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Abstract—Eco-driving emerges as a cost-effective and efficient
strategy to mitigate greenhouse gas emissions in urban trans-
portation networks. Acknowledging the persuasive influence
of incentives in shaping driver behavior, this paper presents
the ‘eco-planner,’ a digital platform devised to promote eco-
driving practices in urban transportation. At the outset of their
trips, users provide the platform with their trip details and
travel time preferences, enabling the eco-planner to formulate
personalized eco-driving recommendations and corresponding
incentives, while adhering to its budgetary constraints. Upon
trip completion, incentives are transferred to users who comply
with the recommendations and effectively reduce their emis-
sions. By comparing our proposed incentive mechanism with
a baseline scheme that offers uniform incentives to all users,
we demonstrate that our approach achieves superior emission
reductions and increased user compliance with a smaller budget.

I. INTRODUCTION

In many countries, transportation accounts for a significant

share of greenhouse gas emissions, ranging from a quarter

to one-third of the total emissions. Numerous strategies are

being employed to improve fuel efficiency and decrease

emissions in on-road vehicles. These approaches encompass

advancements in engine and vehicle technologies as well as

improvements in fuel quality. However, eco-driving stands

out as the most cost-effective and highly efficient means of

reducing emissions from road transportation [1]. Research

has consistently demonstrated that eco-driving practices can

yield substantial reductions in vehicle emissions, ranging

from 10% to as high as 45% [2]. These findings underscore

the immediate and significant role that eco-driving can play

in addressing the challenge of climate change.

Eco-driving is a set of techniques that aim to improve fuel

efficiency and reduce emissions by optimizing vehicle oper-

ation and driver behavior. Some of the techniques include:
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• Selecting less congested routes: This reduces fuel con-

sumption and emissions by minimizing idling and stop-

and-go traffic.

• Improving driving style: This includes avoiding aggres-

sive acceleration and braking, and maintaining a steady

speed. These techniques reduce fuel consumption and

emissions by minimizing energy losses due to inefficient

vehicle operation.

It is important to note that opting for less congested routes

may result in longer travel times, and improving driving style

might require adjustments that some drivers find inconve-

nient. To overcome these challenges and promote eco-driving,

there may be a need for transportation system operators to

introduce incentives that encourage individuals to adopt these

practices for the purpose of emission reduction.

A considerable amount of evidence supports the effec-

tiveness of incentive programs in promoting eco-driving.

For instance, [3] observed a reduction of over 10% in fuel

consumption and emissions after monetary incentives were

introduced to bus drivers. Remarkably, they found that the

cost savings in fuel for bus companies exceeded the incen-

tives provided to drivers. Comparable results were obtained

by [4] and [5] when incentivizing heavy-duty vehicle drivers

in logistic companies. Furthermore, behavioral studies, such

as [6] and [7], demonstrate that monetary incentives are more

effective in changing driver behavior than providing infor-

mational content on eco-driving through in-vehicle human-

machine interfaces. Nevertheless, the incentive schemes pre-

sented in this body of literature are overly simplistic and do

not cater to various driver types with differing preferences.

In this paper, we propose a digital platform that incen-

tivizes human drivers to eco-drive with the goal of reducing

the overall emissions of an urban transportation network.

At the beginning of their trips, the users provide private

information and preferences to the platform, such as their

origin and destination, vehicle type, and preferred travel time

vs. emissions trade-offs. Using this information, the platform

computes feasible eco-routing and eco-driving strategies for

each user. Then, it devises personalized incentives and eco-

driving recommendations to users by minimizing overall

emissions subject to budget constraints.

The overarching goal of the platform is to minimize the

network’s emissions while optimally allocating a limited

budget as incentives to drivers. Our approach is unique

in its integration of a traffic simulator into the incentive

mechanism. The simulator predicts traffic conditions and

calculates corresponding eco-driving recommendations and
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optimal incentives that can potentially reduce emissions by

a certain amount. This feature allows us to account for real-

time traffic variations in our incentive strategy.

The paper is organized as follows. Section II introduces the

incentive mechanism for eco-driving. Section III delves into

some technical observations and remarks. Section IV presents

numerical experiments. Finally, Section V summarizes the

findings and highlights potential future directions.

