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Abstract— We conduct a local stability analysis of a class of
Internet congestion control protocols, approaching the problem
from a novel entangled gain and phase perspective. Our ap-
proach incorporates a recently revitalized quantitative MIMO
phase concept, which we use to reexamine the local version
of certain classical stability results. This phase information
is entangled with the gain information through the concept
of the Davis-Wielandt shell, providing an intuitive graphical
interpretation and reducing the conservatism of stability con-
ditions. Leveraging these tools, we derive decentralized stability
conditions for the Internet protocols under consideration.

I. INTRODUCTION

Transmission Control Protocol (TCP), one of the largest
manmade feedback systems, is a crucial component of the
modern Internet. They employ specific congestion control
strategies to prevent or alleviate the congestion at network
switches, thereby enabling low network delay and high
throughput [1]. Despite the proliferation of numerous TCP
protocols, their stability continues to be a concern.

A TCP network comprises many end-to-end connections.
Each end-to-end connection, as illustrated in Fig. 1, consists
of: (1) a source host, (2) a data flow generated by the source
host, (3) a path, which is a sequence of consecutive com-
munication links and network switches, through which the
data flow is transmitted, and (4) a destination host for which
the data flow is oriented. A typical TCP network deploys
two groups of protocols, with one group implemented at
the source hosts, and another implemented at the network
switches. The host protocol adapts its packet sending rate to
the aggregated congestion measure that it sees. Meanwhile,
the switch protocol generates a certain form of congestion
measure based on its arrival rate and/or queue length. The
two groups of protocols, or dynamics in control terms, are
interconnected according to the topology defined by the
routing table, forming a large-scale TCP network.

The Network Utility Maximization (NUM) has served as a
unified framework to interpret many folds of the equilibrium
of the TCP dynamics [2], [3]. Roughly speaking, a large
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Fig. 1: An end-to-end connection in a TCP network

class of protocols can be regarded as distributed projected
gradient descent algorithms, which solve certain types of
convex optimization problem. Different protocols correspond
to different utility functions that are maximized. The static
properties of the network equilibrium, which coincides with
the optimal solution, can be well understood from established
optimization theory (see [4] for an expository treatment).
When the network is delay-free, the global asymptotic sta-
bility of the network has been thoroughly investigated in [5],
[6] under the passivity and dissipativity frameworks.

However, the ubiquitous network delays pose substantial
challenge to global analysis while their impact on stability
should not be underestimated [7]. In this context, we shall
focus on local stability analysis of the TCP networks, which
is sufficient for practical purposes. The aforementioned tools
[5], [6] now become inadequate due to the severe phase lag
at high frequency. In contrast, a purely gain-type condition,
though capable of handling delays, may incur too much
conservatism. Analyzing such systems requires tools beyond
small gain and passivity. Many recent efforts have been dedi-
cated to this direction. Lestas et al. [8], [9], [10] have studied
some interesting spectrum-containing convex sets such as the
S-hull and Davis-Wielandt shell. In particular, they reveal
the equivalence between a class of quadratic separation and
the separation of Davis-Wielandt shells (abbreviated as DW
shell hereafter). Building on the equivalence, they propose
several general stability conditions in the form of shell
separation. The works [11], [12], [13] leverage a recently
proposed quantitative MIMO phase measure [14], [15], [16].
They impose either the gain or the phase condition at
each frequency to enforce generalized Nyquist criterion [17].
However, it is worth noting that the conditions proposed for
power systems in [13] rely on the global topology infor-
mation, which limits their applicability in network-related
contexts. In [18], homotopy arguments are used to combine
conditions arising from different network decompositions so
as to develop broad classes of distributed stability conditions
with a plug-and-play operation.

Expanding upon these works, this paper aims to contribute
from the following aspects:
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• We exploit the loop structure of TCP networks, and
precisely characterize the union of DW shells of a class
of matrices. Based on this and the last item, we tailor the
DW shell-based stability condition to a new distributed
stability certificate for TCP networks.

