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Abstract— Inertial Navigation Systems (INS) estimate a ve-
hicle’s navigation states (attitude, velocity, and position) by
combining measurements from an Inertial Measurement Unit
(IMU) with other supporting sensors, typically including a
GNSS and a magnetometer. Recent nonlinear observer designs
for INS provide powerful stability guarantees but do not
account for some of the real-world challenges of INS. One of
the key challenges is to account for the time-delay characteristic
of GNSS measurements. This paper addresses this question by
extending recent work on synchronous observer design for INS.
The delayed GNSS measurements are related to the state at
the current time using recursively-computable delay matrices,
and this is used to design correction terms that leads to almost-
globally asymptotic and locally exponential stability of the error.
Simulation results verify the proposed observer and show that
the compensation of time-delay is key to both transient and
steady-state performance.

I. INTRODUCTION

Inertial Navigation Systems (INS) are algorithms that
fuse measurements from Inertial Measurement Units (IMUs),
consisting of a gyroscope and accelerometer, to estimate
a vehicle’s attitude, velocity, and position with respect to
a fixed reference frame. Typically, INS is supported by
additional sensors, including a GNSS and a magnetometer, to
counteract the build-up of error resulting from integration of
noisy MEMS IMU devices [1]. INS solutions are a vital part
of many navigation and control systems across application
domains in aerospace, maritime, and robotics engineering
[1], [2], [3], [4].

The industry-standard approach to INS is the multiplica-
tive extended Kalman filter (MEKF) [5]. Recently, more
advanced alternatives such as the Invariant EKF [6] and
Equivariant Filter (EqF) [7], [8] have been shown to signifi-
cantly improve accuracy and robustness. However, this class
of solutions provides only local and trajectory-dependent
guarantees of convergence. Authors in the nonlinear ob-
servers community have proposed alternative solutions to the
INS problem with greatly improved domains of convergence
[2], [9], [3], [10], [4]. Due to the nonlinearity of attitude and
its coupling with the velocity and position dynamics, these
observer designs typically exhibit semiglobal exponential
stability rather than the almost-global stability characteristic
of earlier work on attitude estimation [11], [12]. Recently,
the authors have developed a new approach to INS [13], [14],
[15] that exploits a ‘group-affine’ property of the system
dynamics to yield a synchronous error with almost-global
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asymptotic and local exponential stability [16]. However,
GNSS position and velocity measurements are typically de-
layed in time due to the cross correlation process required to
extract the timing signals received from each satellite. These
time-delays can cause significant errors if not compensated in
an observer design [17]. There is some prior work in the non-
linear observer community that addresses this issue. Khosra-
vian et al. [18] proposed an observer-predictor approach to
handle delayed measurements for mixed-invariant systems
on Lie groups, building on an existing observer design to
inherit its stability properties. Hansen et al. [17] extended
the semiglobally exponentially stable observer proposed in
[3] to consider delayed GNSS measurements by estimating
the delayed state and then propagating this forward in time
using stored IMU measurements.

In this paper, we consider the INS problem with magne-
tometer and delayed GNSS measurements. We build on the
observer architecture proposed in [15] to obtain synchronous
error dynamics [16], and we use a predictor structure similar
to [18] to relate the delayed GNSS measurements of the
position and velocity at time t− δ to the state at the current
time t. Thanks to the synchrony property of the error, we
are able to design separate correction terms for the delayed
position and velocity measurements and easily combine them
in the final design. This yields (to the authors’ knowledge)
the first INS solution for delayed GNSS measurements with
almost-globally asymptotic and locally exponential stability
of the error dynamics. Our simulation results compare the
performance of an observer with and without delay compen-
sation providing a clear demonstration of the impact of the
proposed methodology.

II. PRELIMINARIES

For any ω ∈ R3, the skew matrix is defined as ω× ∈
R3×3 such that ω×v = ω × v for all v ∈ R3. The
n×n symmetric positive definite (semi-definite) matrices are
denoted S+(n) (resp. S≥0(n)). A set of time-varying vectors
µ1(t), ..., µn(t) ∈ R3 is said to be persistently exciting [19]
if there exist δ, T > 0 such that, for all t ≥ 0,

−
∫ t+T

t

n∑
i=1

(µi(τ)
×µi(τ)

×)dτ > δI3. (1)

A number of Lie groups and their Lie algebras are used
throughout the paper.