II. INCENTIVE MECHANISM FOR ECO-DRIVING

In this section, we present a model of incentive mechanism

for drivers in a transportation network. Drivers are assumed

to be cost minimizers who choose an optimal outcome over

their feasible sets in terms of emissions and travel time. We

propose a method for computing these feasible sets using a

microsimulator for traffic.

A. Model Setup and Assumptions

We consider an urban transportation network denoted by a

graph N = (I,L), where I denotes the set of intersections

and L ⊆ I × I denotes the set of links/roads. We aim

to design an eco-planner digital platform P that plans and

recommends eco-driving strategies to its users in the network

N before they embark on their trips. The eco-planner P

also commits to providing certain incentives if the users

comply with the eco-driving recommendations to reduce their

emissions at the expense of increased travel time. The users

who subscribe to P are denoted by a set U = {1, . . . , n},

where n denotes the number of users.

Before starting her commute, each user i, i ∈ U , asks P to

plan the journey by providing her private information, which

includes the following:

• Origin-Destination pair (oi, di) ∈ L × L, which corre-

sponds to the start and end points of i’s journey

• Vehicle type vi ∈ V , where V = {v1, . . . , vl} is the set

of finite number of vehicle types

• Emissions vs. travel time trade-off parameter ϑi ∈ [0, 1].

For instance, vehicle type may correspond to not only its

classification (sedan, SUV, etc.) but also its engine and fuel

types. This information is needed so that P can predict the

emissions of user i on her commute between (oi, di) on

different routes with different traffic conditions. Emissions

vs. travel time trade-off parameter ϑi is needed to assess the

urgency of user i for her trip, and whether she will accept a

certain amount of incentive to reduce her emissions by eco-

driving by compromising slightly on her travel time. In this

paper, we assume that each user i provides her information

(oi, di, vi, ϑi) truthfully.

After obtaining the private information (oi, di, vi, ϑi)i∈U ,

the eco-planner P predicts the best eco-driving strategies

in terms of a route choice and driving style for each user

depending on the predicted traffic conditions for their trips.

Then, P recommends those strategies and persuades the users

to follow those strategies by offering incentives γ1, . . . , γn
subject to P’s budget constraint

∑n

i=1
γi ≤ B, where

B ∈ R>0 is the total budget of P. The users complete

their trips by either complying or not complying with the

eco-driving recommendations, and their commutes result in

a certain outcome in terms of their individual emissions.

Finally, P transfers the incentives to the users based on their

compliance with the recommendations and to compensate

for their increased travel times due to their eco-driving and

reducing emissions. The incentive mechanism is summarized

in Fig. 1.

As stated earlier, we assume that users are truthful and do

not strategically manipulate their information. This avoids

the issue of adverse selection. Incorporating incentive com-

patibility constraints will be a topic of our future work.

Secondly, to address the issue of moral hazard, whereby

the behavior and outcomes of users are not observable, we

assume P employs vehicle telematics [8], [9] to measure the

driving style and emissions of each user during her commute.

Finally, we assume traffic conditions and network structures

where eco-driving results in lower emissions and longer

travel times. For example, choosing a longer route with fewer

intersections would yield lower emissions as compared to

choosing a shorter route through an urban area with plenty

of intersections and stop signs. The former route may result

in longer travel times, but because of smooth driving, it

would result in lower emissions than the latter route. It is

important to remark that there could be other scenarios, e.g.,

eco-driving near signalized intersections [10], where eco-

driving improves both travel times and emissions. However,

in these scenarios, user’s and eco-planner’s objectives are

aligned, and the issue becomes one of information design

rather than incentive design.

B. Users’ Objectives

Since eco-driving strategies can increase travel time by re-

quiring drivers to take longer routes or drive at slower speeds,

we assume that drivers, being cost minimizers, optimize their

driving behaviors based on the utilities they place on reducing

their emissions/fuel consumption versus reducing their travel

times. Let xi = [ xt
i xe

i ]⊤ ∈ Xi ⊂ R
2

>0
denote the outcome

of user i’s commute between the origin oi and the destination

di, where xe
i denotes her emissions and xt

i denotes her travel

time. Here, Xi is assumed to be a convex set denoting all

feasible emission-travel time pairs achievable via different

driving styles and route choices for (oi, di) given i’s vehicle

type vi and traffic conditions in the network N . In other

words, each point xi ∈ Xi denotes an emissions-travel time

outcome corresponding to a certain route and driving style.

