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Abstract— In this paper, we present a novel approach to com-
bine data-driven non-parametric representations with model-
based representations of dynamical systems. Based on a data-
driven form of linear fractional transformations, we introduce
a data-driven form of generalized plants. This form can be
leveraged to accomplish performance characterizations, e.g.,
in the form of a mixed-sensitivity approach, and LMI-based
conditions to verify finite-horizon dissipativity. In particular,
we show how finite-horizon ℓ2-gain under weighting filter-
based general performance specifications can be verified for
implemented controllers on systems for which only input-output
data is available. The overall effectiveness of the proposed
method is demonstrated by simulation examples.

Index Terms— Data-Driven Control, Dissipativity Analysis

I. INTRODUCTION

D irect data-driven control is a generic term to categorize
all control strategies that are based on measured data.

The data is subsequently converted into control laws without
system identification as an intermediate step. Motivated by
the fact that, in general, there is no separation princi-
ple between identification and control, the indirect control
approach (consisting of identifying a model followed by
optimal control) might be suboptimal [1]. Direct data-driven
control approaches do not suffer from this inherent principle.
Moreover, high-tech systems in, e.g., the semiconductor,
aerospace, and process industries, are becoming increasingly
more complex, causing first-principles modeling to become
more and more challenging to accurately describe the behav-
ior of these systems in terms of compact models that can be
used for control. This has motivated a trend towards data-
driven control in recent years as an alternative for model-
based approaches [2].

A cornerstone result in direct data-driven analysis and
control for discrete-time linear time-invariant (LTI) systems
is known as Willems’ Fundamental Lemma [3]. This result
relies on the behavioral system theory [4] and characterizes
the finite-horizon behavior of an LTI system using measured
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input-output data trajectories. For a detailed overview of
results based on Willems’ Fundamental Lemma, see the
survey [5]. These data-driven non-parametric representations
of LTI systems have also been used to analyze system
properties such as stability [6] and dissipativity [7], [8].
Tractable formulations for synthesizing controllers that are
optimal for various performance metrics have also been
derived, see [9], [10]. However, these approaches assume
direct full-state measurements, which is rarely available in
practice. The construction of an artificial extended state from
input-output data is discussed in [11], where it is pointed
out that the non-controllable nature of the extended system
results in loss of feasibility of controller design.

For model-based controller design, a systematic frame-
work that allows the direct incorporation of performance
specifications is known as the generalized plant framework
[12]. Generalized plants contain all aspects, including per-
formance shaping filters, of a control design problem except
the controller itself. In fact, the interconnection structure be-
tween the generalized plant and the controller is defined as a
Linear Fractional Representation (LFR). One of the powerful
shaping concepts for adding performance specifications to
the generalized plant in the form of weighting filters is known
as mixed-sensitivity shaping [13]. Appropriate choices of
weighting filters can be used to characterize requirements
related to bandwidth, overshoot, and noise attenuation, [14].

Currently, it is not clear how to combine a data-based
description of the plant and model-based descriptions of
weighting filters and controllers within the generalized plant
framework. Preliminary results are provided in [15], where
the feedback interconnection between a data-driven plant and
a model-based controller is studied. The analysis is quite lim-
ited since it does not allow the formulation of a generalized
plant and is restricted to the SISO case. In this paper, we pro-
pose to unify the interconnection between MIMO data-driven
representations, based on Willems’ Fundamental Lemma,
and MIMO model-based representations of controllers and
weighting filters to analyze the performance of the controllers
via a mixed-sensitivity argument.

