
A Novel Koopman Representation for Efficient Linear Model Predictive
Control of Nonlinear Systems

Omar Sayed and Sergio Lucia

Abstract— The Koopman operator theory is a powerful tool
for the linear analysis and control of nonlinear systems that
lifts the nonlinear states into a higher dimensional linear
space known as the Koopman space. The linear Koopman
space provides an attractive approach for designing linear
control strategies for nonlinear systems. However, a significant
challenge arises because the Koopman states cannot be directly
related to the actual states of the system. This discrepancy
can complicate the design of cost functions and constraints
for a model predictive controller. In this work, we introduce
a novel Koopman representation combined with a training
scheme that resolves this issue by defining auxiliary states that
are injective and monotonic to the original states. We evaluate
the effectiveness of the proposed scheme through numerical
experiments.

I. INTRODUCTION

In recent years, Model Predictive Controllers (MPC) have
gained popularity due to their versatility. This is primarily
attributed to their ability in handling cost functions and
constraints which are tailored for various applications [1],
[2]. Moreover, MPC excels at managing a wide spectrum of
control challenges, including nonlinear systems and effec-
tively dealing with uncertainties [3], [4].

However, an MPC scheme relies on a prediction model
to simulate future states and then implicitly determine the
optimal control law. This can be challenging when dealing
with nonlinear models due to computational complexity and
tractability issues [5], necessitating the use of simplifications
such as linearization [6].

A promising idea to reduce the computational complexity
associated with nonlinear models is the use of Koopman
operator theory [7], [8]. Koopman theory states that by a
nonlinear transformation of states to an infinite dimension, it
is possible to linearly represent the dynamics of a nonlinear
system in what is known as the Koopman embedding space.
For autonomous systems, researchers have worked to make
this theory practical by seeking finite approximations of
the Koopman space for autonomous nonlinear systems [9],
[10]. Extensions have also been explored for systems with
exogenous inputs [11], [12], [13].

However, finding the appropriate transformation function
has its own challenges especially when knowledge of the
underlying process is limited [14]. This has led research
towards the use of deep neural networks (DNNs) to approx-
imate lifting functions for autonomous systems [15], [16],
[14], and for systems with exogenous inputs [17], [18], [19].

*This work was not supported by any organization
Omar Sayed and Sergio Lucia are with the Chair of Process

Automation Systems, TU Dortmund University, Dortmund, Germany
{omar.sayed, sergio.lucia}@tu-dortmund.de

An issue that arises when attempting to use the lifted
system as a prediction model with MPC is the loss of
interpretability between the Koopman states and the original
state space, since the Koopman states have no physical
meaning. This challenge becomes apparent when designing
state constraints and cost functions for MPC, as discussed in
[19] and [20].

Several approaches have been proposed to address these
challenges. One approach is to use a linear inverse trans-
formation to establish a relationship between the Koopman
space and the original state space, as in [17] and [21], thus
enabling linear MPC. Another approach is to directly include
nonlinear states in the Koopman space, which is a special
case of the former, as in [6], [20] and [22]. However, these
methods may result in reduced prediction accuracy as they
rely on the assumption of a linear relationship between the
two spaces.

The main contribution of this work is as follows: First,
we propose a novel modelling and control scheme to impose
constraints and cost function design directly in the Koopman
space by introducing auxiliary states. These auxiliary states
are injective and monotonic with respect to the original
states, which is achieved through a specific network structure
and training scheme outlined in this work. Secondly, the pro-
posed scheme is evaluated against a baseline architecture and
controller in a numerical example, testing its performance
with different cost functions and state constraints.

This paper is structured as follows: Section II, gives a brief
introduction to Koopman theory and its extension to systems
with inputs. Section III explores the Koopman operators in
the context of DNNs and presents our proposed network
structure and training scheme. In section IV, we illustrate the
design of MPC using linear Koopman models, considering
both the baseline and the proposed approach. In section V,
we evaluate and compare the performance of our proposed
algorithms with the baseline methods. Finally, we conclude
our work in section VI.

