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Abstract— A method for designing inputs in active fault
diagnosis combined with a robust model reference adaptive
controller is proposed in this paper. The approach ensures that
the output of a plant with unknown parameters converges to a
reference model during the diagnosis process. The paper proves
that Lyapunov stability can be guaranteed, given a condition
on the parameters of the robust adaptive law. Additionally, a
novel set-membership filter, employing constrained zonotopes,
is introduced. This filter is computationally efficient and does
not require outer approximations. The active fault diagnosis is
accomplished by generating reference inputs online, allowing
the output sets to separate for different plant models. A
demonstration of the proposed method on a numerical example
is provided in the final.

I. INTRODUCTION

Fault diagnosis has been a prominent topic for the past
three decades in the field of control, with various approaches
being explored [1], [2], [3], [4]. Typically, in the model-based
category, fault diagnosis methods are classified as passive
or active. The former diagnoses faults by analyzing the
disparities between available input-output data and system
models or historical data [5], [6]. On the other hand, the
latter involves designing inputs injected into the system to
gather additional information about the faults, enabling their
distinction and diagnosis [7]–[13]. The challenges in active
fault diagnosis (AFD) revolve around ensuring reliability and
robustness despite uncertainties, such as unmodeled dynam-
ics, disturbances, and measurement noises. To address these
challenges, many researchers utilize mathematical tools, such
as probability distributions and convex sets, to describe
uncertainties. These tools enable the development of rational
input design methods [9], [10], [14], [15].

In the realm of active fault diagnosis (AFD), the literature
often neglects the stability aspect of the designed inputs.
In fact, the inputs are intentionally crafted to counteract
convergence and stability. The fundamental principle guiding
the design of AFD inputs is to differentiate the outputs’ dis-
tributions from various fault and fault-free models, whether
these distributions are defined by probability distribution
functions or different convex sets. Due to the alignment
between input-output data and the system model, the actual
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output should fall within a single distribution with the highest
probability, serving as evidence to diagnose the fault model.
In previous studies such as [10] and [15], the separation
of outputs is transformed into constraints, minimizing a
performance index related to the inputs. In some online AFD
methods, researchers propose analytic metrics to gauge the
degree of separation among different output distributions,
such as Bhattacharyya distance [9], separation tendency
[11], and dispersity [12]. Subsequently, the AFD task is
formulated as an optimization problem aimed at maximizing
these analytic metrics. In essence, all the methods mentioned
rely on solving optimization problems. However, given the
initial lack of knowledge about the actual system model,
these optimization problems cannot impose specific stability
or convergence constraints on the inputs in line with the real
system model.

To solve the above concerns, we propose a stability-
assured AFD method based on model reference adaptive
control (MRAC) in this paper. MRAC enables the output of
a plant, potentially having unknown parameters, to converge
to the output of a reference model. The adaptive controller
includes adaptive gains, auxiliary signals, and reference
inputs. The auxiliary signals are obtainable at each time
instance, and the convergence of output is determined by the
adaptive law of the gains. To address bounded disturbances
and measurement noises, we employ a robust adaptive law
with σ-modification, preventing parameter drift [16], [17].
We establish that uniformly ultimate boundedness can be
ensured under specific conditions on the parameters of the
robust adaptive law. All uncertainties are characterized using
constrained zonotopes, which are closed under Minkowski
sums, linear transformations, and intersections [18]. Lever-
aging these properties, we introduce an exact set-membership
filtering method. Compared to previous works [19], [20],
our method is more computationally efficient and does
not require outer approximations. AFD is accomplished by
designing reference inputs to maximize the distance between
different prediction output sets online. This optimization task
is efficiently solved by evaluating objective function values
at the vertices of feasible regions.