• We emphasize graphically the connection between the
gain, the phase, and the DW shell based analysis, both at
the matrix level and in deriving stability conditions for
TCP networks. This graphical understanding provides
clear guidance for the stability vlidation and parameter
tuning to achieve more robust network stability.

In the remaining sections of this paper, we first introduce
the dynamical models that describe TCP networks and the
MIMO phases in Section II. Then in Section III, we develop
our main results centered around the DW shell, and we use
these results to derive the local stability certificates for TCP
networks in Section IV, whereas we conclude this paper in
Section V. Due to the space constraint, the proofs will be
included in the extended journal version of this paper.

Notation. Let ı =
√
−1 be the imaginary unit. We

denote by C and R the field of real and complex numbers,
respectively. Then the positive reals and nonnegative reals
are denoted by R+ and R+. For an m-by-n matrix M ,
we use MT,M , MH to denote its transpose, conjugate,
and conjugate transpose, respectively. The matrix |M | refers
to elementwise absolute value of M . A square matrix A
is congruent to B, denoted by A ≃ B, if there exists
nonsingular T such that A = TBTH; it is similar to B,
denoted by A ∼ B, if there exists nonsingular T such that
A = TBT−1. The spectrum of A is denoted by Λ(A) and
λi(A) refers to a specific eigenvalue of A. The spectral raidus
of A, denoted by ρ(A), is the largest magnitude attained by
elements of Λ (A). The indicator 1⋆ takes the value 1 if ⋆ is
true and the value 0 otherwise. When | · | is taken on a finite
set, it refers to its cardinality.

II. PRELIMINARIES

A. Flow Model and Linearization

Consider a TCP network comprising n hosts and m
switches. Let I = {1, . . . , n},J = {1, . . . ,m} denote the
sets of indices of hosts and switches. We shall use indices i
or j to refer to a host or a switch, respectively. The path of
the data flow from host i is denoted by Ji while Ij denotes
the set of hosts that the switch j serves.

The flow-level behavior of a TCP network can be de-
scribed by a set of deterministic delay differential equations:

χg,i

(
d

dt

)
xi(t) = gi(xi(t), xi(t− Ti), ui(t)) , (1a)

χh,j

(
d

dt

)
vj(t) = hj(vj(t), yj(t)) , (1b)

yj(t) =
∑
i∈Ij

xi(t− fji) , (1c)

ui(t) =
∑
j∈Ji

vj(t− bij) , (1d)

TABLE I: Typical congestion control protocols

Host Switch

Reno/Droptail Packet loss
probability type 1 type 0 [19]

Rate mismatch
and queue size type 0 type 1 [20]

Packet loss
probability type 1 type 0 [21]

Packet marking
probability type 1 type 1 [22]

[4, p. 90]

Protocols Congestion
Measure

Local Type∗ Ref.

RCP

BIC, CUBIC

High-throughput TCP
with smoothed
rate feedback

* Refer to Table II and its context for the definition.

for i = 1, . . . , n and j = 1, . . . ,m. In (1), both gi(·) and
hj(·) are static nonlinearities. The d

dt is the time derivative
operator and χ·,·(

d
dt ) is a polynomial of d

dt . In this paper,
we restrict this polynomial to have either degree 0 or 1. This
already encompasses a large group of existing protocols, as
listed by Table I. Signals xi, yj refer to the sending rate
of host i and the arrival rate of switch j while vj , ui refer
to the congestion measure at switch j and the aggregated
congestion measure at host i. The scalar-valued signals will
sometimes be stacked into vector-valued signals x, y, u, v.
The delays fji, bij are the forward delay from host i to
switch j and the backward delay from switch j to host i,
respectively. Referring to [5, A. I] and [4, Sec. 3], we made
the following assumptions:

• the congestion measure is additive during the aggrega-
tion, as already indicated by (1d);

• the equilibrium (x̂, ŷ, û, v̂) of (1) is unique;
• the round-trip delay for each host i is a constant, i.e.,

fji + bij = Ti for all j ∈ Ji.
Then we linearize (1a) and (1b) around the unique equilib-
rium, which leads us to the local protocol dynamics of two
types listed in Table II. As mentioned, we only consider TCP
networks with host and switch protocols being either type-0
or type-1 in this paper.

