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Abstract— This paper considers the extension of data-enabled
predictive control (DeePC) to nonlinear systems via general
basis functions. Firstly, we formulate a basis-functions DeePC
behavioral predictor and identify necessary and sufficient
conditions for equivalence with a corresponding basis-functions
multi-step identified predictor. The derived conditions yield a
dynamic regularization cost function that enables a well-posed
(i.e., consistent with the multi-step identified predictor) basis-
functions formulation of nonlinear DeePC. Secondly, we develop
two alternative, computationally efficient basis-functions DeePC
formulations that use a simpler, sparse regularization cost func-
tion and ridge regression, respectively. An insightful relation
between Koopman DeePC and basis-functions DeePC is also
presented. The effectiveness of the developed basis-functions
DeePC formulations is shown on a benchmark nonlinear
pendulum state-space model, for both noise-free and noisy data,
while using only output measurements.

I. INTRODUCTION

Model predictive control (MPC) is one of the most suc-
cessful advanced control methodologies due to its capability
to handle constraints, optimize performance and anticipate
reference changes. A prediction model can be obtained from
physics or using identification. When such a model is sim-
ulated to predict future trajectories, modeling/identification
errors propagate. To mitigate this, a subspace predictive
control (SPC) algorithm was developed in [1] using subspace
identification techniques, which yields an unbiased identi-
fied multi-step predictor and removes the need of a state
estimator. More recently, a data-enabled predictive control
(DeePC) algorithm was developed in [2], which utilizes a
behavioral, data-based multi-step predictor. For noise-free
data, equivalence of MPC and DeePC was established in [2]
and equivalence of SPC and DeePC was established in [3]. In
the case of noisy data, DeePC requires a regularization cost
function to yield consistent predictions [4]. With the theo-
retical foundation of DeePC for linear systems sufficiently
developed, extensions of DeePC to nonlinear systems were
pursued, as most real-life systems are nonlinear.

In [5], a fundamental lemma for linear parameter varying
(LPV) systems was derived, which enabled a LPV formula-
tion of DeePC. A fundamental lemma extension for systems
linear in the state, but possibly with input and/or output
nonlinear terms was derived in [6], which also suggested
using basis functions for learning the nonlinear terms. In [7],
a data-driven predictive control algorithm for nonlinear sys-
tems was developed based on data-driven linearization along
closed-loop trajectories. In [8] data-driven predictive control
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methods were developed for feedback linearizable nonlinear
systems. In [9], reproducing kernel functions were utilized to
obtain a linear lifted state-space representation of a nonlinear
state-space model, accompanied with a corresponding DeePC
formulation. In [10], a similar path was followed but by
using a linear-in-control input Koopman lifting [11] instead.
In [12], the reproducing kernel Hilbert space (RKHS) theory
was utilized to construct a linear-in-the-parameters multi-step
predictor of the nonlinear autoregressive exogenous (NARX)
type. Then a kernelized DeePC formulation was developed
therein based on the analytic closed-form kernelized NARX
predictor, along with methods for robust predictions in the
presence of noisy output measurements. In [13], a structured
basis-functions representation of one-step NARX models was
used to derive a DeePC like algorithm, which solves a
tracking problem.

In this paper we consider the formulation of DeePC
based on general basis-functions transformation of system
trajectories. The term general means that we allow any class
of basis functions, such as radial, polynomial or orthogonal
basis functions, and we do not require structuring the basis
functions in terms of past/future or input/output data. To
analyse consistency of the basis-functions DeePC predic-
tions, we construct a corresponding basis-functions subspace
predictive control (SPC) problem, which utilizes unbiased
multi-step NARX predictors. Then we provide necessary and
sufficient conditions under which the predictions of basis-
functions DeePC are consistent (i.e., in a model equivalence
sense [14]) with the predictions of basis-functions SPC.
Furthermore, we derive a novel dynamic regularization cost
that enforces consistency of the basis-functions nonlinear
DeePC predictions also in the presence of noisy data.

II. PRELIMINARIES

Throughout this paper, for any finite number q ∈ N≥1 of
column vectors or functions {ξ1, . . . , ξq} we will make use
of the operator col(ξ1, . . . , ξq) := [ξ⊤1 , . . . , ξ⊤q ]⊤.