The main contributions of this paper are as follows:
C1) Combine MIMO model-based and data-driven represen-

tations in an LFR-based data-driven generalized plant;
C2) Derive tractable linear matrix inequality (LMI)-based

methods to analyze the dissipativity-based performance
of data-driven generalized plants;

C3) Demonstrate the strength of the new framework in two
numerical case studies, where the performance of given
controllers is analyzed.
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The remainder of this paper is structured as follows.
Firstly, preliminaries on discrete-time LTI systems are dis-
cussed in Section II. The problem setting and approach are
defined in Section III. In Section IV, we present the main
results of this paper, i.e., a unified representation of data-
driven and model-based dynamics into a generalized plant
and a tractable dissipativity analysis of this unified repre-
sentation. We finalize the paper with examples in Section V
followed by the conclusions in Section VI.
A. Notation

The sets C,R,Z, and N denote the set of complex
numbers, real numbers, integers, and non-negative integers,
respectively. The zero matrix with dimension n × m and
the square identity matrix with dimension n are denoted
by 0n×m and In, respectively. For a matrix A ∈ Rn×m

with rank(A) = r ≤ min{n,m}, A⊤ ∈ Rm×n denotes
its transpose and the nullspace is defined as Ker(A) :=
{x ∈ Rm|Ax = 0}. Furthermore, A⊥ ∈ Rm×m−r denotes
a matrix where the columns span Ker(A). The set of
symmetric matrices of dimension n × n is denoted by Sn.
The notation A ≻ 0(≽ 0) and A ≺ 0(≼ 0) denotes that
A is positive (semi)-definite and negative (semi)-definite,
respectively. We denote by Rn×m[ξ] the ring of polynomials
with matrix coefficients where ξ is the indeterminate. For
brevity, we write quadratic products of the form x⊤Ax as
(∗)⊤Ax. Given a discrete-time signal z ∈ (Rnz)Z, where
(Rnz)Z defines the collection of all signals z : Z → Rnz ,
the restriction to the interval [0, L − 1] ∩ Z is denoted by
z|L. The concatenation of two signals z1 and z2 is denoted
by z = z1 ∧ z2. For a given sequence of samples {zk}N−1

k=0

such that z(k) ∈ Rnz for all k ∈ [0, N − 1] ∩N, the Hankel
matrix HL(z) ∈ RLnz×N−L+1 with depth L is defined as

HL(z) =


z(0) z(1) . . . z(N − L)
z(1) z(2) . . . z(N − L+ 1)

...
...

. . .
...

z(L− 1) z(L) . . . z(N − 1)

,
for 0 ≤ L ≤ N − 1. Lastly, A ⊗ B denotes the Kronecker
product of two matrices A and B.

II. PRELIMINARIES

A discrete-time dynamical system Σ is defined by the
triple (Z≥0,W,B), where Z≥0 is the time-axis, W ⊆ Rnw

is a vector space in which signals w : Z≥0 → W take
their value and B ⊂ WZ≥0 is the behavior, which describes
the trajectories w allowed by the systems dynamics. The
system Σ is said to be linear, if B is a linear subspace of
WZ≥0 and is said to be time-invariant, if it is invariant with
respect to the forward shift operator q, i.e., qB ⊆ B, where
(qw)(t) = w(t+1). It is known that every LTI system admits
a kernel representation that characterizes the behavior

B :=
{
w ∈ WZ≥0 | P (q)w = 0

}
. (1)

Here, P (ξ) ∈ Rg×nw [ξ] is a matrix-valued element of the
polynomial ring. The polynomial P (ξ) is defined as

P (ξ) =

p1(ξ)
...

pg(ξ)

 =


∑ℓ1

i=0 p
(i)
1 ξi

...∑ℓg
i=0 p

(i)
g ξi

. (2)

P (q)w = 0 is said to be a minimal kernel representation,
if the number of equations, i.e., g ∈ N, is minimal among
all equivalent kernel representations. Moreover, the degree
of P (ξ) is defined as deg(P ) = max1≤i≤g ℓi. If the degree
of P is minimal among all minimal kernel representations,
then P is called a minimal lag representation where the lag
is defined as

ℓ(B) = deg(P ). (3)

We assume that an input-output partitioning w = (u, y) is
available where u is maximally free, i.e., u is the input.
For a minimal kernel representation, we define the follow-
ing structured indices p(B) = ny = g and m(B) =
nu = nw −p(B). Moreover, let the quadruple (A,B,C,D)
denote a state-space representation. We denote n(B) =
dim(A) if (A,B,C,D) is a minimal state-space represen-
tation. For a partitioned input-output signal w we define
P (ξ) =

[
N(q) −D(q)

]
∈ Rp(B)×(m(B)+p(B))[ξ], such

that D(q)y = N(q)u defines an input-output representation.
The system Σ represented by P (ξ) is said to be controllable
if the polynomial matrices D(ξ) and N(ξ) are coprime over
R[ξ], see [16].