TABLE II: Types of local dynamics

Types 0 1

Local Dynamics k
k

s+ p

k > 0, p > 0

The gi, hj are now overloaded to denote transfer functions
of linearized host and switch dynamics. We collect them into
two diagonal transfer matrices: G(s) := diag {gi(s)} and
H(s) := diag {hj(s)}. Due to the practical compatibility
constraint, the types of all hosts should be the same, and
so are the types of all switches. However, their parameters
may exhibit heterogeneity. The Laplace transforms of (1c)
and (1d) are collected into a forward routing delay matrix
Rf (s) with [Rf (s)]ji = e−sfji1j∈Ji and a backward routing
delay matrix Rb(s) with [Rb(s)]ij = e−sbij1i∈Ij

. Let R0 =

Rf (0), it follows from the definition that Rb(0) = RT
0 . The

matrix R0 carries pure topology information of the network,
and it necessarily has full row rank due to the uniqueness
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Fig. 2: System diagrams of linearized congestion control
protocols around its equilibrium (negative feedback)

assumption on the network equilibrium. Under our previous
constant round-trip delay assumption, we can factorize Rb(s)
as Rb(s) = T (s)Rf (−s)T where T (s) := diag

{
e−sTi

}
.

The linearized TCP network is now depicted by Fig. 2, and
we are interested in the closed-loop stability of this system,
a.k.a., the local stability of the original nonlinear network.
Before diving into this, we shall first introduce the MIMO
phases [15], [14].

B. MIMO Phases

MIMO phases boil down to matrix phases at each fre-
quency. The definition of the matrix phases relies on the
concept of (angular) numerical range (see [23, Ch. 1] for an
introductory overview). Let L ∈ Cn×n be a square matrix, its
numerical range W(L), defined as W(L) := {zHLz | z ∈
Cn, zHz = 1}, is a convex and compact set in the complex
plane. Meanwhile, by removing the unit norm constraint on
the nonzero vector z, we obtain the smallest cone W′(L),
namely its angular numerical range, that contains W(L), i.e.,
W′(L) := {zHLz | z ∈ Cn, z ̸= 0}. Note that the numerical
range of matrix L contains its spectrum Λ (L). If L is normal,
then W(L) is exactly the convex hull of Λ (L).

(a) Numerical range and an-
gular numerical range: L1 is
sectorial, L2 is quasisectorial
but not sectorial

(b) DW shell of a matrix

Fig. 3: 2D and 3D convex sets associated with a matrix

Define the following classes of matrices:
Definition 1: A square matrix L is said to be quasisecto-

rial if the closure of its W′(L) is pointed. Furthermore, it is
said to be sectorial if 0 /∈ W(L).

Remark 1: Note that a convex cone is said to be pointed if
it does not contain nontrivial subspaces. We also remark that
a sectorial matrix is always nonsingular due to Def. 1 and
the spectrum containment property of its numerical range.

A quasisectorial matrix L of rank r must be congruent
to a direct sum of diag {eıα1 , . . . , eıαr} and a zero block of
size (n−r). Albeit being multi-valued, arguments α1, . . . , αr

can always be selected such that their values lie whithin a
closed interval of length less than π. We refer to any such
choice of values as a set of phases for the matrix L. In each
set of phases, we denote by ϕ (L) , ϕ (L) the smallest and
the largest phases of L. It is important to note that matrix
phases are unique modulo 2π and remain invariant under
congruence. For system analysis, we should choose phases
in a way such that the phase responses of the system are
continuous functions of frequencies.

Geometrically, it is worth noting that the rays of ϕ(L) and
ϕ(L) are the extreme rays of W′(L), as shown in Fig. 3a.
The following simplified version of [14, Lem. 2.4] lays the
foundation for the phase-relevant analysis.