Each user i chooses her route and driving style that

minimizes her cost function

ci(xi) = (1− ϑi)x
t
i + ϑix

e
i

where ϑi ∈ [0, 1] is user i’s emissions vs. travel time trade-

off parameter. In other words, i solves the following convex

optimization problem:

minimize ci(xi) , θ⊤i xi subject to xi ∈ Xi (1)
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Users
Eco-planner

Provide information

about their trips and

their preferences

Proposes optimal eco-

driving recommendations

and incentives to the users

Complete their trips by either

complying or not complying with

the eco-driving recommendations

Transfers incentives to the

users who complied with the

eco-driving recommendations

Fig. 1: Steps in the proposed incentive mechanism (from left to right).

where θi = [ 1− ϑi ϑi ]
⊤ is i’s preference parameter. Let

xnom
i = argmin

xi∈Xi

ci(xi) (2)

be the nominal outcome of user i.

C. Computation of Feasible Sets

Let Ri denote the set of routes for the origin-destination

pair (oi, di), where ri,j ∈ Ri is the j-th route containing

a path in N starting from oi and ending at di. The eco-

planner invokes a traffic simulator S to compute the feasible

sets of each user. In other words, the simulator S takes the

network N , origin-destination pair (oi, di), and vehicle type

vi as inputs, and outputs the feasible set Xi ⊂ R
2

>0
.

The first step of the simulator involves computation of p
shortest routes Ri = (ri,1, . . . , ri,p) in N between (oi, di).
After that, for every j ∈ [p], S computes a set of m ∈ N

points X̂ij = {x1

i,j , . . . , x
m
i,j}, which results from simulating

different eco-driving as well as normal driving styles on route

ri,j under different traffic conditions. Finally, S outputs

Xi = conv(X̂i1, . . . , X̂ip) (3)

where conv(·) denotes the convex hull. Notice that comput-

ing feasible sets as in (3) renders (1) to be a linear program.

D. Incentive Mechanisms

Before starting their trips, users interact with the eco-

planner by providing their information (see Fig. 1). The

eco-planner then proposes incentives γ1, . . . , γn to the users

conditioned on their following corresponding eco-driving

strategies to reduce emissions. Here, γi ∈ R≥0 denotes the

incentive user i receives from the eco-planner P at the end

of her trip between (oi, di) if she followed the recommended

route and eco-driving strategies to achieve the recommended

outcome xrec
i ∈ Xi.

1) Baseline Incentive Mechanism: In this paper, we con-

sider the baseline incentive mechanism as equally allocating

the total budget among all users of the same type, where

we do not consider their parameters ϑi’s. For instance, if

all the users have the same origin-destination pairs (oi, di)
and the same vehicle types vi, then each user i is offered

the same incentive γBL
i = B/n conditioned on achieving

the recommended outcome xrec
i . In this paper, we use this

baseline mechanism to compare with our proposed optimal

mechanism. In our future work, other baselines will also be

devised for comparison.

2) Optimal Incentive Mechanism: To compute the optimal

eco-driving recommendations and corresponding incentives

for each user while adhering to budget constraints, the

proposed incentive mechanism (Fig. 1) involves the following

steps:

1) Users report their information (oi, di, vi, ϑi)i=1,...,n to

the eco-planner P.

2) P invokes the simulator S and obtains

Xi = S(N , oi, di, vi), ∀i ∈ [n].

3) Using Xi, P solves (1) and finds xnom
i from (2).

4) P solves the following linear program:

minimize ξ⊤xrec (4a)

subject to ci(x
rec
i )− γi ≤ ci(x

nom
i ) (4b)

n
∑

i=1

γi ≤ B, γi ≥ 0 (4c)

xrec
i ∈ Xi, ∀i ∈ [n] (4d)

where xrec = [ xrec
1

. . . xrec
n ] ∈ X1 × · · · ×Xn ⊂ R

2n
>0

is a vector of outcomes recommended by P, B is the

total budget of P, and

ξ⊤ = 1⊤n ⊗ [ 0 1 ] = [ 0 1 . . . 0 1 ]

is a vector indicating that the goal of P is to minimize

the total emissions of all users subject to the budget

constraint (4c).