We consider controllable and observable MIMO nonlinear
systems with inputs u ∈ Rm and measured outputs y ∈ Rp

x(k + 1) = f̃(x(k), u(k)), k ∈ N,
y(k) = h̃(x(k)),

(1)

where x ∈ Rn is an unknown state and f̃ , h̃ are suitable
functions. In MPC, given an initial measured or estimated
state at time k ∈ N, the above system equations are used
to compute a sequence of predicted outputs y[1,N ](k) :=
{y(1|k), . . . , y(N |k)}, given a sequence of predicted inputs
u[0,N−1](k) := {u(0|k), . . . , u(N − 1|k)}.
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In indirect data-driven predictive control, multi-step
NARX predictors are identified from the input/measured
output data generated by system (1) and used to predict
y[1,N ](k) from past inputs and outputs and u[0,N−1](k), i.e.,

y[1,N ](k) := F(uini(k),yini(k),u[0,N−1](k)), (2)

where F := col(f1, . . . , fN ) and

uini(k) := col(u(k − Tini), . . . , u(k − 1)) ∈ RTinim,

yini(k) := col(y(k − Tini + 1), . . . , y(k)) ∈ RTinip,

and where Tini ∈ N≥1 defines the order of the NARX
dynamics (different orders can be used for inputs and outputs,
but for simplicity we use a common order). Note that since
each fi is a MIMO predictor, it is the aggregation of several
MISO predictors, i.e., fi = col(fi,1, . . . , fi,p) where each
fi,j predicts the j-th output, i.e., for i = 1, . . . , N

yj(i|k) = fi,j(uini(k),yini(k),u[0,N−1](k)),

y(i|k) = col(y1(i|k), . . . , yp(i|k)),

where j = 1, . . . , p and p is the number of outputs. As
opposed to a standard, one-step NARX prediction model,
which can produce a N -step ahead prediction of the output
by simulation, the multi-step NARX predictors (2) directly
compute a N -step ahead prediction of the output by evaluat-
ing in parallel N functions {f1, . . . , fN} that share the same
arguments, i.e., {uini(k),yini(k),u[0,N−1](k)}.

Next, for any k ≥ 0 (starting time instant in the data
vector) and j ≥ 1 (length of the data vector), define

ū(k, j) := col(u(k), . . . , u(k + j − 1)),

ȳ(k, j) := col(y(k), . . . , y(k + j − 1)).

Then we can define the Hankel matrices:

Up :=
[
ū(0, Tini) . . . ū(T − 1, Tini)

]
,

Yp :=
[
ȳ(1, Tini) . . . ȳ(T, Tini)

]
,

Uf :=
[
ū(Tini, N) . . . ū(Tini + T − 1, N)

]
,

Yf :=
[
ȳ(Tini + 1, N) . . . ȳ(Tini + T,N)

]
,

(3)

where T ≥ (m+ p)Tini +mN is the number of columns of
the Hankel matrices.

Then, if we parameterize the multi-step subspace predictor
F(uini,yini,u[0,N−1],Θ) using a matrix of parameters Θ of
suitable dimensions, we can formulate the nonlinear least
squares problem:

min
Θ

∥∥Yf − F̄(Up,Yp,Uf ,Θ)
∥∥2
F
, (4)

where ∥ · ∥F denotes the matrix Frobenius norm and, every
column of the matrix F̄(Up,Yp,Uf ,Θ) is obtained by
evaluating the map F defined in (2) with every column of
the data matrix

[
U⊤

p Y⊤
p U⊤

f

]⊤
as an argument.

III. MAIN RESULTS

In what follows we will define a basis-functions represen-
tation of the multi-step nonlinear predictor (2). To this end,
for every predicted output yj , j = 1, . . . , p, consider a finite
set of basis functions {ϕ0, ϕ1, . . . , ϕL}, L ∈ N≥1 and define

yj(i|k) =
L∑

l=0

θil,jϕl(uini(k),yini(k),u[0,N−1](k))

=
[
θi0,j . . . θiL,j

]
ϕ̄(uini(k),yini(k),u[0,N−1](k)),

which corresponds to a basis-functions representation of the
MISO functions fi,j using a common set of basis functions.
Above ϕ̄ := col(ϕ0, . . . , ϕL) and ϕ0(·) := 1 to account for a
vector of affine constant terms (biases) in (2). By stacking up
all predicted outputs for all future time instants i = 1, . . . , N
we obtain a linear-in-the-parameters representation of the
NARX multistep predictor F, i.e.,

y[1,N ](k) := Θϕ̄(uini(k),yini(k),u[0,N−1](k)). (5)