The reminder of this paper is organized as follows. Section
II presents the problem statement and related models. The
robust model reference adaptive controller is provided in
Section III, and then the convergence of the error model is
proved by a Lyapunov function. The input design method for
online AFD is proposed based on set-membership filtering
in Section IV. A numerical example is given in Section V.
The conclusion is drawn in Section VI.
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Notations and preliminaries: Rn×m is the set of all real-
valued matrices with the dimension of n×m, and specially,
Rn := Rn×1. Zero matrix is represented by 0, and I is
the identity matrix. The trace of a matrix X ∈ Rn×n is
represented by tr(X). The maximum and minimum eigen-
values of a real symmetric X ∈ Rn×n are represented by
λmax(X) and λmin(X), respectively. For a vector or matrix
X ∈ Rn×m, the symbol ‖X‖ =

√
tr(XTX) represents its

Frobenius norm. When X is a vector, ‖X‖ is its Euclidean
norm. Given two sets X,Y ⊂ Rn, their Minkowski sum is
defined as X⊕Y = {x+y | ∀x ∈ X,∀y ∈ Y }. A constrained
zonotope is described as X = {c+Rξ | ‖ξ‖∞ ≤ 1, Hξ = b},
and represented by 〈c,R,H, b〉 for brevity. When H and b
are omitted, a constrained zonotope becomes a zonotope,
represented by 〈c,R〉 [18].

II. PROBLEM STATEMENT
The following discrete-time linear time-invariant (LTI)

system are considered,

x(t+ 1) = Aix(t) +Biu(t) + w(t), (1a)
y(t) = Cix(t) +Du(t) + v(t), (1b)

with the time index t ∈ N, state x(t) ∈ Rnx , output y(t) ∈
Rny , input u(t) ∈ Rnu , unknown input vector w(t) ∈ Rnw

(e.g., disturbances, unmodeled dynamics), and measurement
noise v(t) ∈ Rnv . The coefficient matrices of w(t) and v(t)
are omitted for the simplicity of main results without loss
of generality. There are a total of m models with the same
structure but different parameter matrices Ai, Bi, and Ci
indexed by i ∈ I = {1, . . . ,m}. All the models have the
same matrix D. The index i = 1 represents the nominal
model and the rest are faulty. The unknown input w(t) and
measurement noise v(t) lay within constrained zonotopes,
i.e., w(t) ∈ 〈cw, Rw, Hw, bw〉, and v(t) ∈ 〈cv, Rv, Hv, bv〉.

The system switches from the nominal model to one of
the m − 1 faulty models if a fault occurs. In previous
work of AFD, the basic principle is designing inputs to
separate the outputs of different models away from each
other, so that the fault can be identified by the location
of the system outputs. The central idea of these methods
is to enhance the faulty manifestation of different models.
However, the stability and control performance cannot be
considered in these AFD formulation. In this paper, an AFD
method that ensures stability is proposed based on model
reference adaptive control. A robust adaptive controller is
given for the plant to track the output of a reference model,
whether the plant is the nominal model or any faulty model.

The reference model is given as

xm(t+ 1) = Amxm(t) +Bmr(t), (2a)
ym(t) = Cmxm(t) +Dmr(t), (2b)

where the state xm(t), output ym(t), and reference command
input r(t) have the same dimensions as x(t), y(t), and u(t),
respectively, and r(t) is bounded in a convex polytope Λ.
The parameter matrices Am, Bm, Cm, and Dm are known,
and Am is Schur stable, i.e., its spectral radius less than 1.

Assumption 2.1: All the Ci, i ∈ I are invertible.
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Fig. 1. Model reference adaptive controller [21].

The purpose of Assumption 2.1 is to simplify the set-
membership filtering in Section IV. If Assumption 2.1 is not
satisfied, we need to compute the intersections of constrained
zonotopes and strips, which does not affect the contributions
of this paper, but make the filtering more complicated.

Assumption 2.2: The transfer function matrix of the refer-
ence model Gm(z) = Cm(zI−Am)−1Bm+Dm determined
by the tuple (Am, Bm, Cm, Dm) is strictly positive real
(SPR).