The special orthogonal group:

SO(3) =
{
R ∈ R3×3

∣∣ RR⊤ = I3,det(R) = 1
}
,

so(3) =
{
Ω× ∣∣ Ω ∈ R3

}
.
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The extended special Euclidean group [20]:

SE2(3) ={(
R V

02×3 I2

)
∈ R5×5

∣∣∣∣ R ∈ SO(3), V ∈ R3×2

}
,

se2(3) ={(
Ω× W
02×3 02×2

)
∈ R5×5

∣∣∣∣ Ω ∈ R3,W ∈ R3×2

}
.

The extended similarity transformation group [15]:

SIM2(3) ={(
R V

02×3 A

) ∣∣∣∣ R ∈ SO(3), V ∈ R3×2,det(A) ̸= 0

}
,

sim2(3) ={(
Ω× W
02×3 S

) ∣∣∣∣ Ω ∈ R3,W ∈ R3×2, S ∈ R2×2

}
.

III. PROBLEM FORMULATION

We consider the problem of estimating the navigation
states of a vehicle equipped with an IMU, a GNSS, and
a magnetometer. For simplicity, we will identify the body-
frame of the vehicle with the axes of the IMU. Let R ∈
SO(3), v, p ∈ R3 be the vehicle attitude, velocity, and
position, respectively, all with respect to a reference frame
fixed to the Earth’s surface. Let Ω ∈ R3 denote the angular
velocity measured by the gyroscope, let a ∈ R3 denote
the specific acceleration measured by the accelerometer, and
let g ∈ R3 denote the gravity vector as measured in the
reference frame (typically g ≈ 9.81e3 ms−2). Then the
system dynamics are given by

Ṙ = RΩ×, v̇ = Ra+ g, ṗ = v. (2)

The GNSS is modelled as providing measurements of the
position and velocity of the vehicle, delayed by a constant
offset δ ≥ 0. The measured position yδp and velocity yδv at a
time t are given by

yδp(t) = p(t− δ), yδv(t) = v(t− δ). (3)

The superscript δ is used to emphasise the delay. The
(undelayed) magnetometer measurement is given by

ym(t) = R(t)⊤ẙm,

where ẙm ∈ R3 is the reference magnetic field direction. Our
goal is to design an observer for the states at the time t using
only the IMU, GNSS, and magnetometer measurements
available at t.

IV. LIE GROUP INTERPRETATION

The system dynamics (2) may be interpreted as group-
affine dynamics on the extended pose group SE2(3) [14].
Specifically, let X ∈ SE2(3) so that

X =

(
R V

02×3 I2

)
, V =

(
v p

)
∈ R3×2. (4)

Then the system dynamics (2) may be written as

Ẋ = (G+N)X +X(U −N), (5)

where

G =

(
03×3 WG

02×3 02×2

)
, WG =

(
g 03×1

)
,

U =

(
Ω× WU

02×3 02×2

)
, WU =

(
a 03×1

)
, (6)

N =

(
03×3 03×2

02×3 SN

)
, SN =

(
0 −1
0 0

)
.

This interpretation of the dynamics leads us to the observer
architecture proposed in [16], and has been applied to INS
with undelayed GNSS measurements in [14], [15].

The measurements may also be interpreted through the Lie
group formalism. One observes that

X

(
03×1

C

)
=

(
R V

02×3 I2

)(
03×1

C

)
=

(
V C
C

)
, (7)

for any C ∈ R2. In particular, C = e1 for velocity
measurements and C = e2 for position measurements. This
matrix form of the measurements is powerful for studying
the effect of time-delay in the sequel.

A. Time-Delay Matrices
In this section, we show how one can construct state-

independent delay matrices Y δ
L , Y

δ
R ∈ SIM2(3) that capture

the effect of a delay δ on a trajectory of the system (5).
Lemma 4.1: Let U(t) be an input signal constructed from

IMU measurements and G and N be matrices defined above
(6). Fix t ≥ 0 and let Y δ

L(t), Y
δ
R(t) ∈ SIM2(3) satisfy the

differential equations
∂

∂δ
Y δ
L(t) = −(G+N)Y δ

L(t), Y 0
L (t) = I5, (8a)

∂

∂δ
Y δ
R(t) = −Y δ

R(t)(U(t− δ)−N), Y 0
R(t) = I5, (8b)

for all δ ∈ [0, t]. Then, for any system trajectory X(t) ∈
SE2(3) with dynamics (5),

X(t− δ) = Y δ
L(t)X(t)Y δ

R(t), (9)

for any δ ∈ [0, t].
Proof: The result is shown using the uniqueness of

ODE solutions. Let Xδ := X(t − δ) for a convenient
shorthand. Then, for a fixed t ∈ [0,∞) and recalling (5)
on has

∂

∂δ
Xδ = −

(
(G+N)Xδ +Xδ(U(t− δ)−N)

)
for X0 = X(t) when δ = 0.