Next, define

Φ := ϕ̄(Up,Yp,Uf ) ∈ R(L+1)×T (6)

as a matrix of data obtained by evaluating the map ϕ̄ at
every column of the data matrix

[
U⊤

p Y⊤
p U⊤

f

]⊤
. More

precisely, the element in line i, 1 ≤ i ≤ L + 1 and column

j, 1 ≤ j ≤ T of Φ is given by ϕi−1

Up

Yp

Uf


:j

, where

Q:j denotes the j-th column of any matrix Q. Since every
column of the data matrix is a system trajectory, Φ represents
the basis-functions transformation of these trajectories.

Then the nonlinear least squares problem (4) becomes the
least squares problem:

min
Θ

∥Yf −ΘΦ∥2F . (7)

Assuming that the input data and the set of basis functions
are such that Φ has full row-rank, we obtain the least squares
optimal solution:

Θ∗ := YfΦ
† = YfΦ

⊤(ΦΦ⊤)−1. (8)

Next we can define the basis-functions SPC controller.

Problem III.1 (ϕ-SPC)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) (9a)

subject to constraints:
y[1,N ](k) = Θ∗ϕ̄(uini(k),yini(k),u[0,N−1](k)) (9b)

(y[1,N ](k),u[0,N−1](k)) ∈ YN × UN (9c)

where Ξ(k) := col(y[1,N ](k),u[0,N−1](k)) are the optimiza-
tion variables, Y,U are proper polytopic sets that represent
constraints, ls(y, u) := ∥y−yr∥2Q+∥u−ur∥2R is a stage cost
and lN (y) is a terminal cost, taken for simplicity as ls(y, 0).

The basis-functions DeePC controller is defined next.
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Problem III.2 (ϕ-DeePC)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) (10a)

subject to constraints:[
Φ
Yf

]
g(k) =

[
ϕ̄(uini(k),yini(k),u[0,N−1](k))

y[1,N ](k)

]
(10b)

(y[1,N ](k),u[0,N−1](k)) ∈ YN × UN (10c)

where Ξ(k) := col(y[1,N ](k),u[0,N−1](k),g(k)) are the
optimization variables.

Next, we introduce a notion of system model equivalence
(or consistency) inspired by [14].

Definition III.3 Two models {M1,M2} of system (1) are
called equivalent (or consistent) if for every constraints
admissible input sequence u[0,N−1] and initial condition

∥yM1

[1,N ] − y[1,N ]∥ = ∥yM2

[1,N ] − y[1,N ]∥, (11)

where y[1,N ] is the true system (1) output.

Notice that one way to establish equivalence/consistency of
two different models is to show that yM1

[1,N ] = yM2

[1,N ]. The
above consistency notion (which differs from the classical
consistency notion used in systems identification) is very
useful for nonlinear data-driven predictive control, as in the
nolinear case, the Willems’ fundamental lemma [15] does
not hold. Indeed, given a trustworthy, unbiased identified
model, such as (5), we can use its predictions as a guiding
standard for achieving consistent, i.e., equivalent, predictions
in nonlinear (ϕ-)DeePC. Hence, for want of a nonlinear
fundamental lemma all is not lost, as long as equivalence
with a consistent model is guaranteed, as stated next.

Lemma III.4 Consider the ϕ-SPC prediction model (9b) and
the ϕ-DeePC prediction model (10b) defined using the same
set of data {Up,Yp,Uf ,Yf} generated using system (1) and
the same set of basis functions {ϕ0, ϕ1, . . . ϕL}. Assume that
the basis-functions transformed data matrix Φ has full row-
rank. Let E := Yf − Θ∗Φ be the matrix of residuals of the
least squares problem (7) and let Sg := {Φ†ϕ̄(·) + ĝ : ĝ ∈
N (Φ)} ⊂ RT be a set of parameters g, where N (Φ) is the
null-space of Φ. Then the ϕ-SPC prediction model (9b) is
equivalent with the ϕ-DeePC prediction model (10b) if and
only if E ĝ = 0 for all ĝ ∈ N (Φ).