Lemma 1: Let L,M ∈ Cn×n. Assume that L is quasi-
sectorial and M is sectorial, then the product LM has r
nonzero eigenvalues where r = rank (L). The arguments of
these nonzero eigenvalues can be chosen such that

ϕ (L) + ϕ (M) ≤ ∠λi(LM) ≤ ϕ (L) + ϕ (M) (2)

for i = 1, . . . , r.
It follows from Lem. 1 that we can guarantee the nonsin-
gularity of I +LM by imposing the small phase condition:
ϕ (L) + ϕ (M) > −π and ϕ (L) + ϕ (M) < π.

III. GAIN AND PHASE ENTANGLEMENT VIA
DAVIS-WIELANDT SHELL

A complex scalar z has its polar form |z|eı∠z , which
elegantly encompassed both its gain and phase. Now that
singular values of a matrix L carry its gain information and
numerical range carries its phase information, how can we
entangle both information? Our approach to answering this
question is via the DW shell, which is a 3D convex set
defined as follows:

DW(L) := co
{
(zHLz, zHLHLz) |

z ∈ Cn, zHz = 1
}
⊆ C× R+ (3)

where co (·) denotes the convex hull operation. Fig. 3b
shows the DW shell of a sectorial matrix. Note that the pro-
jection of DW(L) onto the complex plane is exactly W(L),
while its third coordinate takes value in [σ(L)2, σ(L)2].
Meanwhile, all DW shells are lower bounded by the
paraboloid {(s, |s|2) | s ∈ C}. A point (s, z) ∈ DW(L)
is on the paraboloid iff s ∈ Λ (L) [24]. In our context, the
most important implication comes from the separation of DW
shells of two matrices:

Lemma 2 ([25, Thm. 2.1]): Let L,M ∈ Cn×n, then L+
V HMV is nonsingular for all unitary V if and only if
DW(−L) ∩DW(M) = ∅.

Lem. 2 establishes the equivalence between DW shell
separation and the nonsingularity of the so-called unitary
orbit around matrices L and M . This is useful when dealing
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with unitarily invariant1 uncertainties. The analysis of closed-
loop stability with respect to these uncertainties requires the
characterization of the union of DW shells of the uncertainty
set to be as precise as possible.

Recall the diagram in Fig. 2, where we break the loop at
the host input. At each frequency, the lower part RH

fHRf ,
though not necessarily normal, exhibits the special structure
resembling unitoid matrices2. To handle matrices with such
structure, we characterize the union of DW shells of a special
class of matrices as follows:

Proposition 1: Let M ∈ Cn×n be normal, and r be a
positive integer, then⋃

Γ∈Cn×r,∥Γ∥2≤1

DW(ΓHMΓ)

=
⋃

s∈co ({0}∪Λ(M))

{
(s, t) | |s|2 ≤ t ≤ max

(s,l)∈P(M)
l

}
(4)

where

P(M) =

{
{(λ, |λ|2) | λ ∈ co ({0} ∪ Λ(M))}, r = 1,

co
(
{(λ, |λ|2) | λ ∈ {0} ∪ Λ (M)}

)
, r > 1.

Remark 2: When r = 1, ΓHMΓ is just a scalar, and
P(M) is obtained by lifting each point in the convex hull of
the origin and the spectrum of M to the paraboloid bound.
When r ≥ 2, P(M) is obtained by first lifting the origin
and the spectrum of M to the paraboloid bound and then
taking the convex hull. Subsequently, the DW shell union in
Prop. 1 can be obtained by vertically sweeping P(M) down
to the paraboloid bound.

By considering Prop. 1 and Lem. 2 jointly, we have
Theorem 2: Let L ∈ Cn×n,M ∈ Cm×m be normal

matrices, the following statements are equivalent:
1) L+ΓHMΓ is nonsingular for all Γ such that ∥Γ∥2 ≤ 1;
2) There exists a closed disc D such that {0}∪Λ (M) ⊆

D and Λ (−L) ⊆ C\D.

IV. LOCAL STABILITY ANALYSIS FOR TCP NETWORKS

We are now all set to study the local stability of TCP net-
works using tools from the previous section. All forthcoming
conditions rely on the generalized Nyquist criterion [17].