5) P proposes incentives γ1, . . . , γn to the users condi-

tioned on complying with the recommended routes and

eco-driving strategies that yield the emission-travel time

outcomes xrec
1
, . . . , xrec

n , respectively.

Notice that the linear program (4) can be written in the

standard form by choosing

γi = θ⊤i (x
rec
i − xnom

i ) (5)

and rewriting the convex polytope Xi in (3) as

Xi = {xi ∈ R
2

>0
: Aixi ≤ bi} (6)
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where Ai ∈ R
k×2 and bi ∈ R

k with k ≤ mp. Here, p
corresponds to the number of routes chosen between the

origin oi and the destination di, and m is the number of

different driving styles simulated on every route by S. Thus,

we can equivalently write (4) as

minimize ξ⊤xrec (7a)

subject to Axrec ≤ β (7b)

where

A =











θ1 . . . θn
A1

. . .

An











, β =











B + θ⊤xnom

b1
...

bn











with θ⊤ = [ θ1 . . . θn ] and xnom = [ xnom
1

. . . xnom
n ]⊤.

III. TECHNICAL OBSERVATIONS AND REMARKS

A. Computed Feasible Sets are only Approximations

We remark that the feasible sets obtained from the sim-

ulator are only approximations of the true feasible sets of

the users, which can be refined by simulating more number

m of traffic scenarios and driving styles. However, using

approximated feasible sets does not significantly impact

the incentive mechanism. Depending on the quality of the

approximation, the eco-planner P can relax the terms of the

contract by transferring the incentive to user i if her actual

outcome xi at the end of the trip turned out to be inside a

ball of certain radius around the recommended outcome xrec
i .

To elucidate, the eco-planner P computes an approximated

feasible set X̂i ⊆ Xi from the simulator S, X̂i is a convex

polytope. The inclusion of X̂i inside Xi is because Xi is

convex and no simulated point can be outside of Xi. In

the case where S is able to simulate the boundary points

of Xi, X̂i will be a convex polytope inscribed inside Xi.

Nevertheless, the eco-planner P will compute the nominal

solution x̂nom
i ∈ X̂i to (2), which will be a projection of

the true xnom
i ∈ Xi onto X̂i. Putting computational issues

aside, if the simulator S simulates a very large number of

cases m, the approximation X̂i can be arbitrarily improved.

Keeping this in mind, P transfers the incentive if the actual

outcome xi ∈ Xi is with an ε-Euclidean distance from the

recommended outcome xrec
i ∈ X̂i.

B. Nominal Outcomes are on the Pareto Fronts

It is important to note that the nominal solution xnom
i

of user i lies at a certain part of the boundary of her

feasible set Xi. To explain this fact, we define the following

notions. We say xi = [ xt
i xe

i ]⊤ ∈ Xi pareto dominates

x̃i = [ x̃t
i x̃e

i ]⊤ ∈ Xi if either (i) xt
i ≤ x̃t

i and xe
i < x̃e

i OR

(ii) xt
i < x̃t

i and xe
i ≤ x̃e

i . Moreover, xi is said to be pareto

optimal if there does not exist x̃i ∈ Xi that pareto dominates

xi. Then, the pareto front of the feasible Xi is defined as

PF(Xi) = {xi ∈ Xi : xi is pareto optimal}

which will be a subset of Xi’s boundary.

In light of the above, we have xnom
i ∈ PF(Xi), where

xnom
i is the solution of the convex problem (2). To prove

this claim, assume xnom
i /∈ PF(Xi). Then, xnom

i is not pareto

optimal and there exists v ∈ R
2

≥0
, v 6= 0, such that xnom

i − v
pareto dominates xnom

i and

ci(x
nom
i ) = θ⊤i x

nom
i > θ⊤i (x

nom
i − v) = ci(x

nom
i − v)

which is a contradiction becausue xnom
i being the solution of

(2) is the minimizer of ci(·).

C. Users can Report their Preferred Travel Times

Some might argue that reporting the emissions vs. travel

time trade-off parameter, ϑi, can be challenging for users

in reality. Aside from its vague and technical interpretation,

it is possible that users may not know the exact value of

their parameters, let alone report them truthfully. Instead, the

eco-planner may ask the user to report their preferred (i.e.,

nominal) travel time xt,nom
i ∈ Xi between oi and di. Notice

that this report has to correspond to achievable travel time on

(oi, di) at the time of report. Since we know xnom
i ∈ PF(Xi),

we can find the corresponding emissions xe,nom
i that i would

incur for their nominal route selection and driving style.

