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Abstract— We propose a novel robust nonlinear W∞ optimal
control method for dynamical systems with nonaffine control
inputs. The nonlinear W∞ control formulation extends the
classic nonlinear H∞ one, considering a weighted Sobolev
norm of the cost variable. This approach assumes that the
cost variable belongs to the weighted Sobolev space Wm,p,Γ,
ensuring continuity and differentiability up to degree m in a
certain domain Ω. Consequently, in addition to the well-known
features provided by the H∞ approach in terms of disturbance
attenuation, the closed-loop system benefits from the enhanced
transient performance. Here, the robust nonlinear W∞ optimal
control problem is formulated via dynamic programming for
increased-order systems, and a particular solution is proposed
to the resulting Hamilton-Jacobi equation, along with the cor-
responding stability analysis. To validate the proposed method
and its versatility, we provide numerical results for the control
of a quadrotor. Additionally, leveraging the inherent L2-gain
properties of our approach, we demonstrate that the resulting
controller can achieve trajectory tracking with guaranteed
asymptotic stability for the whole closed-loop system.

I. INTRODUCTION

Input nonaffine systems are present in numerous real-
world applications, encompassing fields such as aerospace
[1], robotics [2], and chemical process [3]. This kind of
systems exhibits nonlinearities with respect to the control
input, hindering the use of classic linear and nonlinear
control techniques in their control design. When designing
controllers for input nonaffine systems, a common approach
is to approximate the nonlinear function of the control input
by an affine virtual control signal, assuming the availability
of the direct inversion of the corresponding nonlinear func-
tion [1]. Although the existence of an inverse function can
be guaranteed by the Implicit Function Theorem [4], this
approach cannot be applied to all systems, as the inverse
function might be difficult to obtain. Another approach is
the control design based on the linearized model around
an operating point. Nevertheless, the effectiveness of the
resulting controller is ensured locally.
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Some approaches employ learning-based control meth-
ods, as in [5], to learn a corresponding adaptive closed-
loop control law from the dynamics of nonaffine nonlinear
systems. Conversely, in [6], the authors have proposed a
systematic procedure in which the system is differentiated to
obtain an increased-order system affine in the time derivative
of the control signal. Control designs utilizing high-order
derivatives have already been employed in the literature for
mechanical systems [7], [8], [9]. In this context, the third
time derivative of an object’s position is referred to as jerk,
while the fourth derivative is known as snap. Minimizing jerk
and snap is often interesting because it allows a smooth and
precise motion, ensuring the avoidance of abrupt changes.

In addition to the inherent challenges of designing con-
trollers for input nonaffine systems, dynamical systems are
frequently affected by disturbances from various sources,
highlighting the need for robust controllers to guarantee
stability and satisfactory performance. A usual approach to
ensure these features is the well-known H∞ control theory
[10], which is formulated in the L2 space for nonlinear
systems [11]. The H∞ controller aims at minimizing the
maximum gain given by the closed-loop system to a distur-
bance signal [12]. This type of controller has been applied
to a wide variety of systems [13], [14], [15]. Besides the
advantages, this control technique may present drawbacks.
As stated in [16], the H∞ control strategy deals mainly with
the aspects of stabilization and disturbance attenuation and
provides little control over the transient behavior.

An alternative approach involves formulating the H∞
controller in Sobolev spaces Wm,p. These spaces comprises
functions in the Lp space whose generalized derivatives
up to order m also belong to the Lp space [17]. This
approach has been introduced in [18], where the W1,2-norm
of the cost variable has been employed instead of the
L2-norm. The resulting Optimal Control Problem (OCP)
has been formulated using dynamic programming, requiring
the solution of the related Hamilton-Jacobi (HJ) equation to
obtain the corresponding controller. Solving Hamilton-Jacobi
(HJ) Partial Differential Equations (PDEs) analytically for
a general class of systems poses a considerable challenge.
In particular, [18] has considered the HJ PDE resulting
from the H∞ control formulation in the Sobolev space to
be intractable because of its complexity and has proposed
an alternative approach through the backstepping technique
to simplify the problem. However, the solution given by
the backstepping approach has resulted quite similar to the
classic nonlinear H∞ one, differing by an integrator added
to the cost variable. Hence, since the rate of change of
the cost variable has not been accounted for in the cost
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functional, enhancements in the transient behavior have not
been achieved.