Here, the TCP network under consideration is locally sta-
ble if the eigenloci of the loop transfer function GTR∼

f HRf

do not encircle −1 + ı0 point3. This condition holds if

det(µI +GTRH
fHRf ) ̸= 0 (5)

for all ω ∈ [0,∞], µ ∈ [1,∞]. Since G,H are either type-
0 or type-1, GTRH

fHRf is bounded for all frequencies,
and (5) always holds for all ω ∈ [0,∞] when µ = ∞.
Meanwhile, the loop transfer function GTRH

fHRf has non-
negative eigenvalues at ω = 0 or ∞, which implies that (5)

1By “unitarily invariant”, we mean the uncertainty set is invariant under
unitary congruence.

2Matrices that are diagonalizable via congruence.
3For notational simplicity, we will suppress the dependency on the

generalized frequency s or frequency ıω, which is clear from the context.

holds for all µ ∈ [1,∞] at these frequencies. Therefore, by
letting ζ = 1/µ, (5) can be rewritten as

det((GT )
−1

+ ζRH
fHRf ) ̸= 0 (6)

for all ω ∈ (0,∞), ζ ∈ (0, 1]. Next, we define a diagonal
matrix D := diag

{∑
j∈Ji

|Ij ||hj |; i = 1, . . . , n
}

, and let

R̃f = |H|1/2RfD
−1/2. Then (6) is equivalent to

det((DGT )
−1

+ ζR̃H
f diag

{
eı∠hj ; j = 1, . . . ,m

}
R̃f ) ̸= 0

for all ω ∈ (0,∞), ζ ∈ (0, 1]. Note that ∥R̃f∥2 ≤ 1 since

∥R̃f∥2 = ρ(

[
0 |H|1/2RfD

−1/2

D−1/2RH
f |H|1/2 0

]
)

= ρ(
[

0 diag{|Ij |}−1Rf

D−1RH
f |H|diag{|Ij |} 0

]
)

≤ ∥
[

0 diag{|Ij |}−1Rf

D−1RH
f |H|diag{|Ij |} 0

]
∥∞ ≤ 1.

Except the unit gain bound, we assume that other information
of R̃f is unknown. The parameter ζ can be absorbed into this
uncertain part as well. Then the TCP network is stable if

det((DGT )
−1

+ ΓHdiag
{
eı∠hj ; j = 1, . . . ,m

}
Γ) ̸= 0

(7)

for all ω ∈ (0,∞), ∥Γ∥2 ≤ 1.

A. Small Gain, Small Phase, and Crossover Frequencies

Observe that ∥ΓHdiag
{
eı∠hj ; j = 1, . . . ,m

}
Γ∥2 ≤ 1,

and it suffices to guarantee (7) at ω by imposing the
small gain condition ∥DGT (ıω)∥2 < 1, or more explicitly,
gi(iω)

∑
j∈Ji

|Ij ||hj(ıω)| < 1 for all i. Note that, for the
hosts considered in this paper, ∥DGT∥2 is monotonically
decreasing w.r.t. ω, and we define a gain crossover frequency

ω1 := inf{ω ∈ R+ | |gi(ıω)|
∑
j∈Ji

|Ij ||hj(ıω)| < 1 ∀ i}.

The network complies to the small gain condition over the
high frequency range (ω1,∞].

From the phase perspective, note that

cl
(
W′(Γ∗diag

{
eı∠hj ; j = 1, . . . ,m

}
Γ)

)
⊆ cl

(
W′(diag

{
eı∠hj ; j = 1, . . . ,m

}
)
)

where cl (·) is the closure operation. Hence the matrix
ΓHdiag

{
eı∠hj(ıω); j = 1, . . . ,m

}
Γ is frequencywise quasi-

sectorial. Its phases are zero for all ω ∈ (0,∞) if H is type-
0. If H is type-1, its phases at ω ∈ (0,∞) are contained
in the interval [− arctan ω

p
h

,− arctan ω
ph
] ⊆ (−π

2 ,
π
2 ) where

p
h
, ph denote the smallest and the largest absolute values

of switch poles. The phase responses of DG are similar.
When ignoring the delays, i.e., T = I , it is obvious that the
small phase condition is met for all ω ∈ (0,∞) regardless
of the types of host and switch protocols. This resembles the
passivity-based results. Yet the round-trip delay T introduces
severe phase lag to the loop at high frequency, we define a
phase crossover frequency