III. ROBUST MODEL REFERENCE ADAPTIVE
CONTROLLER

Represent the transfer matrix of the system (1) as Gp(z)
when w(t) and v(t) are zero. Then a classical model refer-
ence adaptive controller can be given as shown in the Fig. 1
[21]. The tracking error of outputs is

ey(t) := y(t)− ym(t). (3)

Two auxiliary signals x1(t) and x2(t) are generated by

G1(z) : x1(t+ 1) = Aαx1(t) +Bαu(t), (4a)
G2(z) : x2(t+ 1) = Aβx2(t) +Bβy(t), (4b)

in which the parameters Aα, Bα, Aβ , and Bβ are given in
advance, and for simplicity they can be chosen as Aα = Aβ
and Bα = Bβ , i.e., G1(z) = G2(z). According to Fig. 1,
the controller is designed as

u(t) =K0(t)r(t) +K1(t)x1(t) +K2(t)x2(t)

− k3ϕ(t)TΓ−1ϕ(t)ey(t),
(5)

where K0(t), K1(t), and K2(t) are the adaptive gains,
ϕ(t) = [rT(t), xT

1 (t), xT
2 (t)]T, and Γ = ΓT > 0. It has

been proved that constant gains K?
0 , K?

1 , and K?
2 exist

that when K0(t) ≡ K?
0 , K1(t) ≡ K?

1 and K1(t) ≡ K?
1 ,

the transfer function matrix of the plant together with the
controller u(t) will match that of the reference model, i.e.,
Gm(z)r(z) = Gp(z)u(z), and

ey(t) = y(t)− ym(t)→ 0, as k →∞. (6)

Represent the adaptive parameter as

θ(t) = [K0(t),K1(t),K2(t)]T. (7)

If θ(t) is updated according to the adaptive law

θ(t+ 1) = θ(t)− Γ−1ϕ(t)eT
y (t), (8)
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the parameter θT(t) will converge to θT
? = [K?

0 ,K
?
1 ,K

?
2 ],

and the tracking error ey(t)→ 0.
However, when w(t) and v(t) appear, the adaptive law (8)

is not suitable anymore, since it will cause the parameter
drift issue. The σ-modification method proposed by [16]
introduces a constant damping into the adaptive law to
improve the robustness. It is widely used in adaptive control
due to its simplicity. The modified adaptive law is given as

θ(t+ 1) = θ(t)− Γ−1[ϕ(t)eT
y (t) + σθ(t)], σ > 0. (9)

The robust adaptive controller is still given as the form of
(5), which is rewritten as

u(t) = θT(t)ϕ(t)− k3ϕ
T(t)Γ−1ϕ(t)ey(t). (10)

The stability and convergence of the robust adaptive con-
troller are analyzed according to a Lyapunov function in the
following.

A. Error Model

The parameter error is defined as

θ̃(t) = θ(t)− θ?, (11)

in which θ? is the matching parameter defined as before.
Then the robust adaptive controller can be represented by

u(t) = θT
? ϕ(t) + θ̃T(t)ϕ(t)− ε(t), (12)

where ε(t) = k3ϕ
T(t)Γ−1ϕ(t)ey(t) for brevity. Then the

plant combined with the adaptive controller can be described
by the difference equations as follows:

x̄(t+ 1) =Āx̄(t) + B̄K?
0r(t)

+ B̄(θ̃T(t)ϕ(t)− ε(t)) + ω(t),
(13)

where x̄(t) = [xT(t), xT
1 (t), xT

2 (t)]T is the augmented state
vector, ω(t) = [wT(t), 0, vT(t)BT

β ]T is the merged unknown
input. The output of the plant can be obtained by

y(t) =C̄x̄(t) + D̄K?
0r(t)

+ D̄(θ̃T(t)ϕ(t)− ε(t)) + v(t).
(14)

The details of parameter matrices Ā, B̄, and C̄ can be derived
from the control structure shown in Fig. 1, and D̄ = D.