Regarding the challenges in achieving solutions to HJ
equations, it is common to employ numerical methods or
seek specific solutions based on special classes of systems.
In [19], an algorithm based on the Galerkin approximation
has been proposed to obtain a solution to the HJ equation
presented in [18]. Nevertheless, the solution is limited to
a specific problem domain, in addition to the algorithm
suffering from the curse of dimensionality, hindering its
applicability to high-order systems. Conversely, in [20],
the authors have formulated the nonlinear H∞ controller
in the W1,2 Sobolev space for the class of input affine
fully actuated mechanical systems represented by the Euler-
Lagrange equations. Due to the specific choice of the cost
variable, the resulting HJ equation has become tractable,
enabling the proposal of an analytical solution. Also, in [21],
[22], the nonlinear H∞ controller has been formulated in
weighted Sobolev spaces to allow tuning component-wise
the influences of the cost variable and its time derivatives
in the control objectives. Particular solutions of the resulting
HJ equations have been proposed for fully actuated, reduced
underactuated, and underactuated with input coupling, input
affine mechanical systems. A comparative analysis between
the nonlinear W∞

1 controller and the classic nonlinear H∞
one has been presented, which has demonstrated that, besides
robustness and simple design, the controller resulting from
the weighted Sobolev approach has achieved better transient
performance with a faster disturbance attenuation.

As the aforementioned controllers formulated in Sobolev
spaces deal only with input affine nonlinear systems, in this
work, with the goal of minimizing abrupt changes on the cost
variable and being robust against exogenous disturbances,
we extend such methodology to address the design of ro-
bust nonlinear W∞ optimal controllers for nonautonomous
dynamical systems with nonaffine control inputs. The main
contributions of this paper are threefold: (i) a novel robust
nonlinear W∞ optimal control method to accommodate
control input nonaffine dynamical systems with guaranteed
asymptotic stability; (ii) the generalization of the proposed
method for increased-order systems with any number of time
derivatives; and (iii) the validation of the proposed control
method when controlling a quadrotor. The latter is achieved
by designing the proposed nonlinear W∞ controller for both
inner and outer loops of the interconnected dynamics of
the quadrotor. Leveraging the inherent L2-gain properties of
the proposed approach, trajectory tracking with asymptotic
stability is guaranteed for the whole closed-loop system.

Notation: The notation used is standard. Italic lower
case letters denote scalars, boldface italic lowercase let-
ters denote vectors, and boldface italic uppercase letters
denote matrices; (·)′ and (·)−1 stand, respectively, for the
transpose and inverse elements of (·); N≜{1,2,...}, R≜(−∞,∞),
R≥0 ≜ [0,∞), R>0≜(0,∞), Rn≜{r=[r1 ... rn]

′:ri∈R}, and

1The formulation of the nonlinear H∞ controller in the weighted Sobolev
space is here referred to as W∞.

Rn×m≜{R=[r1 ... rm]:ri∈Rn,i∈{1,2,··· ,m}}; 0 and I are, respec-
tively, zero and identity matrices with appropriate dimension;
z(t):R≥0→Rnz is a time-varying function, and ż(t)≜dz(t)/dt,
z̈(t)≜d2z(t)/dt2, ...

z (t)≜d3z(t)/dt3, ....
z (t)≜d4z(t)/dt4 and (n)

z (t)≜

dnz(t)/dtn denote the first, second, third, fourth and n-th time
derivatives of z(t). If z(t)∈Cp, then (1)

z(t),··· ,
(p)
z(t) exist and z(t)

is continuous for any t∈R≥0. Let t∈R≥0, p∈N∪{∞}, and m∈

N∪{0}, therefore, ||z(t)||Lp,Λ≜(
∫ ∞
0

||Λ1/pz(t)||pp dt)
1
p , denotes

the weighted Lp-norm of z(t), where Λ is a symmetric and
positive definite matrix. If z(t)∈Lp[0,∞), then ||z(t)||Lp<∞.
The Sobolev space Wm,p is the set of all functions z:Ψ→

Rnz defined on a domain Ψ to which the week derivatives
of z up to degree m exist and belong to the Lp space.
The weak derivatives of a function are the same as the
classic derivatives when the latter exist. For functions defined
in the time domain, Ψ=R≥0, the Sobolev norm of z(t) is
||z(t)||Wm,p≜(

m∑
α=0

||dαz(t)/dtα||pLp )
1/p and its weighted Sobolev

norm is ||z(t)||Wm,p,Γ
≜(

m∑
α=0

||dαz(t)/dtα||pLp,Γα )1/p, with Γ≜

{Γ0,...,Γm}. Accordingly, if z(t)∈Wm,p, then ||z(t)||Wm,p<∞.
Also, z(t)∈Wm,p,Γ implies z(t)∈Wm,p.

II. ROBUST NONLINEAR W∞ CONTROL DESIGN
FOR INPUT NONAFFINE SYSTEMS

In this section, we develop the robust nonlinear W∞ op-
timal controller for control input nonaffine, nonautonomous
dynamical systems. The goal is to achieve trajectory track-
ing with guaranteed asymptotic stability, while providing
robustness against exogenous disturbances with fast transient
performance.