II. BACKGROUND

A. Koopman theory for autonomous systems

Consider the following discrete dynamical system:

xk+1 = F (xk), (1)

where xk ∈ Rnx represents the state vector of the system
at time step k, with a dimension nx. The function F :
Rnx → Rnx describes the nonlinear dynamics and simulates
the states of the system by a time step ts.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3563



The Koopman operator acts on a lifting function g :
Rnx → Rnz , which nonlinearly transforms the original states
of dimension nx into the Koopman space of dimension
nz , which is often considered to be infinite-dimensional.
This transformation allows the system’s dynamics to be
represented linearly by the Koopman operator K, so that the
following relation holds:

Kg(xk) = g(xk+1) = g ◦ F (xk). (2)

To approximate K and g in practice, finite dimensional
approximations are derived using time series data sampled
from the original nonlinear system. The goal is to find
a finite embedding space that is typically larger than the
true state space of the original system. For a given data-
set D = [x0, x1, . . . , xN ] and a chosen dimension of the
Koopman space nz this approximation can be obtained by
an optimization problem given by

argmin
g,K

N−1∑
k=0

∥g(xk+1)−Kg(xk)∥. (3)

B. Koopman operator with controls

In this work, we consider a controlled system represented
as xk+1 = F (xk, uk). To adapt the Koopman theory to such
systems, following the approach of previous studies such as
[17], [11], and [12], we redefine the equation (2) as:

K(g(xk), uk) = g(F (xk, uk)) = g(xk+1), (4)

where F : Rnx × Rnu → Rnx represents the dynamic
equation, considering both the state xk and the control input
uk ∈ Rnu with dimension nu. The Koopman operator,
is decomposed into two components: Kx ∈ Rnz×nz and
Ku ∈ Rnz×nu , both of which are linear functions learned
for the state and control input.

The lifting function and the Koopman operator for a given
dimension of the Koopman space nz , can be obtained by
solving the following optimization problem:

argmin
g,Kx,Ku

N−1∑
k=0

∥g(xk+1)− (Kxg(xk) +Kuuk)∥. (5)

Following from (5) a nonlinear system can be represented in
the Koopman space as:

g(xk+1) = Kxg(xk) +Kuuk, (6)
zk+1 = Kxzk +Kuuk. (7)

In this context, Kx and Ku can be associated with the state
matrix A and the input matrix B resembling their roles in
linear control theory. For more indepth information on the
Koopman operator, readers can refer to [23].

III. DEEP KOOPMAN

In this section, we review Koopman operators in the
context of deep neural networks. We explore methods in-
volving nonlinear transformations to and from the Koopman
space using autoencoders [24]. We present both the standard
baseline method and our proposed methods for comparison.

A. Standard Data-based Koopman Method as Baseline

Learning the Koopman operator usually consists of two
steps. The first is to lift the states. The second is to learn the
linear dynamics for the lifted states. This can be achieved
simultaneously by the following single-step loss:

Lss =

N−1∑
k=0

∥xk+1 − ψ−1(Kxψ(xk) +Kuuk))∥, (8)

where ψ : x ∈ Rnx → z ∈ Rnz and ψ−1 : z → x denote
the encoder and decoder. Typically, they are chosen as neural
networks N (.; θ) with trainable parameters θ. Kx and Ku, are
parameterized linear matrices, corresponding to the system
and input matrices. Since our goal is to use these models
as a prediction model in MPC, it is important to train them
also on a multi-step loss to reduce accumulation of errors
when performing multi-step predictions [25], [26]. For this
we define the following k-step loss:

Lms =

N−k∑
p=0

p+k∑
m=p+1

∥Xp,m − ψ−1(X̂p,m)∥, (9)

where, Xp,m := [xp, xp+1, . . . , xm], (10)

X̂p,m := [x̂[p−1,p], x̂[p−1,p+1], . . . , x̂[p−1,m]], (11)

x̂[p,m] =Km−p
x ψ(xp) +

m−1∑
i=p

Km−i−1
x Kuui, (12)

where x̂[p,m] denotes the state at time step m using an initial
state at time p and simulating the dynamics using the input
trajectory from time step p up to m. In this case, the number
of k-steps prediction for x̂[p,m] is (k = m− p).