When w(t), v(t), and θ̃(t) are zero, the plant together with
the adaptive controller is equivalent to the reference model
Gm(z) exactly. In this situation, the plant’s output is equal to
the reference output ym(t), and then the difference equations
(13) and (14) of the plant become

x̄m(t+ 1) = Āx̄(t) + B̄K?
0r(t), (15a)

ym(t) = C̄x̄m(t) + D̄K?
0r(t), (15b)

where x̄m represents the augmented state in the matching
situation. The error model is obtained as the following by
subtracting the ideally matched plant (15a) and (15b) from
the actual plant (13) and (14),

e(t+ 1) = Āe(t) + B̄(θ̃T(t)ϕ(t)− ε(t)) + ω(t), (16a)

ey(t) = C̄e(t) + D̄(θ̃T(t)ϕ(t)− ε(t)) + v(t), (16b)

in which e(t) = x̄(t)− x̄m(t).

B. Lyapunov Stability

Lemma 3.1: (Positive Real Lemma [22]) If the transfer
function matrix G(z) = C(zI − A)−1B + D is SPR, there
exist matrices P = PT > 0, Q = QT > 0, L and W such
that

ATPA− P = −LLT −Q, (17a)

ATPB = CT − LW, (17b)

WTW = D +DT −BTPB. (17c)
Because the reference model Gm(z) is SPR, and transfer

function matrix of (15) is equal to Gm(z), based on the
Lemma 3.1, we can find the corresponding matrices P , Q, L
and W for the tuple (Ā, B̄, C̄, D̄) such that (17) are satisfied.

For the error model (16), define the Lyapunov function as

V (e(t), θ̃(t)) = eT(t)Pe(t) + tr(θ̃T(t)Γθ̃(t)). (18)

The Lyapunov difference is obtained by

∆Vt = V (e(t+ 1), θ̃(t+ 1))− V (e(t), θ̃(t)). (19)

Let Φ(t) = θ̃T(t)ϕ(t)−ε(t). Based on (16a) and Lemma 3.1,
we have

eT(t+ 1)Pe(t+ 1)− eT(t)Pe(t)

=eT(t)(ĀTPĀ− P )e(t) + 2eT(t)ĀTPB̄Φ(t)

+ ΦT(t)B̄TPB̄Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t)

=− eT(t)Qe(t)− eT(t)LLTe(t)

+ 2eT(t)(C̄T − LW )Φ(t)

+ ΦT(t)(D̄ + D̄T −WTW )Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t)

=− eT(t)Qe(t)− ‖LTe(t) +WΦ(t)‖22
+ eT(t)C̄TΦ(t) + ΦT(t)D̄TΦ(t)

+ ΦT(t)C̄e(t) + ΦT(t)D̄Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t)

=− eT(t)Qe(t)− ‖LTe(t) +WΦ(t)‖22
+ 2
(
C̄e(t) + D̄Φ(t)

)T
Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t)

=− eT(t)Qe(t)− ‖LTe(t) +WΦ(t)‖22
+ 2
(
ey(t)− v(t)

)T
Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t)

=− eT(t)Qe(t)− ‖LTe(t) +WΦ(t)‖22
+ 2eT

y (t)θ̃T(t)ϕ(t)− 2eT
y (t)ε(t)− 2vT(t)Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t) + ωT(t)Pω(t).

(20)

According to the adaptive law with σ-modification (9),
θ̃(t) is updated according to

θ̃(t+ 1) = θ̃(t)− Γ−1[ϕ(t)eT
y (t) + σθ(t)]. (21)
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Therefore

tr(θ̃T(t+ 1)Γθ̃(t+ 1))− tr(θ̃T(t)Γθ̃(t))

=tr
(
− ey(t)ϕT(t)θ̃(t)− θ̃T(t)ϕ(t)eT

y (t)
)

+ tr(ey(t)ϕT(t)Γ−1ϕ(t)eT
y (t))

+ σ2tr(θT(t)Γ−1θ(t))− 2σtr(θ̃T(t)θ(t))

+ 2σtr(ey(t)ϕT(t)Γ−1θ(t))

=− 2eT
y (t)θ̃T(t)ϕ(t) +

1

k3
eT
y (t)ε(t)

+ σ2tr(θT(t)Γ−1θ(t))− 2σtr(θ̃T(t)θ(t))

+ 2σtr(ey(t)ϕT(t)Γ−1θ(t)).