Consider a generic second-order control input nonaffine,
nonautonomous dynamical system described by

q̈ = f(q, q̇,u, t) +w(t), (1)

where t ∈ R≥0 is the time variable, q(t) : R≥0 → Rnq , u(t) :
R≥0 → Rnu is the control input vector, and w(t) : R≥0 →
Rnw is the disturbance vector. It is assumed that nq = nu =
nw. To transform (1) into an input affine system, we take its
time derivative2

...
q =

∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t
+
∂f

∂u
u̇+ ẇ. (2)

Aiming to solve the trajectory tracking problem, we first
define the tracking error vector as q̃(t) = q(t)− qr(t), where
qr(t) ∈ C3 is the desired reference. Accordingly, the tracking
error dynamics is written as

...
q̃ =

∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t
+
∂f

∂u
u̇+ ẇ − ...

q r,

= h(q, q̇, q̈,u, t) +G(q, q̇,u, t)u̇+ ẇ, (3)

with h(q, q̇, q̈,u, t) ≜
∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t
− ...

q r , and

G(q, q̇,u, t) ≜ ∂f/∂u.
Assumption 1: Matrix G is invertible within Ω, i.e.

rank(G) = nq, ∀(q, q̇,u, t) ∈ Ω, where Ω stands for the set
of all configurations the system can assume.

Then, considering the state vector

x(t) ≜
[
(
∫ t
0
q̃(τ)dτ)′ q̃′ ˙̃q′ ¨̃q′]′ , (4)

2For the sake of convenience, throughout the manuscript, some function
dependencies are omitted.
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the system can be represented in the state-space as follows

ẋ =

h̄︷ ︸︸ ︷0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

x+

000
h

+

Ḡ︷ ︸︸ ︷0
0
0
G

 u̇+

K̄︷︸︸︷000
I

 ẇ,

which is placed in the following standard form:

P :

{
ẋ(t) = h̄+ Ḡu̇(t) + K̄ẇ(t), x(0) = x0,

z(t) =
∫ t
0
q̃(τ)dτ,

(5)

where z(t) is the cost variable, selected as an integral action
over the tracking error q̃ to provide parametric uncertainty
and constant disturbance rejection capability for the closed-
loop system.

Assumption 2: The state vector x(t), given by (4), is
available by measurement or estimation.

With the goal of achieving an upper bound to the energy
of the cost variable z(t) and its time derivatives up to degree
four, and the energy of the disturbance ẇ(t),

||z(t)||W4,2,Γ ≤ γ||ẇ(t)||L2 , (6)

for any ẇ(t) ∈ L2, in which γ is the W∞ attenuation level
[21], the robust nonlinear W∞ control problem is posed as

min
u̇∈U

max
ẇ∈L2

J , (7)

in which the cost functional, J , is given by

J ≜
1

2
||z(t)||2W4,2,Γ

− 1

2
γ2||ẇ(t)||2L2

,

=
1

2

(
4∑

α=0

∣∣∣∣∣∣dαz(t)
dtα

∣∣∣∣∣∣2
L2,Γα

)
− 1

2
γ2||ẇ(t)||2L2

, (8)

where Γ = {Γ0,Γ1,Γ2,Γ3,Γ4}, in which Γi, for i ∈
{0, 1, 2, 3, 4}, is a tuning matrix.

Remark 1: The OCP (7) is formulated under the assump-
tion that z(t) belongs to the weighted Sobolev space W4,2,Γ,
ensuring the continuity and differentiability of z(t) up to
its four-time derivative. Consequently, the tracking error
dynamics (3) is directly considered into the cost functional
(8). As shown in [21], this approach provides the closed-
loop system with an anticipatory capability, enhancing tran-
sient performance and enabling faster disturbance attenuation
compared to the nonlinear H∞ controller.

Remark 2: In contrast to the nonlinear H∞ optimal con-
trol approach, the OCP (7) does not necessitate u or u̇ to
belong to the L2 space as these signals are not directly
weighted into the cost functional. This feature enables the
W∞ OCP (7) to be well-posed for systems in which u(t) ̸= 0

and u̇ ̸= 0 in steady-state conditions.
The OCP (7) is formulated here via dynamic programming

[23], using differential game theory. The HJBI (Hamilton-
Jacobi-Bellman-Isaacs) equation associated with this prob-
lem is given by

