable to efficient computation. Upon solving
this problem, one must check whether the first constraint is
active. If it is, then the obtained solution also solves (30). If
not, the process shifts back to addressing the ℓ1 version of
the problem, as outlined in (23) or (27). To handle the second
constraint in (31), we utilize the technique proposed in
Lemma 3. Algorithm 3 summarizes the entire methodology.
We refer to this technique as the Upper Bound Maximization
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Fig. 1 Example of the upper bound maximization test

(UBM) method, as it entails maximizing an upper bound on
the objective function rather than the objective function itself.

Algorithm 3 Enhanced OPLB with UBM

Input: T ∈ N, δ ∈ R+, γ ∈ R+, τ ∈ R
1: for t = 1 to T do
2: Observe rt, ct, and compute θ̂t, µ̂t using (14)
3: z∗ ← Solve (31)
4: if βt

√
z∗⊤Σtz∗ + µ̂⊤

t z
∗ < τ then

5: z∗ ← Solve (23) using Proposition 2 and (27)
6: end if
7: Construct πt using z∗ according to (19)
8: Play the action xt ∼ πt

9: end for

Each iteration of Algorithm 3 involves solving either the ℓ2
or the ℓ1 confidence set problem. Thus, the ultimate regret
bound will be no worse than that provided by Theorem 3
but may approach the bound of Theorem 2, depending on
the frequency at which the first constraint becomes active in
(31).

Example. Figure 1 illustrates a one-dimensional example
of our setup. The decision set Dt is defined such that
conv (Dt) = {z : |z|≤ 3}. Two distinct upper bound func-
tions, g(1)2 (z) and g

(2)
2 (z), are introduced, each corresponding

to a different value of µ̂t. The set S represents the points
where the safety constraint g1(z) ≤ g2(z), as described in
(30) and (31), is satisfied.

The implications of Theorem 4 are observable in Figure 1,
where the conditions under which UBM is effective become
apparent. Specifically, when the upper bound is described by
g
(1)
2 (z), maximizing this function also optimizes the original

objective g1(z), with the constraint g1(z) ≤ g2(z) becoming
active at the optimum. Conversely, when the upper bound
is g

(2)
2 (z), UBM does not lead to an optimal solution, as

maximizing g
(2)
2 (z) does not make the constraint active,

rendering the approach ineffective in this case.

Fig. 2 Mean policy trajectory with Dt as a union of convex sets

V. EXPERIMENTS

In this section, we present empirical evaluations of the
proposed algorithms through two distinct experiments.

A. Enhanced OPLB policy evaluation with non-convex deci-
sion sets

The first experiment considers a two-dimensional scenario
with a non-convex decision set represented by a union of five
disks in R2, all subject to a single linear constraint. Figure 2
illustrates the policies chosen by the algorithm at each time
step over a total of T = 300 rounds. The trajectory depicting
the mean value of the policy is shown in Figure 2, which
transitions from yellow to red as time progresses. Notably,
at three specific time steps—t = 0, t = 40, and t = 100—
the mean policy values are highlighted in cyan, magenta,
and purple respectively, each delineated with a black border.
Corresponding to each of these mean values, five points
are plotted, representing the five potential actions, one of
which is to be randomly selected according to a specific
probability for the policy to be effective. The radius of
each point is proportional to its probability weight in the
policy’s construction, with all weights summing up to one.
Furthermore, the constraint boundary, defined by x⊤µ = τ ,
is represented as a line within the figure, and the mean value
of the optimal policy is denoted as x∗.

Observations from the figure reveal that initially, the
trajectory of the points moves along the boundary of the
convex hull of the decision set and away from the optimal
policy. However, as time progresses, the trajectory redirects
towards the optimal policy and ultimately converges to the
optimal solution. Furthermore, the mean value of the policy
always remains within the safe region, indicating that the
pessimism in action selection has been effective, ensuring
that the algorithm does not violate the safety constraint at
any point.
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Fig. 3 Left: Cumulative regret of ℓ1 OPLB vs. OPLB with UBM. Middle: Histogram of cumulative regret at T = 2000.
Right: Mean policy trajectory of ℓ1 OPLB vs. UBM OPLB

B. Cumulative regret comparison

In the second experiment, we compare the cumulative
regrets of Algorithms 2 and 3, namely the ℓ1 OPLB and
UBM OPLB. Figure 3 (left) presents the cumulative regret
of both algorithms given the parameters θ∗ = [3, 2.5]⊤,
µ∗ = [0.5, 0.5]⊤, and τ = 0.5, with the decision set
being the unit disk. The results indicate a marginally bet-
ter cumulative regret for UBM OPLB. This plot reveals
an interesting phenomenon: asymmetric confidence bands
around the UBM OPLB’s regret, with a lower confidence
band that is notably further below the mean compared to
the upper band. Further investigation into this observation is
conducted by examining Figure 3 (middle), which displays
a histogram of the cumulative regrets for both algorithms at
time t = 2000 over N = 1000 simulations. The histogram
suggests that, although UBM OPLB’s performance is largely
in line with that of ℓ1 OPLB, it exhibits a secondary mode
where the cumulative regret is substantially lower. This
accounts for the observed lower confidence band in the first
plot. In certain cases, UBM OPLB significantly outperforms
ℓ1 OPLB. For a closer look at this behavior, we examine
the mean policy trajectories of ℓ1 OPLB and UBM OPLB
under the aforementioned superior performance. Figure 3
(right) delineates these trajectories with the evolution from
yellow to red and cyan to magenta, respectively, for a span
of T = 300 steps. Clearly, ℓ1 OPLB does not approach
the optimal policy as closely as UBM OPLB, resulting in
greater regret, whereas UBM OPLB tends toward the optimal
policy, exhibiting minimal regret. Although this phenomenon
is problem-specific and not universally observed, it presents
an intriguing aspect for further research.
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