Now (9) holds if and only if

(Y δ
L)

−1Xδ(Y δ
R)

−1 = X(t).

Thus, taking the partial derivative with respect to δ of the
left-hand side should yield zero:
∂

∂δ
(Y δ

L)
−1Xδ(Y δ

R)
−1

= (Y δ
L)

−1(G+N)Xδ(Y δ
R)

−1

− (Y δ
L)

−1((G+N)Xδ +Xδ(U(t− δ)−N))(Y δ
R)

−1

+ (Y δ
L)

−1Xδ(U(t− δ)−N)(Y δ
R)

−1

= 0.
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As for the initial condition,

(Y 0
L )

−1X(t− 0)(Y 0
R)

−1 = X(t),

since Y 0
L = Y 0

R = I5 by definition. Hence (9) is satisfied for
all δ.

The solutions of these time-delay matrices Y δ
L(t) and

Y δ
R(t) can also be propagated through time. In fact, since

the matrices G and N are constants, the solution to Y δ
L is

also constant for any δ.
Lemma 4.2: Let Y δ

L(t), Y
δ
R(t) ∈ SIM2(3) be defined as

in Lemma 4.1. Then, for any fixed δ ≥ 0, the left delay
matrix is constant and given by

Y δ
L(t) = exp(−δ(G+N)), (10)

for all t ∈ [0,∞). The time-derivative of the right delay
matrix is given by

Ẏ δ
R(t) = −(U(t)−N)Y δ

R(t) + Y δ
R(t)(U(t− δ)−N),

(11)

for all t ≥ δ.
Proof: For the left delay matrix, simply observe that

the exponential exp(−δ(G + N)) is exactly the solution to
the defining equation (8a), independent of t. In particular,
this also means that

(G+N)Y δ
L = Y δ

L(G+N). (12)

As for the right delay matrix, it must be that (9) holds for
all t ≥ δ by Lemma 4.1. We use the shorthand notations
Xδ := X(t− δ) and Uδ := U(t− δ). Rewriting (9), one has

Y δ
R = X−1(Y δ

L)
−1Xδ.

Differentiating this with respect to t yields

d

dt
Y δ
R = −((U −N)X−1 +X−1(G+N))(Y δ

L)
−1(Xδ)

+X−1(Y δ
L)

−1((G+N)Xδ +Xδ(Uδ −N))

= −(U −N)X−1(Y δ
L)

−1(Xδ)

+X−1(Y δ
L)

−1Xδ(U δ −N)

= −(U(t)−N)Y δ
R(t) + Y δ

R(t)(U(t− δ)−N),

where the second-last line follows from (12).
Let Y δ

R, Y
δ
L be delay matrices as defined in Lemma 4.1.

Expanding the formula (10) yields

Y δ
L = exp

(
−δ

(
03×3 WG

02×3 SN

))
=

(
I3 VY δ

L

02×3 AY δ
L

)
,

VY δ
L
=
(
−δg − δ2

2 g
)
, AY δ

L
=

(
1 δ
0 1

)
. (13)

The previous Lemma showed that the solution to Y δ
L(t) is

fixed in t and can be easily obtained for any δ. It also showed
that the solution of Y δ

R can be propagated through time. In
practice this means that, following initialisation of Y δ

R(t) for
the period of t ∈ [0, δ) using (8b), the solution Y δ

R(t) can be
updated by recursively solving (11) for all t ≥ δ. The next
Lemma shows how the delay matrices can be used to modify
the GNSS measurements by using their matrix form (7).

Lemma 4.3: Let X(t) ∈ SE2(3) be a trajectory of the
system (5) as in (4), and define the delay matrices Y δ

L , Y
δ
R ∈

SIM2(3) as in Lemma 4.1. Fix an arbitrary C ∈ R2, and
consider a delayed measurement yδ := V (t− δ)C. Then

µδ = Rµ̊δ + V Cδ, (14)

where

µδ := yδ − VY δ
L
Cδ, µ̊δ := VY δ

R
C, Cδ := A−1

Y δ
L

C.