B. Proposed Architecture

Our proposed scheme involves assigning specific auxiliary
states in the Koopman space and imposing constraints on
these states during training to ensure their injectivity and
monotonicity with respect to the original states. The impor-
tance of these constraints will become apparent when we
formulate the MPC problem in section IV. A nonlinear trans-
formation, denoted as ψ : X ∈ Rnx → [Z ∈ Rnz , S ∈ Rnx ],
maps to two distinct domains. Here, Z denotes the space of
Koopman states, which carries the linear dynamics of the
nonlinear system, while S denotes the space of auxiliary
states, with a dimensionality identical to that of the original
state space. We consider the following assumption:

Assumption 1: Let f(·; θ) : x ∈ X → s ∈ S and
its inverse f−1(·; θ) : s → x represent one-dimensional
mapping functions between two domains. For a trajectory
T = [x0, x1, ..., xn] spanning f over [a, b] and f(T ) span-
ning f−1 over [c, d], there exists a set of parameters θ such
that minθ∥T − f(f(T ; θ); θ)−1∥ = 0.

The assumption is that an encoding and decoding function
can be learned for a one-dimensional data set, with a latent
space equal to the original space and a domain of validity
defined by the data set. This can be achieved if the data is
rich, covering the full range of validity, and the structure
of the function is of appropriate complexity. f(.) can be a

3564



trivial function, but we want to impose constraints on the
transformation, as we will see later.

Lemma 1: Let Assumption 1 hold, then functions f and
f−1 are bijective between the domains of X ∈ [a, b] and
S ∈ [c, d]. Furthermore, since both f and f−1 are one-
dimensional and bijective, it follows that they are strictly
monotonic.

Proof: See [27].

In Theorem 1 we look to expand this Lemma to a multi-
dimensional neural network. We make use of the Hadamard
product ⊙ that denotes the elementwise multiplication.

Theorem 1: Consider a masking vector M ∈ Rn defined
as Mi := [0, · · · , 1, · · · , 0], where it contains a single unitary
element only in the i-th position. Then for a feedforward
neural network N (·; θ) : Rn → Rn, applying the filter during
training and testing to the input and the output Mi·N (Mi⊙x)
will result in a one-to-one mapping between the i-th input
and the i-th output, so Lemma 1 will hold for the i-th
dimension.

Proof: Consider an input vector [x1, · · · , xn], and a
neural network with a single hidden neuron activated by
ReLU function. The output of the hidden neuron when
applying the mask Mi is as follows:

h1 = max(0, [w11 · · · , w1i, · · · , w1n]


x1
...
xi
...
xn

⊙


0
...
1i
...
0

+ b1),

= max(0, w1ixi + b1)

Building on this, the output layer can be expressed as
O = [w21h1, · · · , w2nh1], where [w21, · · · , w2n] represent
the weights at the output layer. Applying Mi to the output
layer (i.e. Mi·O) results in Oi = f(xi), where the function f
includes the weights multiplication, bias addition, and ReLU
activation applied to the input xi. Thus using Mi during
training and testing is equivalent to having a neural network
with an input-output dimension of one Ñ : R1 → R1

mapping xi to Oi.
The validity of Theorem 1 is independent of the depth or

width of the neural network. Furthermore, the mask Mi can
be used for different values of i in multiple feed-forward
instances for the same neural network giving a monotonic
and injective relation between multiple inputs and outputs.
Theorem 1 could be seen as equivalent to learning n separate
networks, one for each input. However, in larger networks,
a significant portion of these weights is shared, especially in
the hidden layers. This sharing of weights helps in learning
a stable and more general transformation. Moving on to
applying Theorem 1 on the auxiliary states si ∈ S with
Mi ∈ Rnz+nx and M̃i ∈ Rnx , we define the following

reconstruction loss.