ω−π := sup{ω ∈ R+ | ϕ (GT (ıω)) + ϕ (H(ıω))>− π}.
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The network satisfies the small phase condition and holds
infinitely large gain margin over [0, ω−π).

Requiring that ω−π>ω1 suffices to ensure the stability of
the network. Such condition is essentially the same as the
mixed gain and phase conditions proposed in [12], [13]. The
DW shell-based gain and phase entanglement enables us to
handle the cases where ω−π≤ω1.

B. Entangled Gain and Phase Condition

Applying Thm. 2 to (7) gives the following proposition:
Proposition 3: A TCP network is locally stable if for each

ω ∈ (0,∞), there exists a closed disc such that {0} ∪
{ei∠hj(ıω) | j = 1, . . . ,m} is contained in the disc while
{−(gi(ıω)e

−ıωTi
∑

j∈Ji
|Ij ||hj(ıω)|)−1 | i = 1, . . . , n} is

outside the same disc.
Under the mapping −1/z, the stability condition above can

be restated as gi(ıω)e−ıωTi
∑

j∈Ji
|Ij ||hj(ıω)|, i = 1, . . . , n

lie inside a uniform open disc that is contained in the fea-
sible region specified by the switch protocols. For networks
adopting type-0 switches, this feasible region is the complex
plane excluding the real interval [−∞,−1], as depicted in
the left plot of Fig. 4. If type-1 switches are used instead,
an approximation of this feasible region is

C\{z | |z| ≥ 1,∠z ∈ [−π − ϕ (H(ıω)) ,−π − ϕ (H(ıω))]},

as shown in the right plot of Fig. 4. Note that this approx-
imation introduces no extra conservatism considering the
monotonicity of gain and phase functions of scaled hosts.

Fig. 4: Feasible regions (shaded in green) for the host part
DGT when the switches are type-0 (left) or type-1 (right)

These feasible regions for hosts can be viewed as the
union of feasible regions given by the small gain condition
and the small phase condition. In other words, our proposed
condition requires that each scaled host with round-trip delay
satisfies either the small gain or the small phase condition.
Additionally, these hosts should be bounded inside a uniform
disc contained in the feasible region. This disc trivially exists
if hosts all comply to the small gain condition, or all comply
to the small phase condition. Hence, we just need to examine
the condition in Prop. 3 over the finite frequency range
[ω−π, ω1], provided these two frequencies can be estimated.

We also remark that the worst-case phases among all
switches are used to construct the feasible region for hosts.
This indeed leads to potential conservatism. Nevertheless,

our currently proposed condition is suitable for cases where
switches exhibiting similar phase responses. Clearly, type-0
switches fall into this category. For type-1 switches, their
phase responses being similar means that their poles should
be close to each other. Switch poles are usually linked
to switch capacities and/or weights in the low-pass filter.
The former suggests the condition is more effective for the
stability analysis of local area networks or a single layer in
a hierarchical network. Meanwhile, the weights are usually
set within a suggested range and will not be too diverse.

Next, we demonstrate the efficacy of our proposed condi-
tion via a numerical experiment.