Proof: The proof follows a similar reasoning as in the
proof of Theorem 1 in [3], mutatis mutandis. From (10b),
it follows that Φg(k) = ϕ̄(uini(k),yini(k),u[0,N−1](k)) and
thus all variables g(k) that satisfy this system of equations
satisfy g(k) ∈ Sg = {Φ†ϕ̄(·)+ ĝ : ĝ ∈ N (Φ)}. Therefore,
predicted outputs generated by ϕ-DeePC satisfy

y[1,N ](k) ∈ {YfΦ
†ϕ̄(·) +Yf ĝ : ĝ ∈ N (Φ)}.

Based on (7)-(8) and ĝ ∈ N (Φ), we have that

Yf ĝ = (E +Θ∗Φ) ĝ = E ĝ +Θ∗Φĝ = E ĝ.

Thus, it holds that

yϕ−DeePC
[1,N ] (k) = YfΦ

†ϕ̄(·) = Θ∗ϕ̄(·) = yϕ−SPC
[1,N ]

if and only if E ĝ = 0 for all ĝ ∈ N (Φ).
In the deterministic, noise-free, linear case, the above

result recovers the result of Theorem 1 in [3] because in
the linear case the outputs can be exactly predicted from
finite persistently exciting data, i.e., E = 0. However, the
proof of Lemma III.4 shows that in the case of noise-free
data generated by a nonlinear system (or in the case of noisy
data generated by a linear or nonlinear system) the ϕ-DeePC
predictor will not necessarily be consistent with the unbiased
ϕ-SPC predictor. Hence, for nonlinear systems, even in
the deterministic, noise-free, case a regularization cost is
required to enforce consistent predictions. Alternatively, the
basis functions should be such that the nonlinear system
outputs can be exactly predicted from finite data.

Hence, since in general in the deterministic nonlinear case
or the noisy data case E ≠ 0, the remaining option to
achieve consistent predictions in ϕ-DeePC is to regularize
the variables g such that Sg ≈ {Φ†ϕ̄(·)} or, alternatively, to
regularize the variables ĝ to zero. The first option yields the
following regularized basis function DeePC controller.

Problem III.5 (ϕ-DeePC-R1)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) + l1g(g(k))

(12a)
subject to constraints:[

Φ
Yf

]
g(k) =

[
ϕ̄(uini(k),yini(k),u[0,N−1](k))

y[1,N ](k)

]
(12b)

(y[1,N ](k),u[0,N−1](k)) ∈ YN × UN (12c)

where
l1g(g(k)) := λ∥g(k)− gr(k)∥22, (13)

and gr(k) := Φ†ϕ̄(uini(k),yini(k),u[0,N−1](k)). The second
option above yields the following ϕ-DeePC controller.

Problem III.6 (ϕ-DeePC-R2)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) + l2g(ĝ(k))

(14a)
subject to constraints:
Φĝ(k) = 0 (14b)

Yf

(
Φ†ϕ̄(uini(k),yini(k),u[0,N−1](k)) + ĝ(k)

)
= y[1,N ](k)

(14c)

(y[1,N ](k),u[0,N−1](k)) ∈ YN × UN (14d)

where
l2g(ĝ(k)) := λ∥ĝ(k)∥22 (15)

and Ξ(k) := col(y[1,N ](k),u[0,N−1](k), ĝ(k)) are the op-
timization variables. The novel regularization cost (13) is
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called dynamic because gr(k) changes at every time instant
k. Notice that this is different from the typical regularization
costs used in linear DeePC [4], e.g., ∥g(k)∥22 (does not
yield a consistent DeePC predictor) or ∥(I − Π)g(k)∥22
(yields a consistent DeePC predictor) where Π is a constant
data matrix. Compared to the Π-regularization cost [4], the
developed dynamic cost is computationally more efficient
while achieving consistency with the SPC predictor.

The proof of Lemma III.4 shows that yϕ−DeePC−R1
[1,N ] (k) =

yϕ−DeePC−R2
[1,N ] (k) for the same cost function weighting matri-

ces and λ parameter, i.e., since g(k)−gr(k) = ĝ(k) for some
ĝ(k) ∈ N (Φ). However, Problem III.6 is computationally
more efficient than Problem III.5 as it uses a static quadratic
cost with a sparse Hessian.