Laux1 =

N−1∑
k=0

nx∑
i=0

∥xi,k − ψ−1(si)i∥, (13)

si := ψ(xk)⊙Mi, ψ−1(.)i := M̃i · ψ−1(·),

where xi,k is a scalar representing the i-th state at time step
k. A general remark is that by applying the mask constraint
to the decoder, we implicitly apply it to the encoder, since
both functions are related in terms of performance and
backpropagation [28]. Following this, we can reformulate the
single-step and multi-step losses as

Laux2 =

N−1∑
k=0

nx∑
i=1

∥xi,k+1 − ψ−1(s̃i)i∥, (14)

s̃i :=Mi ⊙ (CKxψ(xi,k) + CKuui),

Laux3 =

N−1∑
p=0

p+k∑
m=p+1

nx∑
i=1

∥(M̃T
i ·Xp,m − ψ−1(ŝi)i)∥, (15)

ŝi :=Mi ⊙ CX̂p,m,

where, X̂ and X are computed using (10) and (11) respec-
tively. Since the Koopman states are linear, we can relate
them to the auxiliary states linearly as sk = Czk without
loss of generalizability. This is due to the single-step and
multi-step loss constraints, which already force the auxiliary
states to be observable to the latent states.

Furthermore, it can be argued that Laux2 is already a part
of Laux3 , but in practice it shows better training results when
both losses are used. The total loss function is the weighted
sum of the multi-step loss Lms, for the Koopman states (Z)
and the three auxiliary states (S) losses Laux1 , Laux2 and
Laux3 . A schematic of the architecture is shown in Fig. 1.

IV. MPC IN THE KOOPMAN SPACE

MPC relies on a prediction model and a specific cost
function to compute the input trajectory that optimizes a
customized cost function over a given horizon H . For a
nonlinear system of the form xk+1 = F (xk, uk), a nonlinear
MPC can be formulated as follows:

min
ũ

H−1∑
k=0

xTkQxk + uTkRuk, (16)

s.t. xk+1 = F (xk, uk), x0 = xinit,

xlb ≤ xk ≤ xub, ulb ≤ uk ≤ uub,

where, for simplicity we choose a quadratic cost function
defined by the weighting matrices Q ∈ Rnx×nx , R ∈
Rnu×nu . The lower and upper bounds of the states are
denoted by xlb, xub ∈ Rnx and ulb, uub ∈ Rnu are the input
constraints. The solution to this optimization problem is the
optimal input sequence, ũ, that minimizes the cost function
while satisfying the constraints.

The optimization problem (16) is non-convex and com-
putationally complex. To address this issue, an alternative
approach is to leverage the Koopman states to reformulate
the nonlinear optimization into a convex form. If the cost

3565



Fig. 1. Proposed schematic: In here, ψ−1 corresponds to the same decoder used across multiple feed-forward instances. The blue lines denote the
reconstruction of the original states from the axillary states. During this step, the original state is reconstructed directly from the auxiliary state for the
same time step k, without incorporating dynamic propagation. The green lines denotes the states propagated by one time step. An essential feature of this
architecture is the masking of the decoder input to establish a one-to-one relationship between the auxiliary states and the original states. For instance, the
top right decoder is compelled to map the first auxiliary state s1 to x1.

function is quadratic and the constraints are linear (16) can
be reduced into a quadratic convex problem as in [17], [21]
to be:

min
ũ

H−1∑
k=0

zTk Q̂zk + uTkRuk, (17)

s.t. zk+1 = Kxzk +Kuuk,

z0 = ψ(xinit), xlb ≤ Ĉzk ≤ xub, ulb ≤ uk ≤ uub,

where Ĉ is a linear matrix defined as Ĉ := Xψ(X)† and
x̂k = Ĉzk. Here, † donates the Moore-Penrose pseudoinverse
and X are state trajectories from the training dataset. The
state cost matrix Q is transformed for the Koopman states
as Q̂ = ĈTQĈ. A clear disadvantage of this formulation is
that it is assumed that the nonlinear decoder function ψ−1

can be replaced by a linear relation Ĉ. This can hinder the
performance of the MPC controller as it will be shown in
Section V.