∂V∞

∂t
+min

u̇∈U
max
ẇ∈L2

{
H
(
∂V

∂x
,x,u, u̇, ẇ, t

)}
= 0, (9)

with the Hamiltonian

H =
∂V

∂x
ẋ+

1

2
x′

Γ0 0 0 0
0 Γ1 0 0
0 0 Γ2 0
0 0 0 Γ3

x+
1

2

...
q̃

′
Γ4

...
q̃

− 1

2
γ2ẇ′ẇ, (10)

and boundary condition V∞(0, t) = 0.
The optimal control law, u̇∗, and the worst case of the

disturbances, ẇ∗, are computed by taking the following
partial derivatives of (10):

∂H
∂u̇

= Ḡ′ ∂V

∂x
+G′Γ4Gu̇+G′Γ4h+G′Γ4ẇ = 0, (11)

∂H
∂ẇ

= K̄′ ∂V

∂x
+Γ4ẇ+Γ4h+Γ4Gu̇− γ2ẇ = 0. (12)

Manipulating (11), we obtain the optimal control law

u̇∗=−
(
G′Γ4G

)−1
(
Ḡ′ ∂V

∂x
+G′Γ4h+G′Γ4ẇ

)
. (13)

In addition, premultiplying (11) by (G′)
−1 and subtracting

(12) from the result, we obtain

ẇ∗ = − 1

γ2

((
G′)−1

Ḡ′ − K̄′
) ∂V
∂x

= 0. (14)

Through the second order partial derivatives of (10),
∂2H/∂u̇2 = G′Γ4G > 0 and ∂2H/∂ẇ2 = Γ4+γ

2I < 0, it
can be verified that (13) and (14) are Min-Max extremum of
the optimization problem, where the W∞ attenuation level,
γ, must be selected such that the last inequality holds.

The HJ PDE associated with (7) is obtained by replacing
the optimal control law (13) and the worst case of the
disturbances (14) in (9), yielding

∂V

∂t
+H (∂V /∂x,x,u, u̇∗, ẇ∗, t) = 0. (15)

In the following theorem, we propose a particular solution
for the HJ equation (15).

Theorem 1: Let V be the parameterized scalar function

V (x) = x′Px > 0, (16)

such that matrix P > 0 is obtained by solving the Riccati
equation

−PBP +AP + PA′ +Q = 0, (17)

with

A ≜

0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 ,B ≜

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ−1

4

 ,
Q ≜ blkdiag(Γ0,Γ1,Γ2,Γ3).

Then, (16) is a solution to the HJ equation (15).
Proof: The proof is conducted by replacing (16) in

(15). In the following, the computation is performed in parts.
Consider the HJ equation (15), since (16) is a time-invariant

function, we have that
∂V

∂t
= 0, and (15) results in

H
(
∂V

∂x
,x,u, u̇∗, ẇ∗, t

)
= 0, (18)

∂V

∂x
ẋ+

1

2
x′

Γ0 0 0 0
0 Γ1 0 0
0 0 Γ2 0
0 0 0 Γ3

x+
1

2

...
q̃

′
Γ4

...
q̃ = 0. (19)

In addition, considering (14) and (16), the optimal control
law (13) is given by

u̇∗=−
(
G′Γ4G

)−1 (
Ḡ′Px+G′Γ4h

)
, (20)
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which leads to the following closed-loop dynamics:
...
q̃ =

[
0 0 0 Γ−1

4

]
Px, (21)

which in the state-space is given by

ẋ =

0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

x−

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ−1

4

Px. (22)

Then, replacing (21) and (22) in the HJ equation (18), and
decomposing the resulting equation in its symmetric and
skew-symmetric components, it yields

x′ (−PBP +AP + PA′ +Q
)
x = 0. (23)

Therefore, the Riccati equation (17) must be solved in order
to find P > 0, which concludes the proof.

Remark 3: Theorem 1 demonstrates that a solution to the
optimal nonlinear W∞ control problem (7), governed by the
HJ PDE (15), for the nonautonomous nonlinear dynamical
system (5) can be provided by the constant quadratic function
(16). Similar solutions of optimal nonlinear control problems
are found in the literature for nonlinear nonautonomous
mechanical systems [24], [25], [26].

Remark 4: The optimal control law (13), derived from
(7) and applied to the nonlinear system (5), transforms the
closed-loop dynamics (22) into an autonomous linear system.

Theorem 2: Given that Assumptions 1 and 2 hold. Let
qr(t) ∈ C3 and V be a solution of (15) given by the
parameterized scalar function (16). Therefore, the closed-
loop system, formed by the control law (13) and system (5),
is asymptotically stable within the configuration domain Ω.

Proof: From (16), we have that V > 0, ∀x ̸= 0, and
from (18), we obtain

∂V

∂x
ẋ=−1

2

[
x...
q̃

]′ 
Γ0 0 0 0 0
0 Γ1 0 0 0
0 0 Γ2 0 0
0 0 0 Γ3 0
0 0 0 0 Γ4


[
x...
q̃

]
<0. (24)

Therefore, (16) is a Lyapunov function that ensures asymp-
totic stability to the closed-loop system.