Proof: Using the matrix form (7) of the measurement,(
yδ

C

)
=

(
V (t− δ)C

C

)
= X(t− δ)

(
03×1

C

)
.

Recall the delay equation (9) and the expanded form of YL

(13). Then multiply both sides with (Y δ
L)

−1 to obtain

(Y δ
L)

−1

(
yδ

C

)
= (Y δ

L)
−1X(t− δ)

(
03×1

C

)
,(

I3 −VY δ
L
A−1

Y δ
L

02×3 A−1
Y δ
L

)(
yδ

C

)
= (Y δ

L)
−1Y δ

LXY δ
R

(
03×1

C

)
,(

yδ − VY δ
L
A−1

Y δ
L

C

A−1
Y δ
L

C

)
= X

(
RY δ

R
VY δ

R

02×3 AY δ
R

)(
03×1

C

)
,(

yδ − VY δ
L
A−1

Y δ
L

C

A−1
Y δ
L

C

)
=

(
R V

02×3 I2

)(
VY δ

R
C

AY δ
R
C

)
,(

yδ − VY δ
L
A−1

Y δ
L

C

A−1
Y δ
L

C

)
=

(
RVY δ

R
C + V AY δ

R
C

AY δ
R
C

)
,(

µδ

Cδ

)
=

(
Rµ̊δ + V Cδ

Cδ

)
,

where the last line follows from the fact that AY δ
R
= A−1

Y δ
L

as
another consequence of the delay equation (9).

V. OBSERVER DESIGN

We will use the observer architecture proposed in [14,
Section 3.1], and then provide a general way to incorporate
measurements of the form (14). The result of Lemma 4.3
is the key to using the delayed measurements. Recall the
system dynamics (5) and consider the observer architecture
[14]

˙̂
X = (G+N)X̂ + X̂(U −N) + AdZ(∆)X̂, (15a)

Ż = (G+N)Z − ZΓ, (15b)

where X̂ ∈ SE2(3) is the state estimate, Z ∈ SIM2(3) is
the auxiliary state, and ∆ ∈ se2(3) and Γ ∈ sim2(3) are
correction terms that we have yet to design. The observer
error is defined to be

Ē := Z−1XX̂−1Z ∈ SE2(3), (16)

and is a synchronous error [15]. For further details about the
rationale of this error definition, please see [15].

We may simplify the auxiliary state dynamics (15b) by
choosing the rotation correction ΩΓ ≡ 0 and the initial
condition RZ(0) = I3. The result is the ṘZ ≡ 0 for all
time, and thus RZ ≡ I3. This is possible as the uncorrected
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dynamics Ż = (G + N)Z do not involve the rotation
component RZ . We will use this simplification through the
remainder of the paper.

Let RĒ ∈ SO(3) and VĒ ∈ R3×2 denote the rotational
and translational components of Ē, respectively, then

RĒ = RR̂−1 = RR̂⊤, (17a)

VĒ = R(R̂⊤VZ − R̂⊤V̂ AZ) + (V − VZA
−1
Z )AZ ,

= (V AZ − VZ)−RĒ(V̂ AZ − VZ). (17b)

Lemma 5.1 (Synchrony [14]): The dynamics of the ob-
server error Ē defined in (16) are

˙̄E = ΓĒ − Ē(Γ + ∆). (18)

In particular, they are independent of the inputs, and are zero
when the correction terms ∆ and Γ are nullified.

One of the useful consequences of synchrony is its appli-
cation to modular observer design (cf. [15, Theorem 5.4]).
This property is central to the final observer design we will
propose. In the sequel, we will consider the positive-definite
cost function L : SE2(3) → R+ defined by

L (Ē) := tr(I3 −RĒ) + |VĒ |2. (19)

We restate Theorem 5.4 from [15].
Theorem 5.2 (Modularity Theorem): Let L : SE2(3) →

R+ be a uniformly continuous positive-definite cost function.
Let (∆i,Γi) ∈ se2(3)×sim2(3) be a collection of correction
terms and define the component total-derivatives of L by

L̇ i := DĒL (Ē)[ΓiĒ − ĒΓi − Ē∆i],

for each i = 1, . . . , n. Suppose that L̇ i ≤ 0 and that ∆i and
Γi are uniformly continuous in time. Define the correction
terms

∆ =

n∑
i=1

αi∆i, Γ =

n∑
i=1

αiΓi,

for some (possibly time-varying) uniformly continuous gains
αi ≥ α > 0. Then the cost function L is a Lyapunov function
for the dynamics of Ē, in the sense that L̇ ≤ 0, and its set
of equilibria is exactly the intersection E := ∩n

i=1E i, where

E i :=
{
Ē ∈ SE2(3)

∣∣ L̇ i ≡ 0
}
.