We propose to directly formulate the MPC optimization
(16) in the Koopman space without relying on inverse
transformations. This can be facilitated by using the injective
and monotonic auxiliary states defined in section III-B. We
can reformulate (16) as:

min
ũ

H−1∑
k=0

sTk Q̃sk + uTkRuk, (18)

s.t. zk+1 = Kxzk +Kuuk, sk+1 = [CKx CKu]

[
zk
uk

]
,

z0 = ψ(xinit), slb ≤ sk ≤ sub, ulb ≤ uk ≤ uub.

In this formulation C, is different from Ĉ as it relates the
Koopman states to the auxiliary states and operates within
a linear Koopman space. slb and sub are the auxiliary state
constraints which can be related to the true states of the

system as

slb, sub =

{
ψ(xlb), ψ(xub) if ψ(xlb) < ψ(xub)

ψ(xub), ψ(xlb) otherwise,
, (19)

where this condition stems from the fact that the relationship
between the auxiliary states and the original states can be
either monotonically decreasing or increasing. In a similar
fashion, we can relate Q̃ to Q by the element-wise operation
as

Q̃i,j =
(Qij − xlb,j)(sub,j − slb,j)

xub,j − xlb,j
+ slb,j . (20)

It is important to emphasize that the relation between Q̃
and Q is not an equivalent transformation, but maintains
an optimization direction. The exploration of alternative
representations of Q̃ will be the subject of future work.

V. RESULTS

We evaluate the performance of both the proposed and
baseline methods in the context of MPC control under two
different scenarios: setpoint tracking and economic cost.
All of our experiments consider the open-loop application
of a linear MPC in order to better analyze the prediction
quality of the underlying models. Consequently, optimal
control trajectories are computed using the formulations in
(17) and (18) by solving the optimization problem once and
then applying the control trajectory directly to the nonlinear
system. We evaluate the schemes in terms of constraint
satisfaction and cost function performance.

A. Continuously Stirred Tank Reactor
Consider the following two-state nonlinear CSTR, adapted

from [29]:

ĊA =
F

Vr
(CA0 − CA)− k0e

−E
RTr C2

A,

Ṫr =
F

Vr
(T0 − Tr)−

∆H

ρCp
k0e

−E
RTr C2

A +
Q̇

ρCPVr
, (21)

3566



where the states of the system are CA the concentration
of the reactant A, and Tr the temperature of the reactor.
These equations model an irreversible exothermic reaction
A→ B, in which the reactant A is converted to the reactant
B, releasing heat in the process. The temperature of the
reactor is controlled by the manipulated variable Q̇, the rate
of heat input to the system. CA0

and T0 are constants and
denote the initial concentration of reactant A and the initial
temperature of the reactor. F is the flow rate of reactant
A into the reactor and is fixed at 2 m3/hr. The rest of the
parameters are constants and are used as in [29].

The goal is to learn a linear representation of (21) under
Koopman using the proposed and the baseline schemes. A
training data set consisting of 500 trajectories was collected
by simulating (21) with uniform random step inputs at
different time steps in the range −2000 ≤ Q ≤ 8000
following a similar setup as in [30].

The proposed network architecture consists of an encoder
and a decoder with two hidden layers of 64 and 32 neurons,
respectively, and ReLU activation functions. To balance
between the latent space size and prediction accuracy, a
latent space size of nz = 7 was chosen. These states
dynamically simulate the model for 100 steps of composed
linear predictions. In addition, two states are designated as
auxiliary states. The baseline network architecture is similar
to the proposed architecture without the auxiliary states.

To assess the quality of the learned models the proposed
and the baseline models were tested against a control input
consisting of five steps within the range of the training input.
The parameters of the Ĉ matrix, for the baseline model,
were computed by least squares such that Ĉ = Xψ(X)†

using 200 trajectories from the training dataset. It was shown
that adding an additional loss min∥X − Ĉψ(X)∥ during
training resulted in better performance for the baseline. For
the proposed scheme, we propagate the dynamics using the
Koopman states and then reconstruct the original states using
only the auxiliary states. The results are shown in Fig. 2.

Fig. 2. CSTR modelling: Nonlinear ODE here resembles the true system
response to the varying step input.