III. GENERALIZED APPROACH
The approach previously presented can be generalized

for any number of time derivatives. Therefore, taking into
account (1), the n-th time derivative of q(t) is given by

(n)
q (t) = h(n)(q, · · · ,

(n-1)
q ,u, · · · , (n-3)

u , t) (25)

+G(n)(q, · · · ,
(n-2)
q ,u, · · · , (n-3)

u , t)
(n-2)
u +

(n-2)
w ,

where h(n)(q, · · · ,
(n-1)
q ,u, · · · , (n-3)

u , t) and G(n)(q, · · · ,
(n-2)
q ,

u, · · · , (n-3)
u , t) are computed following a similar procedure

used to obtain (3).
Hence, considering the state vector

x(t) ≜
[
(
∫ t
0
q̃(τ)dτ)′ q̃′ ˙̃q′ · · · (

(n-1)
q )′

]′
, (26)

with qr ∈ Cn, the tracking error dynamics can be represented
in the state-space as follows

ẋ =

h̄︷ ︸︸ ︷[
0 I
0 0

]
x+

[
0

h(n)

]
+

Ḡ︷ ︸︸ ︷[
0

G(n)

]
(n-2)
u +

K̄︷︸︸︷[
0
I

]
(n-2)
w , (27)

and placed in the standard form (5). Then, inequality (6) is
generalized as

||z(t)||W(n+1),2,Γ
≤ γ||(n-2)

w (t)||L2 , (28)

for any
(n-2)
w (t) ∈ L2 and with z(t) ≜

∫ t
0
q̃(τ)dτ . Accordingly,

the robust nonlinear W∞ OCP is posed as

min
(n-2)
u ∈U

max
(n-2)
w ∈L2

1

2
||z(t)||2W(n+1),2,Γ

− 1

2
γ2||(n-2)

w (t)||2L2
. (29)

Remark 5: Assumptions 1 and 2 hold, similarly, for (27).
Similar to the approach presented in Section II, we

consider V (x) = x′Px to formulate (7) using dynamic
programming, which leads to the optimal control law

(n-2)
u

∗
=−

(
G′

(n)Γ(n+1)G(n)

)−1 (
Ḡ′Px+G′

(n)Γ(n+1)h
)
, (30)

with matrix P > 0 obtained from the solution of the Riccati
equation

−PB̄P + ĀP + PĀ′ + Q̄ = 0, (31)

and

Ā≜

[
0 I
0 0

]
,B̄≜

[
0 0
0 Γ−1

(n+1)

]
,Q̄≜blkdiag(Γ0, · · · ,Γ(n−1))

Theorem 3: Given that Assumptions 1 and 2 hold. Let
qr ∈ Cn and P > 0 be a solution of (31). Therefore, the
closed-loop system, formed by the control law (30) and
system (27), is asymptotically stable within the configuration
domain Ω.

Proof: This proof can be deduced in a similar manner
to the proof of Theorem 2.

Remark 6: If the system described by (1) is already input
affine, it can be expressed by (25) with n = 2. Furthermore,
the solution of the OCP (7) using dynamic programming for
that system also results in an optimal control law that takes
the form of (30).

IV. APPLICATION TO A QUADROTOR

In this section, we design a control strategy based on
the proposed nonlinear W∞ control method for trajectory
tracking of a quadrotor. Due to the dynamical model structure
of the quadrotor, we can split it into two interconnected
subsystems: the rotational and the translational. Since these
subsystems can be arranged in a cascade form, the control
inputs of translational dynamics are used as reference in the
rotational control loop. As detailed below, the translational
dynamics are nonaffine on the control inputs, whereas the
rotational dynamics are affine on their control inputs. This
highlights the versatility of the proposed method in designing
both inner and outer controllers.

Consider the quadrotor dynamics described by the Euler-
Lagrange equation in the canonical form [27]

M(q)q̈ +C(q, q̇)q̇ + g(q) = B(q)τ +w, (32)

with

q ≜ [ϕ θ ψ x y z]′ ,w ≜ [δϕ δθ δψ δx δy δz]
′ ,

τ ≜ [τϕ τθ τψ fz]
′ , g(q) ≜

[
0 mga′

z

]′
,

M(q) ≜

[
W ′

ηIWη 0
0 mI

]
,B(q) ≜

[
W ′

η 0
0 Raz

]
,
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Wη ≜

1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos(θ)
0 − sin(ϕ) cos(ϕ) cos(θ)