The result of Lemma III.4 only assumes that the matrix
Φ has full row-rank, i.e., it does not assume noise-free data.
Hence, the ϕ-SPC equivalence conditions of Lemma III.4
also yield a consistent regularization method for noisy output
data. Moreover, the ϕ-DeePC-R2 predictor equations (14b)-
(14c) always admit the solution ĝ(k) = 0 even when the
output measurements are affected by noise, case in which the
ϕ-DeePC-R2 predictor reduces to the unbiased least squares
optimal ϕ-SPC predictor.

If the matrix Φ does not have full row-rank, a ridge re-
gression solution, as employed in [12] for kernelized DeePC,
can be computed as

ΘR∗ := YfΦ
⊤(ΦΦ⊤ + γI)−1 (16)

where γ is a positive scalar and I is an identity matrix of
suitable dimensions. This yields the next formulation.

Problem III.7 (Ridge ϕ-DeePC)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) (17a)

subject to constraints:[
ΦΦ⊤ + γI
YfΦ

⊤

]
g(k) =

[
ϕ̄(uini(k),yini(k),u[0,N−1](k))

y[1,N ](k)

]
(17b)

(y[1,N ](k),u[0,N−1](k)) ∈ YN × UN . (17c)

For a proof of consistency of the ridge ϕ-DeePC formulation
we refer to [16]. This formulation offers less flexibility to
optimize the bias variance trade-off compared to the ϕ-
DeePC-R2 formulation, but it can handle Φ matrices without
a full row-rank and it offers more flexibility to reduce
computational complexity. Indeed, notice that in ridge ϕ-
DeePC the dimension of the vector of variables g(k) ∈ RL+1

is dictated by the number of basis functions L+1 versus the
data size T , as for ϕ-DeePC(-R1,-R2). This is not the case
however for the kernelized DeePC in [12], which obtains
Φ ∈ RT×T as a Gram matrix, and thus, g(k) ∈ RT . Hence,
allowing for a non-square, fat matrix Φ in the ridge ϕ-DeePC
formulation provides a useful alternative to [12].

A. Relation with Koopman MPC

Koopman model predictive control was developed in [11]
as a method to apply linear MPC techniques to nonlinear
systems. To this end, the idea is to lift the state x(k) of the
original system (1) to a higher dimensional space where the
dynamics are linear, via a set of observables, which can be
parameterized using basis functions, i.e.,

z(k) := ϕ̄K(x(k)) := col(ϕ1,K(x(k)), . . . , ϕL,K(x(k))).

This can also be done based on input-output data as presented
in [17], which yields the following linear-in-control input
embedding of the nonlinear system (1):

z(k + 1) = Az(k) +Bu(k), k ∈ N,
y(k) = Cz(k),

z(0) = ϕ̄K(uini(0),yini(0)).

(18)

The above model can be used to define

Ψ :=


CA
CA2

...
CAN

 , Γ :=


CB 0 ... 0
CAB CB ... 0

...
...

. . .
...

CAN−1B CAN−2B ... CB

 ,

which yields the following Koopman MPC controller.

Problem III.8 (Koopman MPC)

min
Ξ(k)

lN (y(N |k)) +
N−1∑
i=0

ls(y(i|k), u(i|k)) (19a)

subject to constraints:
y[1,N ](k) = Ψz(0|k) + Γu[0,N−1](k) (19b)
z(0|k) = ϕ̄K(uini(k),yini(k)) (19c)

(y[1,N ](k),u[0,N−1](k)(k)) ∈ YN × UN , (19d)

where Ξ(k) := col(y[1,N ](k),u[0,N−1](k)) are the optimiza-
tion variables. Then, since the lifted model (18) is linear, the
following result is a consequence of the results in [2], [3].

Corollary III.9 Assume that the Koopman lifted state-space
system (18) is controllable and observable. Assume that
a persistently exciting input is used to generate noise-free
output data for system (18) such that the matrix ΦK :=
ϕ̄(Up,Yp,Uf ) has full row-rank, where

ϕ̄(uini,yini,u[0,N−1]) :=

[
ϕ̄K(uini,yini)
u[0,N−1]

]
=

[
z

u[0,N−1]

]
.

(20)
Consider the ϕ-SPC prediction model (9b) and the ϕ-DeePC
prediction model (10b) defined using the same set of data
{Up,Yp,Uf ,Yf} and the same set of basis functions
{ϕ1,K , . . . ϕL,K} and ϕ̄(·) defined as in (20). Then the Koop-
man MPC prediction model (19b)-(19c), the ϕ-SPC predic-
tion model (9b) and the ϕ-DeePC prediction model (10b) are
equivalent.