Then, the question is how to estimate θi = [ ϑi 1− ϑi ]
⊤

given that xnom
i is the minimizer of (1)?

A simple algorithm to estimate θi is as follows. Sample

ϑi ∈ [0, 1] and obtain 0 = ϑ1

i < ϑ2

i < · · · < ϑs
i = 1 for

some sufficiently large s ∈ N. For every ϑj
i , solve (2) and

obtain the solution x
PFj

i ∈ PF(Xi). Then,

s∗ = argmin
j∈{1,...,s}

‖xnom
i − x

PFj

i ‖

and

θ̂i =

[

ϑs∗

i

1− ϑs∗

i

]

. (8)

One can refine this solution arbitrarily by subsequently

sampling again around xPFs∗

i , where the idea is to coarsely

sample initially and then keep on refining the samples around

the closest solutions in the next iteration.

When users report their preferred travel times instead

of their emissions vs. travel time trade-off parameters, the

steps involved in the incentive mechanism can be modified

accordingly and the linear program (7) is written as

minimize ξ⊤xrec (9a)

subject to Âxrec ≤ β̂ (9b)

where

Â =











θ̂1 . . . θ̂n
Â1

. . .

Ân











, β̂ =











B + θ̂⊤xnom

b̂1
...

b̂n











with θ̂⊤ = [ θ̂1 . . . θ̂n ]. P then proposes incentives

γ1, . . . , γn to the users, where

γi = θ̂⊤i (x
rec
i − xnom

i ).
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Origin Destination

Route 2 (Longer, via a boulevard)

Route 1 (Shorter, via an urban area)

Fig. 2: Illustration of the road network with two alternative

routes used in the simulation experiments.

The incentives are conditioned on the recommended

emission-travel time outcomes xrec
1
, . . . , xrec

n , respectively,

which are achieved by complying with the recommended

routes and eco-driving strategies

IV. EXPERIMENTS

A. Road Network

We set up a controlled experiment with a simple road

network using the Simulation of Urban MObility (SUMO)

[11]. The road network consists of two routes for one origin-

destination pair: the first route through the urban area is

shorter but includes two stop signs, while the second route

using a boulevard/highway, although longer, is uninterrupted

by stop signs (Fig. 2). The speed limit for both routes is set

to be the same. The first route, with two stop signs and one

static traffic signal, is shorter and takes shorter travel time, but

it emits larger amounts of carbon emissions because of stop-

and-go traffic behavior. The second route is longer and may

take longer travel time, but it is more eco-friendly because

of a smoother traffic.

B. Experiment Design

Our experiment design is structured to analyze the trade-

offs between travel time and carbon emissions, directly in-

formed by the route choice for a given OD pair. We computa-

tionally generated free-flow traffic conditions for both routes,

ensuring an unbiased assessment of their inherent characteris-

tics. All vehicles follow the Intelligent Driver Model (IDM),

which is a time-continuous car-following model proposed

by [12]. The emission model used in the simulation is

based on the Handbook Emission Factors for Road Transport

(HBEFA). Route 1, while shorter, was observed to produce

higher CO emissions because of the stops imposed by the

stop signs and a traffic signal. In contrast, Route 2, despite

its longer distance, resulted in lower emissions by benefiting

from a continuous driving flow without interruptions.

The collected data points, representative of the distinct

travel times and emissions outcomes for each route, helped

construct a convex hull that represents the feasible region

of outcomes (Fig. 3). This convex hull is instrumental in

visualizing the potential impact of different driving behaviors

and route selections on travel time and carbon monoxide

emissions. For each type, the nominal (circle) and recom-

mended (diamond) outcome points are distinctly marked,

Fig. 3: The feasible set computed from the feasible outcome

points of both route 1 and 2. The nominal and recommended

outcome points for the two driver types are indicated by

circles and diamonds.

providing insight into the specific eco-driving recommen-

dations by the incentive mechanism. This visual represen-

tation underscores the emission-saving potential of Route 2

despite its longer travel times, aligning with the eco-driving

principles encouraged by the study’s incentive mechanism.