The following Lemma provides a way to choose correction
terms based on any vector-type measurement of the form
µ = Rµ̊ + V C. As we have already seen in Section IV-A,
the delayed GNSS position and velocity measurements are
of this form with µ̊ = 03×1 and µ = v, C = e1 for velocity
and µ = p, C = e2 for position. In fact, the magnetometer
measurement can also be written in the same form, with
µ̊ = ym, µ = ẙm, and C = 02×1. Combining this insight
with Theorem 5.2 allows us to easily create an observer that
incorporates all three measurement types.

Lemma 5.3: Suppose µ ∈ R3 is a measurement of the
system state X = (R, V ) ∈ SE2(3) of the form

µ = Rµ̊+ V C,

where µ̊ ∈ R3 and C ∈ R2 are known. Consider the
observer architecture (15), the observer error (16), and the
cost function (19). Let µ̂ = R̂µ̊+ V̂ C and µZ = VZA

−1
Z C.

Choose gain kR, kV ≥ 0 and Kq ∈ S≥0(2), and define the
correction terms by

Ω∆ = 4kR(µ̂− µZ)× (µ− µZ),

W∆ = (kV + kR)(µ− µ̂)C⊤A−⊤
Z ,

ΩΓ = 0,

WΓ = (kV + kR)(µZ − µ)C⊤A−⊤
Z ,

SΓ = −kV
2
A−1

Z CC⊤A−⊤
Z +

1

2
A⊤

ZKqAZ .

Then the cost function derivative satisfies

L̇ ≤ −2kR
(
|(R2

Ē − I3)(µ− µZ)| − |VĒA
−1
Z C|

)2
− 2kV |VĒA

−1
Z C|2 − λmin(Kq)|VĒA

⊤
Z |2,

where λmin(Kq) is the minimum eigenvalue of Kq .
Proof: Expanding the error dynamics (18) into their

component parts yields

ṘĒ = RĒΩ
×
∆, (20a)

V̇Ē = −VĒSΓ + (I −RĒ)WΓ −RĒW∆. (20b)

Substituting the chosen correction terms into (20b) yields

V̇Ē = −VĒSΓ +WΓ −RĒ(WΓ +W∆)

= VĒ

kV
2
A−1

Z CC⊤A−⊤
Z − VĒ

1

2
A⊤

ZKqAZ

+ (kV + kR)(µZ − µ)C⊤A−⊤
Z

−RĒ(kV + kR)(µZ − µ̂)C⊤A−⊤
Z

= VĒ

kV
2
A−1

Z CC⊤A−⊤
Z − VĒ

1

2
A⊤

ZKqAZ

− (kV + kR)VĒA
−1
Z CC⊤A−⊤

Z

= −VĒ

(
(kR +

kV
2
)A−1

Z CC⊤A−⊤
Z + VĒ

1

2
A⊤

ZKqAZ

)
.

As for the rotational component, observe that

µ− µZ

= Rµ̊+ V C − µZ

= RĒR̂µ̊+ V C − µZ

= RĒ(µ̂− V̂ C) + V C − µZ

= RĒ(µ̂− µZ)−RĒ(V̂ C − µZ) + V C − µZ

= RĒ(µ̂− µZ)

+
(
(V AZ − VZ)−RĒ(V̂ AZ − VZ)

)
A−1

Z C

= RĒ(µ̂− µZ) + VĒA
−1
Z C.