The above result shows that Koopman DeePC is a special
case of basis-functions DeePC, i.e., corresponding to basis
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functions that are linear in the present and future control
inputs. This implies that via the regularized ϕ-DeePC for-
mulations (R1, R2 or Ridge) developed in this paper, we can
obtain consistent Koopman DeePC formulations without sep-
arating the identification problem from the prediction/control
synthesis problem, as proposed in [10], while still solving a
single QP online.

For various choices of the basis-functions representations
we refer the interested reader to [16]. For stability analysis
of the developed basis-functions nonlinear DeePC controllers
we refer to the dissipativity-based approach put forward in
[18], which considers general nonlinear Hankel operators.

IV. ILLUSTRATIVE EXAMPLE

Consider the following state-space model obtained via
Euler discretization from the pendulum model in [19]:[

x1(k + 1)
x2(k + 1)

]
=

[
1− bTs

J 0
Ts 1

] [
x1(k)
x2(k)

]
+

[
Ts

J
0

]
u(k)

−
[
MLgTs

2J sin(x2(k))
0

]
y(k) = x2(k) + w(k),

(21)

where u(k) ∈ [−3, 3] and y(k) are the system input torque
and pendulum angle at time instant k, while J = ML2

3 ,
M = 1 kg and L = 1 m are the moment of inertia, mass
and length of the pendulum. Moreover, g = 9.81 m/s2 is the
gravitational acceleration, b = 0.1 is the friction coefficient
and the sampling time Ts = 1

30 s. The performance of
the developed basis-functions DeePC and SPC controllers
is evaluated for a prediction horizon N = 10, Q = 200
and R = 0.5 for all algorithms. Except for one simulation
when multiple λ values are specified in Figure 1, for both
ϕ-DeePC-R1 and -R2 we used λ = 1e+4 = 104; for Ridge
ϕ-DeePC we used γ = 1e− 3 = 10−3.

To generate the output data an open-loop identification ex-
periment was performed using a multisine input constructed
with the Matlab function idinput, with the parameters Range
[−4, 4], Band [0, 1], Period 1000, NumPeriod 1 and Sine
[25, 40, 1]. The data length is 1000 and Tini = 5 is used, as
estimated in [19]. For identification from noisy data white
noise was added to the output with standard deviation 0.01.

We have used basis functions that are linear in the present
and future inputs, as defined in (20). This allows us to
solve all predictive control formulations developed in this
paper via QP, using the quadprog solver, which provides
optimal solutions, so the comparison of the obtained results
is not hindered by local minima. To generate the basis
functions ϕK(uini,yini) we utilized a radial-basis-functions
neural network with 30 centers/neurons with Gaussian ac-
tivation functions. A hybrid neural network was created by
adding the 10 linear inputs u[0,N−1] to the 30 outputs of
the Gaussian neurons in PyTorch and then it was trained
to find the optimal centers using the Adam optimizer with
the MSE loss function, the learning rate 0.0005 and L2

regularization using the weight 10−7. This yields 30 basis
functions ϕK,l(z) := e−∥z−z∗

c,l∥
2
2 , where z = col(uini,yini),

Formulation JISE JIAE Ju Jtrack CPU
ϕ-SPC 0.0428 0.0840 2.0796 11.1387 0.0087
ϕ-DeePC-R1 0.0429 0.0841 2.0758 11.1373 0.0955
ϕ-DeePC-R2 0.0429 0.0841 2.0758 11.1373 0.0806
Ridge ϕ-DeePC 0.0429 0.0850 2.0773 11.1469 0.0083

TABLE I: Performance & mean CPU time for noiseless data.

l = 1, . . . , 30. By letting ϕ̄(uini,yini,u[0,N−1]) =
col(ϕK,1(z), . . . , ϕK,30(z),u[0,N−1]) we obtain a Φ ∈
R40×990 matrix, since N = 10, the data length is 1000 and
we used Hankel matrices to generate (Up,Yp,Uf ).