(22)

Combining equations (20) and (22), then

∆Vt =− eT(t)Qe(t)− ‖LTe(t) +WΦ(t)‖22

− 2k3 − 1

k3
eT
y (t)ε(t)− 2vT(t)Φ(t)

+ 2
(
Āe(t) + B̄Φ(t)

)T
Pω(t)

+ ωT(t)Pω(t) + σ2tr(θT(t)Γ−1θ(t))

− 2σtr(θ̃T(t)θ(t))

+ 2σtr(ey(t)ϕT(t)Γ−1θ(t)).

(23)

Note that
eT
y (t)ε(t) =k3e

T
y (t)

(
ϕT(t)Γ−1ϕ(t)ey(t)

)
=k3tr

(
ey(t)ϕT(t)Γ−1ϕ(t)eT

y (t)
)
.

(24)

Since Q > 0, there exists a0 ∈ (0, 1), such that Q −
1−a20
a20

LLT > 0. Substitute (24) into the Lyapunov difference
(23), then

∆Vt =− ‖ 1

a0
LTe(t) + a0WΦ(t)‖2

− eT(t)(Q− 1− a2
0

a2
0

LLT)e(t)

− (1− a2
0)ΦT(t)WTWΦ(t)

+ 2eT(t)ĀTPω(t) + 2ΦT(t)B̄TPω(t)

− 2vT(t)Φ(t) + ωT(t)Pω(t)

− (2k3 − 2)tr
(
ey(t)ϕT(t)Γ−1ϕ(t)eT

y (t)
)

+ 2σ2tr(θT(t)Γ−1θ(t))− 2σtr(θ̃T(t)θ(t))

− tr
(
(ey(t)ϕT(t)− σθT(t))Γ−1

(ey(t)ϕT(t)− σθT(t))T
)
.

(25)

Note that the first and last terms of the equation (25) are
negative. Select k3 > 1, then the sixth term is also negative.
Use θ(t) = θ̃(t) + θ? in the rest terms, then

∆Vt ≤− eT(t)(Q− 1− a2
0

a2
0

LLT)e(t)

− (1− a2
0)ΦT(t)WTWΦ(t)

+ 2eT(t)ĀTPω(t) + 2ΦT(t)B̄TPω(t)

− 2vT(t)Φ(t) + ωT(t)Pω(t)

+ 2σ2tr(θ̃T(t)Γ−1θ̃(t)) + 2σ2tr(θT
? Γ−1θ?)

+ 4σ2tr(θ̃T(t)Γ−1θ?)

− 2σtr(θ̃T(t)θ̃(t))− 2σtr(θ̃T(t)θ?).

(26)

Let a1 = λmin(Q − 1−a20
a20

LLT) > 0, a2 = (1 −
a2

0)λmin(WTW ) > 0, a3 = ‖ĀTP‖, a4 = ‖B̄TP‖, a5 =
λmax(P ), a6 = ‖Γ−1‖, a7 = tr(θT

? Γ−1θ?), a8 = ‖Γ−1θ?‖,
and a9 = ‖θ?‖. Since ω(t) and v(t) are all bounded,
let ω0 = max ‖ω(t)‖, v0 = max ‖v(t)‖. Based on some
inequalities, such as ‖AB‖ ≤ ‖A‖‖B‖ and tr(AB) ≤(
tr(AAT)

) 1
2
(
tr(BBT)

) 1
2 = ‖A‖‖B‖, it can be obtained that

∆Vt ≤− a1‖e(t)‖2 − a2‖Φ(t)‖2

+ 2a3ω0‖e(t)‖+ (2a4ω0 + 2v0)‖Φ(t)‖
+ a5ω

2
0 + 2σ2a6‖θ̃(t)‖2 + 2σ2a7

+ 4σ2a8‖θ̃(t)‖ − 2σ‖θ̃(t)‖2 + 2σa9‖θ̃(t)‖.