Therefore, by [15, Lemma A.1],

d

dt
tr(I3 −RĒ) = −2kR|(I3 −R2

Ē)(µ− µZ)|2

− 4kR⟨(I3 −R2
Ē)(µ− µZ), VĒA

−1
Z C⟩.
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These results combine to give the cost function derivative,

L̇ =
d

dt
tr(I3 −RĒ) + |VĒ |2

= −2kR|(I3 −R2
Ē)(µ− µZ)|2

− 4kR⟨(I3 −R2
Ē)(µ− µZ), VĒA

−1
Z C⟩

− (2kR + kV )⟨VĒ , VĒA
−1
Z CC⊤A−⊤

Z ⟩
− ⟨VĒ , VĒA

⊤
ZKqAZ⟩

≤ −2kR|(I3 −R2
Ē)(µ− µZ)|2

+ 4kR|(I3 −R2
Ē)(µ− µZ)||VĒA

−1
Z C|

− (2kR + kV )|VĒA
−1
Z C|2 − λmin(Kq)|VĒA

⊤
Z |2

= −2kR
(
|(R2

Ē − I3)(µ− µZ)| − |VĒA
−1
Z C|

)2
− kV |VĒA

−1
Z C|2 − λmin(Kq)|VĒA

⊤
Z |2.

This completes the proof.
Finally, we are ready to state our main theorem. This the-

orem combines correction terms for delayed GNSS position
and velocity, and (undelayed) magnetometer measurements.

Theorem 5.4: Let X ∈ SE2(3) denote the system state
as in (4), with dynamics given by (5). Let yδp, y

δ
v, ym ∈ R3

denote the delayed GNSS position (3), delayed GNSS ve-
locity, and magnetometer measurements, respectively. Define
Y δ
L , Y

δ
R ∈ SIM2(3) to be the delay matrices as in Lemma

4.1, and define

µδ
v := yδv − VY δ

L
Cδ

v , µ̊δ
v := VY δ

R
e1, Cδ

v := A−1
Y δ
L

e1 (21a)

µδ
p := yδp − VY δ

L
Cδ

p , µ̊δ
p := VY δ

R
e2, Cδ

p := A−1
Y δ
L

e2 (21b)

Define the observer state X̂ ∈ SE2(3) and auxiliary state
Z ∈ SIM2(3) to have dynamics given by (15). Then define

µ̂δ
v = R̂µ̊δ

v + V̂ Cδ
v , µδ

Z,v = VZA
−1
Z Cδ

v , (22a)

µ̂δ
p = R̂µ̊δ

p + V̂ Cδ
p , µδ

Z,p = VZA
−1
Z Cδ

p . (22b)

Let the initial condition of the auxiliary rotation RZ(0) = I3,
and choose gains kp, kc > 0, Kq ∈ S+(2), and kv, kd, km ≥
0. Define the correction terms ∆ ∈ se2(3) and Γ ∈ sim2(3)
to be

Ω∆ = 4kc(µ̂
δ
p − µδ

Z,p)× (µδ
p − µδ

Z,p) (23a)

+ 4kd(µ̂
δ
v − µδ

Z,v)× (µδ
v − µδ

Z,v)

+ 4km(R̂ym)× ẙm,

W∆ = (kp + kc)(µ
δ
p − µ̂δ

p)C
δ
p

⊤
A−⊤

Z (23b)

+ (kv + kd)(µ
δ
v − µ̂δ

v)C
δ
v

⊤
A−⊤

Z ,

ΩΓ = 0, (23c)

WΓ = −(kp + kc)(µ
δ
p − µδ

Z,p)C
δ
p

⊤
A−⊤

Z (23d)

− (kv + kd)(µ
δ
v − µδ

Z,v)C
δ
v

⊤
A−⊤

Z ,

SΓ = −kp
2
A−1

Z Cδ
pC

δ
p

⊤
A−⊤

Z − kv
2
A−1

Z Cδ
vC

δ
v

⊤
A−⊤

Z (23e)

+
1

2
A⊤

ZKqAZ .

Denote the error state Ē ∈ SE2(3) as defined in (16).
Assume that the vectors

√
kcµ

δ
p,
√
kdµ

δ
v,
√
kmym are per-

sistently exciting (1). Then

1) The translational error VĒ → 0 globally exponentially.
2) The rotational error RĒ → I3 almost-globally asymp-

totically and locally exponentially, with the only stable
equilibrium being Ē = I5, and the set unstable equilib-
ria given by

Eu =
{
Ē ∈ SE2(3)

∣∣ VĒ = 0, tr(RĒ) = −1
}
.

3) If the error Ē converges to I5, then the estimated state
X̂ converges to the true state X in the sense that |X̂ −
X| → 0.
Proof: Before proving the individual items, observe that

the choice RZ(0) = I3 and ΩΓ ≡ 0 mean that RZ ≡ I3 for
all time.