Firstly, we consider the noise-free data case and we test
the consistency of the ϕ-DeePC-R1 formulation for a small
value of the regularization weight λ = 1e − 1 = 0.1 versus
a large value λ = 1e + 4 = 104. The results are shown
in Figure 1 for tracking a sinusoidal reference with the
frequency of 1Hz, duration of 4 seconds and 100 samples
per second, i.e. t = 0 : 0.01 : 4, r = sin(2πFt), which is
used in all simulations. The initial state for the simulations
is x1(0) = 1.1 and x2(0) = 1.
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=1e-1
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-2

0

2

Control input

=1e-1

=1e+4

Fig. 1: ϕ-DeePC-R1: tracking performance, noise-free data.

We observe that for the small value of λ, the predictions
of ϕ-DeePC are not consistent as expected, i.e., the resulting
input is close to zero and the output is far from the reference,
while the predictive controller estimates that such an input
should give good results. However, once the variable λ is
sufficiently large, we obtain consistent predictions and good
tracking performance, as indicated by Lemma III.4.

To compare the performance and computational com-
plexity of all the derived data-driven predictive con-
trollers we report the following performance indices in
Table I: JISE = 1

Tsim

∑Tsim
k=1 ∥y(k) − r(k)∥22, JIAE =

1
Tsim

∑Tsim
k=1 ∥y(k) − r(k)∥1, Ju = 1

Tsim

∑Tsim
k=1 ∥u(k)∥1 and

Jtrack = 1
Tsim

(
∑Tsim

k=1 ∥Q 1
2 (y(k)− yr(k))∥22 + ∥R 1

2 (u(k)−
ur(k))∥22). The mean CPU time in seconds is also given.

We observe that as expected the ϕ-SPC and Ridge ϕ-
DeePC formulations are computationally much more effi-
cient, while the ϕ-DeePC-R1 formulation yields equivalent
performance with ϕ-DeePC-R2 and both yield slightly better
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Formulation JISE JIAE Ju Jtrack CPU
ϕ-SPC 0.0474 0.0979 2.2209 12.2987 0.0084
ϕ-DeePC-R1 0.0466 0.0932 2.1642 12.0210 0.1013
ϕ-DeePC-R2 0.0466 0.0932 2.1642 12.0210 0.0852
Ridge ϕ-DeePC 0.0467 0.0982 2.1815 12.0709 0.0090

TABLE II: Performance & mean CPU time for noisy data.

tracking performance overall. This is consistent with the
behavior of linear DeePC, which by optimizing the variance-
bias trade-off in the noisy data case, can obtain better
performance than linear SPC. In this case, although there
is no measurement noise, since the residuals of the ϕ-SPC
predictor are not equal to zero, there is a prediction error
and ϕ-DeePC-R1(-R2) can better compensate for it.
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-0.5
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0.5

1 Reference

-DeePC-R2

0 50 100 150 200 250 300 350

-2

0

2
Control input

Fig. 2: ϕ-DeePC-R2: tracking performance, noisy data.

Next, we show the tracking performance for noisy data
of the ϕ-DeePC-R2 in Figure 2. In this simulation also the
measured output used for feedback is affected by white noise
with the same standard deviation of 0.01. As guaranteed by
Lemma III.4, ϕ-DeePC-R2 is robust to noisy data and results
in very good tracking performance, despite a non-negligible
measurement noise standard deviation. The resulting perfor-
mance indicators are reported for all data-driven predictive
controllers in Table II along with mean CPU times.

In both Table I and Table II the reported performances
indices are divided by the simulation time (i.e., 391 sampling
instances) to obtain normalized values. Hence, even a small
difference indicates a notable improvement. E.g., if we
multiply the difference in tracking error between ϕ-SPC and
ϕ-DeePC-R1(R2) with 391, we obtain a total improvement
in tracking error over the complete simulation by 0.5474 for
the noise-free data and 108.5807 for the noisy data.

V. CONCLUSIONS

In this paper we provided a basis-functions formulation of
nonlinear data-enabled predictive control. We have presented
necessary and sufficient conditions for consistency of basis-
functions behavioral multi-step predictors in relation with
basis-functions identified multi-step predictors. From these

conditions we derived two novel regularized formulations
of basis-functions DeePC with guaranteed consistent predic-
tions for both noise-free and noisy data. The consistency
result in Lemma III.4 opens the door to using a wide range
of powerful machine learning methods for data-enabled pre-
dictive control of nonlinear systems, which is very appealing
for real-life applications.
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