 ,
where q(t) : R≥0 → R6 stands for the vector of gen-
eralized coordinates, az ≜

[
0 0 1

]′, R ∈ SO(3) with
R ≜ Rz,ψRy,θRx,ϕ, in which ϕ, θ and ψ stand for the
quadrotor orientation using Euler angles, with roll-pitch-
yaw convention, where Rx,ϕ, Ry,θ, and Rz,ψ denote ro-
tation matrices of angles ϕ, θ, and ψ around x⃗, y⃗, and z⃗
axes, respectively; x, y and z describe the three-dimensional
translational position of the quadrotor; fz , τϕ, τθ, and τψ are
the total thrust and the torques applied on the roll, pitch,
and yaw motions, respectively; δϕ, δθ , δψ , δx, δy, and δz
are generalized external disturbances; m is the quadrotor’s
mass; g is the magnitude of the gravitational acceleration; and
I ≜ diag (Ixx, Iyy, Izz) is the quadrotor inertia tensor matrix.
The Coriolis and centrifugal force matrix, C(q, q̇), can be
obtained from the Christoffel symbols of the first kind, as

Ck,j =

8∑
l=1

1

2
[∂Mk,j/∂ql + ∂Mk,l/∂qj − ∂Ml,j/∂qk] q̇l,

where Ck,j and Mk,j are elements of the Coriolis and inertia
matrices, respectively, corresponding to the k-th row and j-th
column. The quadrotor physical parameters are Ixx = 0.0363,
Kg.m2 Iyy = 0.0363 Kg.m2, Izz = 0.0615 Kg.m2, m = 2.2 Kg,
and g = 9.8 m/s2.

Assumption 3: The quadrotor’s vector of generalized co-
ordinates, q(t), and its time derivative, q̇(t), are available for
control design purposes.

To design the cascade control strategy for the quadrotor,
we can split the equations of motion (32) regarding the
rotational and translational dynamics as follows[
Mii 0
0 Moo

][
q̈i
q̈o

]
+

[
CiiCio

CoiCoo

][
q̇i
q̈o

]
+

[
gi
go

]
=

[
Bi

Bo

]
τ+

[
wi

wo

]
, (33)

where qi(t) : R≥0 → R3, with qi(t) ≜ [ϕ θ ψ]′ being the inner-
loop degrees of freedom (DOF), and qo(t) : R≥0 → Rno , with
qo(t) ≜ [x y z]′ the outer-loop DOF. Hence, from the first row
of (33), the tracking error dynamics of the inner-loop DOF
are given by

¨̃qi = −M−1
ii

([
Cii Cio

]
q̇+gi

)
−q̈ir+M−1

ii (Biτ+wi) ,

=

h(2)(qi,q̇i,t)︷ ︸︸ ︷
−M−1

ii Ciiq̇i−q̈ir +

G(2)(qi)︷ ︸︸ ︷
M−1

ii Bi τi+

w̄i︷ ︸︸ ︷
M−1

ii wi,

= h(2)(qi, q̇i, t)+G(2)(qi)τi+w̄i, (34)

where τi ≜ [τϕ τθ τψ]
′, w̄i ≜ M−1

ii w1, and qir (t) ∈ C2

stands for the desired references of the inner-loop DOF. It is
worth mentioning that Cio = 0, gi = 0, and the matrices are
independent of qo and q̇o. Then, considering the state vector

xi(t) ≜
[
(
∫ t

0
q̃i(τ)dτ)

′ q̃
′

i
˙̃q
′

i

]′
, (35)

and the cost variable zi(t) =
∫ t
0
q̃i(τ)dτ , the control input affine

system (34) can be represented in the state-space form (27),
with n = 2. For that system, the OCP (7) is posed and, from
its solution via dynamic programming, the optimal control
law (30) is obtained. Thus, the optimal control law provides
trajectory tracking of a desired reference given by qir (t),
q̇ir (t), and q̈ir (t), ensuring asymptotic stability to the inner
closed-loop system, i.e. lim

t→∞
xi(t) = 0. It is worth noting

that, considering the interconnected cascade controller, the
desired values of ϕr(t) and θr(t) come from the outer-loop
controller.

To design the outer-loop controller, initially, from the
second row of (33), we obtain

q̈o = −M−1
oo

([
Coi Coo

]
q̇+go

)
+M−1

oo (Boτ+wo) ,

=

f(ψ,u)︷ ︸︸ ︷
−gaz +

1

m
Razfz +

w̄o︷ ︸︸ ︷
1

m
wo, (36)

where Coi = Coo = 0. Let us assume the yaw angle as a
time-varying parameter equal to its reference, ψr(t), which
is tracked by the inner-loop controller. Thus, the remaining
variables we can manipulate are the total thrust, fz, as well
as the roll and pitch angles. However, the latter are also
controlled in the inner-loop. Consequently, instead of manip-
ulating ϕ and θ, for control design purposes we manipulate
their references, ϕr, θr. For consistency of notation, we also
set fz = fzr . Accordingly, we can write system (36) as the
control input nonaffine nonlinear system

q̈o = f(ψr,u, t) + w̄o(t), (37)

with w̄o ≜
1

m
wo and u ≜ [ϕr θr fzr ]