Proof of Item 1: Recall from Lemma 4.3 that

µδ
p = Rµ̊δ

p + V Cδ
p , µδ

v = Rµ̊δ
v + V Cδ

v .

Thus, the correction terms are simply the sum of correction
terms constructed according to Lemma 5.3. Note that SΓ

includes only one instance Kq , which is simply the sum of
the term obtained from the individual corrections relating to
position, velocity and magnetometer. Let LV := |VĒ |2. Then,
following the same computation as in the proof of Lemma
5.3 yields

L̇V ≤ −kp|VĒA
−1
Z Cδ

p |2 − kv|VĒA
−1
Z Cδ

v |2

− λmin(Kq)|VĒA
⊤
Z |2

< −λmin(Kq)λmin(AZA
⊤
Z )|VĒ |2.

We proceed to show that λ(AZA
⊤
Z ) is bounded below. Let

P = AZA
⊤
Z , then computation yields

Ṗ = (SDAZ −AZSΓ)A
⊤
Z +AZ(SDAZ −AZSΓ)

⊤,

= SDP + PS⊤
D + kpC

δ
pC

δ
p

⊤
+ kvC

δ
vC

δ
v

⊤ − PKqP,

This is the continuous differential Riccati equation associated
with the state dynamics and measurement matrices,(

−S⊤
D,

(
kpC

⊤
p

kvC
⊤
v

))
=

((
0 0
1 0

)
,

(
−δkp kp
kv 0

))
,

which is clearly observable for any delay δ, even if
kv = 0. Therefore the eigenvalues of P = AZA

⊤
Z are

bounded above and below, and LV = |VĒ | is exponentially
decreasing to zero with its exponent lower-bounded by
λmin(Kq)λmin(P ) > 0.

Proof of Item 2: We apply Theorem 5.2. Since the
proposed correction terms are the sum of corrections terms
drawn from Lemma 5.3, the Lyapunov function L satisfies

L̇ (Ē) ≤ −2kc
(
|(R2

Ē − I3)(µ
δ
p − µδ

Z,p)| − |VĒA
−1
Z Cδ

p |
)2

− 2kd
(
|(R2

Ē − I3)(µ
δ
v − µδ

Z,v)| − |VĒA
−1
Z Cδ

v |
)2

− 2km|(R2
Ē − I3)ẙm|2 + L̇V

Since L̇ is the composition sum and product of uniformly
continuous signals, it itself is uniformly continuous. Thus,
as the cost L (Ē) is bounded above by its initial value and
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below by zero, and VĒ → 0 by item 1, applying Barbalat’s
lemma [21, Lemma 4.2/4.3] yields

L̇ → −2kc|(R2
Ē − I3)(µ

δ
p − µδ

Z,p)|2 − 2km|(R2
Ē − I3)ẙm|2

− 2kd|(R2
Ē − I3)(µ

δ
v − µδ

Z,v)|2
→ 0.

Therefore, each of the three individual terms must also
converge to zero. By persistence of excitation [19], RĒ

converges to either I3 or to the set of rotation matrices

R u := {RĒ ∈ SO(3) | tr(RĒ) = −1} .
To see that the first case is locally exponentially stable,
linearise RĒ ≈ I3 + ε̄×R and differentiate to obtain

˙̄ε ≈ 4
(
kc(µ

δ
p − µδ

Z,p)
×2

+ kd(µ
δ
v − µδ

Z,v)
×2

+ kmẙ×m
2
)
ε̄,

which is persistently exciting by assumption, and symmetric
negative semi-definite. Uniform local exponential stability
follows from [22, Theorem 1].

In the case that RĒ → R u, or equivalently Ē → Eu, we
have left to show that any such equilibrium is unstable. It
suffices to show that, if RĒ ∈ R u, then in any neighbour-
hood U ⊂ SO(3) of RĒ there exists Q ∈ U for which
LR(Q) < LR(RĒ), where

LR(Q) := tr(I3 −RĒ)

is the rotational component of the Lyapunov function (19).
To this end, fix RĒ ∈ R u, then RĒ has an eigenvalue equal
to 1 associated with a unit vector ω ∈ R3; i.e. RĒω = ω,
|ω| = 1. Define Q(s) = RĒ exp(sω×). Using a second-order
Taylor expansion, one has

LR(Q(s)) ≈ tr(I3 −RĒ(I3 + sω× +
s2

2
(ω×)2))

= tr(I3 −RĒ)− s tr(RĒω
×)− s2

2
tr(RĒ(ω

×)2)

= LR(RĒ)−
s2

2
tr(RĒ(ωω

⊤ − I3))

= LR(RĒ)−
s2

2
tr(ωω⊤ −RĒ)

= LR(RĒ)− s2.