Our approach allows us to evaluate the effectiveness of the

proposed incentive mechanism in guiding drivers towards

choices that align better with eco-friendly driving principles.

As described in Section II-D, we consider two incen-

tive mechanisms: baseline and optimal (proposed). In the

baseline, we propose equal incentive γBL
i = B/n to all

the users. Let xrec,r2
i ∈ Xi be a recommendation to users

that corresponds to the least travel time on feasible points

corresponding to route 2. Then, user i complies with this

recommendation under baseline incentive if and only if

γBL
i ≥ θ⊤i (x

rec,r2
i − xnom

i ).

Similarly, given budget B, the optimal incentive mechanism

yields γ1, . . . , γn, where the user i complies with the recom-

mendation xrec,r2
i if and only if

γi ≥ θ⊤i (x
rec,r2
i − xnom

i ).

C. Experimental Results

In Fig. 4a, we illustrate the correlation between budget

allocation and driver compliance with eco-driving recom-

mendations. It compares the result of the linear program

in (9) and baseline incentive across different budget levels.

It is apparent that under baseline incentives, compliance

escalates swiftly with a slight increase in budget, plateau-

ing at a compliance ratio of 0.5. Beyond this point, the

compliance rate remains constant, indicating that additional

incentives under this model do not further motivate drivers.

In contrast, under optimal incentives, we observe a gradual

yet consistent increase in compliance as the budget grows,

eventually surpassing the baseline once half of the drivers

are compliant. This trend suggests that the optimal incentive
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Fig. 4: Incentive mechanism under different levels of budget.

structure is more effective at progressively encouraging a

larger proportion of drivers to adopt eco-driving practices,

particularly in scenarios where the budget is ample enough

to support such incentivization.

Fig. 4b illustrates the relationship between the budget allo-

cated for incentives and the total CO emissions and average

travel time from vehicles within the simulation. Both are

normalized for comparative purposes. The graph compares

the efficacy of baseline incentives to that of the proposed

optimal incentives. As shown in Fig. 4b, both incentive

schemes initially cause a sharp decrease in emissions as

the budget is increased, demonstrating that even minimal

financial motivation can significantly alter driving behaviors.

However, the baseline incentives exhibit a more extended

plateau compared to the optimal incentives, indicating a point

where additional funds cease to yield proportional reductions

in emissions. Conversely, the optimal incentives lead to a

more consistent and prolonged decline in emissions with

increasing budgets, highlighting their effectiveness in contin-

uously promoting eco-friendly driving practices. Meanwhile,

Fig. 4b reveals an increase in average travel time concurrent

with efforts to reduce carbon emissions, emphasizing the

importance of a balanced strategy that judiciously weighs

budget spending against both environmental impact and time-

savings.

V. CONCLUSION AND FUTURE DIRECTIONS

To promote eco-driving in urban transportation networks,

we have developed an incentive mechanism in the form of

a digital platform called eco-planner. Before starting their

trips, users report their origins, destinations, vehicle types,

and preferences for emissions versus travel time trade-offs.

The eco-planner then simulates different traffic conditions

and driving styles to generate optimal eco-driving recom-

mendations and incentives for each user, subject to a budget

constraint. In other words, eco-planner guarantees certain

incentives to users who follow its recommendations. Users

decide whether to comply with the recommendations based

on the incentives offered. At the end of each trip, the eco-

planner transfers the incentives to users who comply with the

recommendations and reduce their emissions.

Several features of the incentive mechanism are notewor-

thy. First, the simulator efficiently computes the feasible

outcomes for each user, helping the eco-planner to optimally

choose incentives for all users. Second, the nominal outcomes

of the users lie on the Pareto front of their feasible sets, en-

abling the platform to compute each user’s incentive exactly

using a simple expression (5) depending on the corresponding

recommendation.

Our future work includes modifying the incentive mech-

anism to be incentive-compatible, meaning that strategic

users cannot maximize their rewards by reporting false

information. Additionally, we will consider the effects of

non-participating traffic on eco-driving of the participating

users. In this scenario, the feasible sets computed by the

platform may differ significantly from the actual feasible sets

of the users, due to different traffic conditions and/or coupling

between the driving behavior of users who share the same

routes. By addressing these challenges, we can improve our

incentive mechanism and make it more effective and suitable

for deploying on real transportation networks.
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