(27)

Therefore,

∆Vt ≤− a1

(
‖e(t)‖ − a3ω0

a1

)2

− a2

(
‖Φ(t)‖ − a4ω0 + v0

a2

)2

− (2σ − 2σ2a6)

(
‖θ̃(t)‖ − 2σa8 + a9

2− 2σa6

)2

+
a2

3ω
2
0

a1
+

(a4ω0 + v0)2

a2
+
σ(2σa8 + a9)2

2− 2σa6

+ a5ω
2
0 + 2σ2a7.

(28)

In the adaptive law (9), the parameters σ and Γ are optional.
If we select them such that σ‖Γ−1‖ < 1, i.e., 2σ− 2σ2a6 >
0, then from inequality (28) it can be obtained that ∆Vt ≤ 0
outside a compact set S :

S =

{(
‖e(t)‖, ‖Φ(t)‖, ‖θ̃(t)‖

)
: a1

(
‖e(t)‖ − a3ω0

a1

)2

+ a2

(
‖Φ(t)‖ − a4ω0 + v0

a2

)2

+(2σ − 2σ2a6)

(
‖θ̃(t)‖ − 2σa8 + a9

2− 2σa6

)2

≤ T

}
,

(29)
in which T > 0 is equal to the sum of the constant
terms of the inequality (28). Therefore, uniformly ultimate
boundedness is achieved.

IV. FRAMEWORK OF ONLINE AFD

It is noticeable that the input u(t) of adaptive controller
(5) depends on the output error ey(t) = y(t) − ym(t),
while the output y(t) depends on u(t) at the same time.
This formulation of the adaptive controller (5) is convenient
to analyze the Lyapunov stability. Its physical realization
is given in Fig. 2, where G′(z) = Gm(z) − Dm, and
K ′3 = D−1

m D. The structure of Fig. 2 was proposed early
in [21], [23].

The subsystem G′(z) is given as

x′(t+ 1) = Amx
′(t) +Bmu

′(t), (30a)
y′(t) = Cmx

′(t). (30b)
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Fig. 2. Physical realization of model reference adaptive controller [21], [23].

In the whole system of Fig. 2, only the state xp(t) of
plant Gp(z) cannot be obtained directly, the output yp(t)
and the rest states and outputs of G1(z), G2(z), G′(z),
and Gm(z) are known exactly. The initial state xp(0) is
assumed lying within a constrained zonotope, i.e., xp(0) ∈
X0 = 〈c0, H0, A0, b0〉. For any possible plant model i, the
state set Xi(t) can be determined iteratively by three steps:
prediction, filtering, and re-prediction.

A. Prediction Step

Given the input u(t) and prediction state set X̂i(t), the
system equation of the plant can be written in a set version
as

ˆ̂
Xi(t+ 1) = AiX̂i(t)⊕Biu(t)⊕W, (31a)

Ŷi(t) = CiX̂
i(t)⊕Du(t)⊕ V, (31b)

where ˆ̂
Xi(t+ 1) is the pre-prediction set of state xi(t+ 1),

and Ŷi(t) is the prediction set of yi(t).
Moreover, given the input u(t+ 1), we have

ˆ̂
Yi(t+ 1) = Ci

ˆ̂
Xi(t+ 1)⊕Du(t+ 1)⊕ V, (32)

where ˆ̂
Yi(t+ 1) is the pre-prediction set of output yi(t+ 1).