Clearly, then, in any neighbourhood of RĒ ∈ R u one can
find s sufficiently small so that LR(Q(s)) < LR(RĒ). This
shows that any equilibrium point Ē ∈ Eu is indeed unstable.

Proof of Item 3: Since Z is bounded above and below as
shown in the proof of item 1, the operation E 7→ ZEZ−1

is bounded also. Therefore, by [16, Lemma 5.3], Ē → I5 if
and only if XX̂−1 → I5. Then, assuming boundedness of
X , X̂ → X as required. This completes the proof.

VI. SIMULATION RESULTS

The proposed observer was verified using a simulation of
a flying vehicle equipped with a magnetometer and time-
delayed GNSS flying in a circular trajectory of radius 50 m
at a speed of 25 m/s. The true initial conditions X =
(R, (v, p)) ∈ SE2(3) and inputs Ω, a ∈ R3 were set to

R(0) = I3, v(0) =
(
0 25 0

)⊤
, p(0) =

(
50 0 0

)⊤
,

Ω(t) =
(
0 0 1

)⊤
, a(t) = −1

4
R(t)⊤p(t)−R(t)⊤g,

where g = 9.81e3 ∈ R3. The magnetic reference and the
GNSS delay were defined by

ẙm = e1, δ = 0.2.

The observer proposed in Theorem 5.2 was implemented
with the following conditions. The estimated state X̂ =
(R̂, (v̂, p̂)) ∈ SE2(3) was initialised with an extreme initial
attitude error,

R̂(0) = exp(0.99e×1 ),

v̂(0) =
(
2 27 2

)⊤
,

p̂(0) =
(
70 20 20

)⊤
,

and the auxiliary state Z ∈ SIM2(3) was initialised by

RZ(0) = I3, VZ(0) = V̂ AZ , AZ(0) = diag(2, 10).

The gains were chosen to be

Kq = diag(10.0, 2.0), kp = 10.0, kc = 0.1,

kv = 10.0 kd = 0.1, km = 2.0.

Both the system and observer equations were implemented
using Lie group Euler integration at 50 Hz for 20 s. Addition-
ally, a second copy of the observer was implemented without
correction for the GNSS delay; that is, the observer dynamics
were implemented with δ = 0 although the measurements
received were still delayed.

The first observer requires the delay matrices described
in Lemma 4.1 to implement the correction terms. Since
the right-delay matrix Y δ

R(t) cannot be constructed without
access to the input U(t−δ), this matrix was initialised at the
time t = δ. For the period t ∈ [0, δ), the correction terms ∆
and Γ were both set to zero. Thanks to the synchrony of the
error, this meant ˙̄E = 0 and hence L (Ē) is constant during
this period.

Figure 1 shows the estimated and true states over time.
Figure 2 shows the estimation errors and the Lyapunov
function value. The estimates from the delay-compensated
observer are shown to quickly converge to the true values,
and this is reflected in the exponentially decreasing Lya-
punov value. In contrast, the second observer (without delay
compensation) is shown to converge more slowly during the
transient phase, and fails to converge fully in the steady state
with errors of approximately 3.5 deg in attitude, 2.5 m/s in
velocity, and 5 m in position. This failure to converge is also
seen in the Lyapunov value, which quickly plateaus. These
results not only verify the proposed observer design, but also
demonstrate the importance of delay compensation to ensure
accurate estimation in INS.

VII. CONCLUSION

This paper studied the problem of INS with magnetometer
and delayed GNSS measurements by extending recent work
on synchronous observer design for INS [15]. Delay matrices
that are recursively defined through differential equations
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Fig. 1. The states estimated by an observer with (- - -) and without (-·-·) delay compensation compared to the true states (—–).
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Fig. 2. The estimation errors of an observer with (- - -) and without (-·-·)
delay compensation.

are shown to relate the delayed GNSS measurements to
the present state of the system. Using this relationship,
correction terms were proposed that yield almost-globally
asymptotic and locally exponential stability of the observer
error dynamic. Finally, the simulation results showed that
the proposed observer design is able to converge from
extreme initial error, and that the compensation of time-delay
contributes to both transient and steady-state performance.
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