′.
As the inner-loop controller requires the desired reference

qir (t) ∈ C2, the outer-loop control law must be given in terms
of the second-time derivative of ϕr(t) and θr(t). Therefore,
we increase the order of (37) to obtain an input affine
function of ü. Hence, the third time derivative of q̃o is
computed as

...
q o =

∂f

∂ψr
ψ̇r +

∂f

∂u
u̇+ ˙̄wo = f(3)(ψr, ψ̇r,u, u̇), (38)

while the fourth time derivative of
...
q ois given by

....
q o=

[
∂f(3)

∂ψr

∂f(3)

∂ψ̇r

∂f(3)

∂u

]ψ̇rψ̈r
u̇

+
∂f(3)

∂u̇
ü+ ¨̄wo. (39)

From (39), the tracking error dynamics of the outer-loop
DOF can be written as

....
q̃ o=h(4)(ψr, ψ̇r, ψ̈r,u, u̇, t)+G(4)(ψr, ψ̇r,u, u̇)ü+ ¨̄wo, (40)

with h(4)≜

[
∂f(3)

∂ψr

∂f(3)

∂ψ̇r

∂f(3)

∂u

]ψ̇rψ̈r
u̇

− ....
q or

and

G(4)≜
∂f(3)

∂u̇
, where qor ∈ C4 stands for the desired

references to the inner-loop DOF.
Taking into account the state vector

xo(t) ≜
[
(
∫ t
0
q̃o(τ)dτ)

′ q̃
′
o

˙̃q
′
o

¨̃q
′
o

...
q̃

′

o

]′
, (41)

and the cost variable zo(t) =
∫ t
0
q̃o(τ)dτ , the system (40)

can be represented in the state-space form (27), with n =

4. For that system, the OCP (7) is posed and, from its
solution via dynamic programming, the optimal control law
(30) is obtained. This optimal control law generates desired
references that, when tracked, asymptotically stabilize the
outer-loop system such that lim

t→∞
xo(t) = 0.

Let us proceed with the stability analysis of the whole
closed-loop. As commented, the asymptotic stability of the
inner-loop control system is guaranteed by Theorem 2, i.e.
lim
t→∞

xi(t) = 0. For the outer-loop system, its tracking error
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dynamics are written in terms of the fourth time derivative
of qo, leading to

....
q̃ o=h(4)(ψ, ψ̇, ψ̈, ū, ˙̄u, t)+G(4)(ψ, ψ̇, ū, ˙̄u)¨̄u+ ¨̄wo, (42)

which is given by using the same notation as in (36), and
ū ≜

[
ϕ θ fz

]′. Hence, by manipulating (42) as follows
....
q̃ o=h(4)(ψ, ψ̇, ψ̈, ū, ˙̄u, t)+G(4)(ψ, ψ̇, ū, ˙̄u)¨̄u+ ¨̄wo

+h(4)(ψr, ψ̇r, ψ̈r,u, u̇, t)+G(4)(ψr, ψ̇r,u, u̇)ü (43)

−h(4)(ψr, ψ̇r, ψ̈r,u, u̇, t)−G(4)(ψr, ψ̇r,u, u̇)ü,

we obtain
....
q̃ o=h(4)(ψr, ψ̇r, ψ̈r,u, u̇, t)+G(4)(ψr, ψ̇r,u, u̇)ü+ ¨̂wo, (44)

in which ¨̂wo ≜ ϑ(η) − ϑ(ηr) + ¨̄wo, where ϑ(η) ≜
h(4)(ψ, ψ̇, ψ̈, ū, ˙̄u, t) + G(4)(ψ, ψ̇, ū, ˙̄u)¨̄u, and ϑ(ηr) ≜
h(4)(ψr, ψ̇r, ψ̈r,u, u̇, t) + G(4)(ψr, ψ̇r,u, u̇)ü, with η ≜
[q′
i q̇′

i q̈′
i fz ḟz f̈z]

′ and ηr ≜ [q′
ir q̇′

ir q̈′
ir fzr ḟzr f̈zr ]

′.
Assuming that ¨̂wo represents the disturbance vector for the
outer-loop dynamics, the stability analysis of system (44)
interconnected with the inner-loop system can be performed
in the following manner.