Example 1 (High-throughput / Scalable TCP): Consider a
network implementing the high-throughput TCP with a
smoothed rate feedback as described in [4, Sec. 6.1.3] and
[26]. The high-throughput TCP adopts a more aggressive
host control strategy than the conventional Reno protocol so
as to shorten the recovery time on the detection of packet
loss and increase the network throughput. It has the following
flow-level description:

host: ẋi(t) = κixi(t− Ti)(wi − xi(t)ui(t)),

switch: ϵj żj(t) = −zj(t) + yj(t),

vj(t) = (zj(t)/cj)
Bj ,

in which the switch protocol cascades a low-pass filter
with a static M/M/1/B packet loss probability function, and
cj , Bj refer to the capacity and the buffer size of switch j.
Meanwhile κi, wi, ϵj are tunable network parameters. Given
the equilibrium x̂i, ûi, ŷj , the local dynamics of network
hosts and switches have the forms gi(s) = κiwix̂i/ûi

s+κix̂iûi
and

hj(s) =
kj/ϵj
s+1/ϵj

where kj =
dvj
dzj

(ŷj). Now consider a high-
throughput TCP network with 6 hosts severed by 4 switches.
Referring to the network literature, e.g., [26], the packet size
is set to 1000 bytes. For the hosts, the parameter wi is set to
1 for all i = 1, . . . , 6 while κi is set to 0.15 for i = 1, 2, 5, 6
and 0.3 for i = 3, 4. Their constant round trip times are
assumed to be 15, 10, 30, 27, 15 and 30ms, respectively. For
switches, we set ϵj to be 1.1, 1.1, 1.4 and 1.5 for j =
1, 2, 3 and 4. Their capacities (and buffer sizes) are assumed
to be 1000 Mbps (100 KB), 800 Mbps (300 KB), 800 Mbps
(200 KB) and 1000 Mbps (100 KB). The hosts and switches
are interconnected over the network topology defined by the
following routing matrix:

R0 =


1 0 1 0 1 1
0 1 0 0 1 1
1 0 1 1 0 1
0 1 1 1 1 0

.
The forward delays and backward delays are chosen ran-
domly under the constraints of positivity and constant round
trip time. Their values are not critical as the stability criteria
discussed herein are robust against them. We implemented
the nonlinear flow-level dynamics of the network using MAT-
LAB&Simulink and simulated the system for this specific
network configuration. The decentralized condition in [4,
Thm. 6.5] stipulates (κiwiTi

∑
j∈Ji

kj ŷj)/ûi < 1 for all
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Fig. 5: Left: the frequency snapshot of scaled hosts at some
ω in the interval (ω−π, ω1); Right: host rate output of the
flow-level simulation

i = 1, . . . , 6 to ensure network stability. However, for our
case, the left hand sides for all hosts are evaluated to be

0.4382 0.2475 1.4473 1.3197 0.3625 0.9767,

showing the third and the fourth hosts violate the condition.
Furthermore, we observed that ω−π = 5.2058 < ω1 =
5.3155. For each ω ∈ [ω−π, ω1], as depicted in the left plot of
Fig. 5, the conditions as derived in [13] cannot be met since
the scaled hosts fail to uniformly satisfy the small gain or
small phase condition. In contrast, our proposed condition
is met. In particular, the scaled hosts fall inside the right
half plane defined by the vertical line with real part being
cos(−π − ϕ (H(ıω))). This leads us to conclude that our
network is locally stable. The simulation result as shown in
the right plot of Fig. 5 verified our conclusion.

The above example shows that our proposed condition out-
performs the existing ones for certain network configuration.
In addition, it is not hard to verify that, at a fixed frequency,
the condition in [4, Thm. 6.5] ensures that Eqa. (6) holds.
Hence, our proposed condition can be naturally integrated
with the existing one in a frequencywise way, i.e., one just
has to ensure one of the two conditions to hold at each
positive frequency so as to certificate the network stability.

V. CONCLUSIONS
We have introduced a decentralized, entangled-gain-and-

phase condition that ensures the local stability of a specific
class of TCP networks. The condition leverages both the gain
and the phase information at each frequency, thus becoming
less conservative than those obtained by frequencywise ap-
plication of either small gain or small phase conditions. In
obtaining the condition, we have studied the properties of
DW shells, which integrate the concepts of the MIMO gains
and phases. In particular, we have precisely characterized the
union of DW shells of a class of matrices, whose structure
echoes the loop structure of typical TCP networks. The
non-conservatism of the proposed condition was validated
through a numerical example of a High-throughput TCP
network incorporating a smoothed rate feedback.
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