The proposed method leads to better performance due to
the architecture that does not assume a linear decoder, but
directly relates the states in Koopman space to the real states
through the auxiliary states using the nonlinear decoder. We
proceed to design an MPC controller on both models. In the
first scenario, we evaluate the performance of the trained
models for setpoint tracking. Specifically, we employ the
MPC to control the concentration of reactant A in the reactor.
This is achieved by manipulating the temperature of the
reactor through the rate of heat input Q̇. The results are
visualized in Fig. 3.

Fig. 3. CSTR setpoint tracking: Baseline and proposed are the nonlinear
system simulated with control trajectories from both the proposed and
baseline linear MPC, in both the open-loop (OL) and closed-loop (CL)
settings.

The results show that the proposed method successfully
tracks the setpoints, with only a small steady-state error. On
the other hand, it can be observed that the strong assumption
of a linear relationship between the Koopman states and
the auxiliary states does not hold. This is evident from the
steady state error of the baseline controller. Operating the
baseline controller in closed-loop reduces the steady state
error between 0 ≤ t ≤ 13 and 30 ≤ 60, but the proposed
method shows better results in both open and closed-loop
settings.

In the second scenario we test our proposed method
and baseline using an economic cost to reduce the amount
of CA in the reactor. This results in a higher product of
reactant CB . We further investigate the behaviour of the MPC
optimization on handling constraints for Tr on two levels.
The results for the open-loop simulation only are shown in
Fig. 4 for feasibility reasons, as we are operating close to
the constraints.

The results show that the baseline model achieves a
lower concentration for CA, indicating a better performance
compared to the proposed scheme. However, when consider
constraint violation on Tr, we can see that the baseline model
violates the constraints in both settings. This observation
highlights the ability of the proposed scheme to satisfy the
state constraints.

3567



Fig. 4. CSTR using economic cost: Baseline and proposed are the nonlinear
system simulated with control trajectories from both the proposed and
baseline linear MPC.

VI. CONCLUSION

This work presents a network structure and a training
scheme specifically tailored to overcome the inherent diffi-
culties in formulating constraints and designing cost func-
tions for the linear Koopman states when employed for
model predictive control. The key innovation is to eliminate
the reliance on linear approximations, which is achieved
by using auxiliary states within the Koopman space. These
auxiliary states have the desirable properties of being injec-
tive and monotonic with respect to the original states, thus
allowing direct control design within the Koopman space.
The results show that the proposed scheme outperforms
standard methods in terms of both control performance
and constraint satisfaction. Our future work will extend the
proposed approach to larger case studies and to consider
systems with unmeasured states.

REFERENCES

[1] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model
predictive control: theory, computation, and design, volume 2. Nob
Hill Publishing Madison, WI, 2017.

[2] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Re-
view on model predictive control: An engineering perspective. The
International Journal of Advanced Manufacturing Technology, 117(5-
6):1327–1349, 2021.

[3] Sergio Lucia, Tiago Finkler, and Sebastian Engell. Multi-stage nonlin-
ear model predictive control applied to a semi-batch polymerization
reactor under uncertainty. Journal of process control, 23(9):1306–
1319, 2013.

[4] Sergio Lucia and Benjamin Karg. A deep learning-based approach
to robust nonlinear model predictive control. IFAC-PapersOnLine,
51(20):511–516, 2018.

[5] S Joe Qin and Thomas A Badgwell. An overview of nonlinear model
predictive control applications. Nonlinear model predictive control,
pages 369–392, 2000.

[6] Yusuke Igarashi, Masaki Yamakita, Jerry Ng, and H Harry Asada.
Mpc performances for nonlinear systems using several linearization
models. In 2020 American Control Conference (ACC), pages 2426–
2431. IEEE, 2020.

[7] Bernard O Koopman. Hamiltonian systems and transformation in
hilbert space. Proceedings of the National Academy of Sciences,
17(5):315–318, 1931.

[8] Bernard O Koopman and J v Neumann. Dynamical systems of
continuous spectra. Proceedings of the National Academy of Sciences,
18(3):255–263, 1932.