B. Filtering Step

After injecting the input u(t), the plant’s output y(t) can
be obtained. Then we can define the consistent state set of
xi(t) as

Xy
i (t) = {x ∈ Rnx | y(t)− Cix−Du(t) ∈ V }. (33)

Since Ci is invertible, based on the set operation of con-
strained zonotope, Xy

i (t) = 〈cfi , R
f
i , Hv, bv〉, where

cfi = C−1
i (y(t)−Du(t)− cv), Rfi = −C−1

i Rv. (34)

Then the exact state set Xi(t) can be constructed by

Xi(t) = X̂i(t) ∩Xy
i (t), (35)

which means that the prediction state set X̂i(t) is filtered by
the real output y(t).

C. Re-prediction Step

After getting the exact state set Xi(t) by (35), the re-
prediction step is given by

X̂i(t+ 1) = AiXi(t)⊕Biu(t)⊕W, (36a)
Yi(t) = CiXi(t)⊕Du(t)⊕ V, (36b)

where X̂i(t+ 1) is the prediction state set for the next step,
and Yi(t) is the filtered output set of yi(t).

D. Designing Reference Inputs for AFD

The principle of AFD is based on the consistency between
model and input-output data. If the plant is in model i, then
the real output y(t) should always be contained inside the
expected output set Yi(t). Therefore, the unmatched plant
model can be excluded by checking whether

y(t) /∈ Yi(t). (37)

Obviously, it will be easier to exclude the unmatched plant
models, if the expected output sets Yi(t),∀i ∈ I, can be
separated from each other as much as possible. Based on
(35),

Xi(t) ⊆ X̂i(t). (38)

Then, according to (31a) and (36a),

X̂i(t) ⊆ ˆ̂
Xi(t). (39)

Thus,
Yi(t) ⊆ Ŷi(t) ⊆ ˆ̂

Yi(t). (40)

Therefore, the separation of ˆ̂
Yi(t),∀i ∈ I, can also lead to

the separation of Yi(t),∀i ∈ I.
In this paper, the online AFD is achieved by separating

pre-prediction output sets ˆ̂
Yi(t + 1),∀i ∈ I, asymptotically.

At time index t, the prediction state sets are given by

X̂i(t) = 〈ĉi, R̂i, Ĥi, b̂i〉,∀i ∈ I. (41)

Based on (31a), the pre-prediction state sets can be repre-
sented as ˆ̂

Xi(t+ 1) = 〈ˆ̂ci, ˆ̂
Ri,

ˆ̂
Hi,

ˆ̂
bi〉,∀i ∈ I, where

ˆ̂ci = Aiĉi +Biu(t) + cw,
ˆ̂
Ri = [AiR̂i Rw], (42a)

ˆ̂
Hi =

[
Ĥi 0
0 Hw

]
,
ˆ̂
bi =

[
b̂i
bw

]
. (42b)
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Then based on (32), the pre-prediction output sets at t + 1

can be obtained by ˆ̂
Yi(t+ 1) = 〈ˆ̂cyi ,

ˆ̂
Ryi ,

ˆ̂
Hy
i ,

ˆ̂
byi 〉, where

ˆ̂cyi = Ciˆ̂ci +Du(t+ 1) + cv,
ˆ̂
Ryi = [Ci

ˆ̂
Ri Rv], (43a)

ˆ̂
Hy
i =

[
ˆ̂
Hi 0
0 Hv

]
,
ˆ̂
byi =

[
ˆ̂
bi

bv

]
. (43b)

In fact, separating the output sets which are described
by some convex set representations is a tricky task. The
proposed method attempts to provide an efficient solution.
For the constrained zontopes ˆ̂

Yi(t + 1) = 〈ˆ̂cyi ,
ˆ̂
Ryi ,

ˆ̂
Hy
i ,

ˆ̂
byi 〉,

it is obviously that ˆ̂
Yi(t+ 1) ⊆ Ỹi(t+ 1) = 〈ˆ̂cyi ,

ˆ̂
Ryi 〉, which

means that the zonotope Ỹi(t+ 1) is an outer approximation
of ˆ̂
Yi(t + 1). Thus, separating Ỹi(t + 1) asymptotically can

also lead to the separation of ˆ̂
Yi(t + 1). It is very direct

to separate some zonotopes by maximizing the distance
between their centers.