If no disturbances act on (44), i.e. ¨̂wo = 0, the control
law ü obtained from the solution of the OCP (29), with n =
4, ensures asymptotic stability of the closed-loop system,
as proven in Theorem 3. On the other hand, if ¨̂wo ̸= 0,
the asymptotic stability of the outer-loop system can still
be guaranteed if ¨̂wo ∈ L2. It is worth mentioning that, by
the construction of the control problem (29), the control law
ü ensures that the inequality ||zo(t)||W5,2,Γ ≤ γ|| ¨̂wo(t)||L2

holds (see (28)). Therefore, to demonstrate that ¨̂wo ∈ L2, it
is necessary to establish that (ϑ(η)− ϑ(ηr)) ∈ L2, given that
¨̄wo ∈ L2 by assumption of the control problem. To do so, it is
noted that functions h(4) and G(4) are Lipschitz continuous,
implying the existence of a constant k ∈ R>0, such that

||ϑ(η)− ϑ(ηr)||2 ≤ k||η − ηr||2 (45)

holds. Then, by integrating both sides of (45) leads to

lim
t→∞

∫ t

0

||ϑ(η)− ϑ(ηr)||2dt ≤ k lim
t→∞

∫ t

0

||η − ηr||2dt,

≤ k||η − ηr||L2 . (46)

Therefore, the stability analysis can be demonstrated by
defining η̃ ≜ η−ηr, and showing that each element in η̃ be-
longs to the L2 space. It is true that

(
η̃ ∈ L2 =⇒ ¨̂wo ∈ L2

)
,

making it sufficient to demonstrate the former. Firstly, since
fz is a control input of system (32), it can be applied exactly,
ensuring ||f̃z||L2 = 0, || ˙̃fz||L2 = 0, and || ¨̃fz||L2 = 0, with
f̃z ≜ fz − fzr . Furthermore, the inner-loop controller ensures
||zi(t)||W3,2,Γ ≤ γ||wi(t)||L2 , which implies ||q̃i||L2 < ∞,
|| ˙̃qi||L2 < ∞, and ||¨̃qi||L2 < ∞ for any wi ∈ L2, which
concludes the stability analysis of the interconnected cascade
control system.

A. Numerical Results

Numerical experiment results are presented here to cor-
roborate the efficacy of the proposed control strategy.

In order to implement the optimal control law (30) with
state vector (41), Assumption 3 must hold. Therefore, the

numerical experiment is here conducted by estimating the
vectors q̈o and ...

q o, as follows

¨̂qo = −gaz +
1

m
Razfzr , (47)

...
q̂ o =

1

m
Ṙazfzr +

1

m
Raz ḟzr , (48)

with R̄ ≜ Rz,ψrRy,θrRx,ϕr .
To verify the tracking capabilities of the proposed non-

linear W∞ controller, the quadrotor is designated to per-
form the desired trajectory xr(t) = 12 cos(2πt/40), yr(t) =

12 sin(2πt/20), z(t) = 10−3 cos(2πt/40), and ψ(t) = 0, while
subjected to the disturbances illustrated in Fig. 1, starting
from the initial position q(0) = [1 0 1 11 0 0]′.

The quadrotor was displaced from the desired trajectory at
the beginning of the numerical experiment. It converged to
the trajectory, remaining on it until the disturbances δy and
δθ were applied to the system. To attenuate the effects of δy,
the outer-loop controller manipulated the nonaffine inputs u

in (37), i.e., it tilted the quadrotor with respect to the ϕ angle
generating a physical projection of the slightly increased total
thrust fz. Also, to attenuate the effects of δθ, the inner-loop
controller manipulated the affine control input τθ in (34).
Accordingly, the outer-loop controller effectively handled the
nonaffine inputs and, in conjunction with the inner-loop con-
troller, achieved trajectory tracking with asymptotic stability
for the whole closed-loop system while mitigating the impact
of external disturbances. These findings are consistent with
the theoretical framework presented in this study.

V. CONCLUSIONS
We proposed a novel robust nonlinear W∞ optimal con-

trol approach for control input nonaffine, nonautonomous
dynamical system, aiming to solve the trajectory tracking
problem. The proposed control approach was developed by
considering a weighted Sobolev, Wm,p,Γ, norm, of the cost
variable, with the goal of enhancing transient performance.
The OCP was formulated via dynamic programming, ad-
dressing increased-order systems with any number of time
derivatives. A particular solution to the resulting HJ equation
was proposed, along with the corresponding demonstration of
asymptotic stability. The theoretical framework was corrobo-
rated by a numerical experiment. By employing the proposed
approach, we designed an interconnected cascade controller
for a quadrotor, ensuring trajectory tracking with guaranteed
asymptotic stability of the whole closed-loop system. In
future work, we intend to formulate the dynamic output
feedback robust nonlinear W∞ controller for input nonaffine
dynamical systems.
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