[9] Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter,
and Dan S Henningson. Spectral analysis of nonlinear flows. Journal
of fluid mechanics, 641:115–127, 2009.

[10] Matthew O Williams, Maziar S Hemati, Scott TM Dawson, Ioannis G
Kevrekidis, and Clarence W Rowley. Extending data-driven koopman
analysis to actuated systems. IFAC-PapersOnLine, 49(18):704–709,
2016.

[11] Xu Ma, Bowen Huang, and Umesh Vaidya. Optimal quadratic
regulation of nonlinear system using koopman operator. In 2019
American Control Conference (ACC), pages 4911–4916. IEEE, 2019.

[12] Milan Korda and Igor Mezić. Linear predictors for nonlinear dy-
namical systems: Koopman operator meets model predictive control.
Automatica, 93:149–160, 2018.

[13] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Generalizing
koopman theory to allow for inputs and control. SIAM Journal on
Applied Dynamical Systems, 17(1):909–930, 2018.

[14] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis.
Extended dynamic mode decomposition with dictionary learning: A
data-driven adaptive spectral decomposition of the koopman operator.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10),
2017.

[15] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep
neural network representations for koopman operators of nonlinear
dynamical systems. In 2019 American Control Conference (ACC),
pages 4832–4839. IEEE, 2019.

[16] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning
for universal linear embeddings of nonlinear dynamics. Nature
communications, 9(1):4950, 2018.

[17] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of
koopman representation for control. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 1890–1895. IEEE, 2020.

[18] Jan C Schulze and Alexander Mitsos. Data-driven nonlinear model
reduction using koopman theory: Integrated control form and nmpc
case study. IEEE Control Systems Letters, 6:2978–2983, 2022.

[19] Akhil Ahmed, Ehecatl Antonio del Rio-Chanona, and Mehmet Mer-
cangöz. Linearizing nonlinear dynamics using deep learning. Com-
puters & Chemical Engineering, 170:108104, 2023.

[20] Haojie Shi and Max Q-H Meng. Deep koopman operator with
control for nonlinear systems. IEEE Robotics and Automation Letters,
7(3):7700–7707, 2022.

[21] Zuowei Ping, Zhun Yin, Xiuting Li, Yefeng Liu, and Tao Yang. Deep
koopman model predictive control for enhancing transient stability in
power grids. International Journal of Robust and Nonlinear Control,
31(6):1964–1978, 2021.

[22] Aqib Hasnain, Nibodh Boddupalli, Shara Balakrishnan, and Enoch
Yeung. Steady state programming of controlled nonlinear systems
via deep dynamic mode decomposition. In 2020 American Control
Conference (ACC), pages 4245–4251. IEEE, 2020.

[23] Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz.
Modern koopman theory for dynamical systems. arXiv preprint
arXiv:2102.12086, 2021.

[24] Pierre Baldi. Autoencoders, unsupervised learning, and deep architec-
tures. In Proceedings of ICML workshop on unsupervised and transfer
learning, pages 37–49. JMLR Workshop and Conference Proceedings,
2012.

[25] H-T Su and TJ McAvoy. Neural model predictive control of non-
linear chemical processes. In Proceedings of 8th IEEE International
Symposium on Intelligent Control, pages 358–363. IEEE, 1993.

[26] Omar Sayed and Sergio Lucia. Recursive least squares-based identi-
fication for multi-step koopman operators. (in press) 2024 European
Control Conference (ECC), 2024.

[27] Kenneth George Binmore. Mathematical Analysis: a straightforward
approach. Cambridge University Press, 1982.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[29] Anas Alanqar, Matthew Ellis, and Panagiotis D Christofides. Eco-
nomic model predictive control of nonlinear process systems using
empirical models. AIChE Journal, 61(3):816–830, 2015.

[30] Jan C Schulze, Danimir T Doncevic, and Alexander Mitsos. Identi-
fication of mimo wiener-type koopman models for data-driven model
reduction using deep learning. Computers & Chemical Engineering,
161:107781, 2022.

3568