For two possible models i, j ∈ I, the distance between the
centers of ˆ̂

Yi(t+ 1) and ˆ̂
Yj(t+ 1) can be measured as

‖ˆ̂cyi − ˆ̂cyj‖
2
2 = ‖Qiju(t) + Jij‖22, (44)

where Qij = CiBi − CjBj , and Jij = CiAiĉi + Cicw −
CjAj ĉj − Cjcw. Since the input u(t) is generated by the
adaptive controller with an external reference input r(t),

u(t) = K0(t)r(t) +K1(t)x1(t) +K2(t)x2(t). (45)

Therefore, substituting (45) into (44), then the reference input
r(t) can be designed by

max
r(t)∈Λ

∑
i,j∈I,i6=j

‖Q′ij(t)r(t) + J ′ij(t)‖22. (46)

The expressions of the parameters Q′ij(t) and J ′ij(t) are
omitted. Since the objective of (46) is a convex quadratic
function and the feasible region r(t) ∈ Λ is a convex
polytope, the optimal solution of (46) must be the vertex
of Λ. Therefore, the optimal r?(t) can be determined by

r?(t) = argmax
r(t)∈V(Λ)

∑
i,j∈I,i6=j

‖Q′ij(t)r(t) + J ′ij(t)‖22, (47)

where V(Λ) represents the set of the vertices of Λ. Since Λ
has finite vertices, (47) can be solved very efficiently.

V. NUMERICAL EXAMPLE

The following example is provided to demonstrate the
proposed method. The reference model is given as

Am =

[
0.61 −0.24
0.16 0.53

]
, Bm =

[
1.00 −0.26
0.33 0.74

]
,

Cm =

[
1.05 0.12
−0.31 0.87

]
, Dm =

[
0.84 −0.20
−0.41 0.96

]
.

Three possible models of the plant are given as

A1 =

[
0.61 −0.12
0.08 0.53

]
, B2 =

[
0.81 −0.26
0.33 0.74

]
,

C3 =

[
1.05 0.12
−0.31 0.55

]
,
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Fig. 3. Output curves of the plant and reference model.
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Fig. 4. The designed reference inputs.

where the rest parameter matrices of model i = 1, 2, 3, if
not indicated, are the same as reference model. The auxiliary
systems G1(z) and G2(z) are given as

Aα = Aβ =

[
0.59 0.13
−0.11 0.72

]
, Bα = Bβ =

[
1 0
0 1

]
.

The parameters of robust adaptive law are σ = 0.01, Γ−1 =
0.1I . The plant is in model i = 1. The initial states of plant is
generated randomly by x0 ∈ 〈[1, 1]T, 0.3I〉. The initial states
of reference model, auxiliary systems, and subsystem G′(z)
are all set as 0. Both w(t) and v(t) are generated randomly
all the time within a zonotope 〈0, 0.1I〉. The reference input
is bounded by r(t) ∈ 〈0, I〉.

Fig. 3 presents the output of plant and reference model,
denoted by y(t) and ym(t), and the superscripts represent
components. The designed reference inputs are shown in
Fig. 4. When the model of plant is diagnosed, the reference
inputs is kept unchanged. The process of filtering and fault
diagnosis is presented in Fig. 5, where the filtered output set
of model i is represented as Yi(t), and the point y(t) is the
real output of plant. It indicates that models i = 3 and i = 2
are excluded at time instance t = 3 and t = 9, respectively.

VI. CONCLUSIONS

A novel approach to active fault diagnosis is introduced,
utilizing model reference adaptive control to ensure stability
throughout the diagnostic process. The method employs a ro-
bust adaptive controller, guaranteeing stability in active fault
diagnosis. Additionally, a set-membership filter employing
constrained zonotopes is proposed. In future research, efforts
will be directed towards enhancing the set separation metric
for constrained zonotopes.
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Fig. 5. The process of filtering and fault diagnosis (The sets are plotted
with the help of MPT3 [24]).
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