III. APPROACH

In this paper, we consider a general control configuration
consisting of discrete-time LTI systems. Specifically, we
consider measured input-output data of the system G instead
of a model-based representation. All other components of the
control configuration, such as the controller K and weighting
filters, have a model-based representation available. Next, we
provide the problem statement.
Problem statement: Consider a given control configuration
including the controller K, closed-loop performance
specifications in terms of frequency-domain weighting filters
and the unknown system G. If a measured data set is
available from G, determine if the closed-loop will satisfy
the given performance specifications.

The following assumption on the available data is neces-
sary to specify the approach towards providing a solution to
the problem statement.

Assumption 1. A measured input-output trajectory DN =
{ud

k, y
d
k}

N−1
k=0 (data-dictionary) is available of the control-

lable LTI system G. The lag ℓ(BG) and order n(BG) of G
are unknown, but upper bounded by ν and nG, respectively.

To provide a non-parametric data-driven representation
of G, based on DN , we require the following notion of
persistence of excitation.

Definition 1 (Persistence of Excitation). A sequence
{uk}N−1

k=0 , where u(k) ∈ Rnu for all k ∈ {0, · · · , N − 1},
is said to be persistently exciting (PE) of order L, if HL(u)
has full row rank. □

Under a PE condition on the input in DN , we can represent
LTI systems using only the data-set DN [3], which, in [17],
is formalized for controllable LTI systems by the following
lemma.
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Lemma 1 (Fundamental Lemma, [17]). Given a data-
dictionary DN of G satisfying Assumption 1 for which the
input sequence {ud

k}
N−1
k=0 is PE of order ν+nG, the sequence

{uk, yk}L−1
k=0 is a trajectory of G if and only if there exists a

g ∈ RN−L+1 such that[
HL(u

d)
HL(y

d)

]
g =

[
u|L
y|L

]
. (4)

This result requires N ≥ (nu + 1)(ν + nG)− 1 data points
and has been generalized in [18]. In particular, it is shown
that the finite-horizon (FH) behavior of G, defined as

BG |L := {(u|L, y|L) ∈ (Rnu ×Rny)L | (u, y) ∈ BG}, (5)

is equal to the image of
[
HL(u

d)
HL(y

d)

]
if and only if

rank

([
HL(u

d)
HL(y

d)

])
= m(BG)L+ n(BG), (6)

is satisfied for L ≥ ℓ(BG). The Hankel matrices provide a
data-driven non-parametric system representation if this rank
condition is satisfied.

Besides the data-driven representation of G given by (4),
all other systems in the closed loop have model-based
representations. By pulling G out of the closed loop, the
LFR-based interconnection shown in Figure 1 is obtained,
where the data-driven representations are separated from the
model-based representations. Here N denotes the general-
ized controller and contains the signal routing, controller K,
and weighting filters. The minimal lag input-output repre-
sentation of N is given by

N :

{
Du(q)u = Nuy(q)y +Nuw(q)w,

Dz(q)z = Nzy(q)y +Nzw(q)w.
(7)

The behavior BN of N is defined as the collection of
signals (y, w, u, z) such that (7) is satisfied. In the next
section, we will provide a unified representation of the closed
loop as the LFR-based interconnection between the data-
driven representation G, given by (4), and the model-based
representation N , given by (7), defined on a finite horizon.

Performance of the closed loop is evaluated through dis-
sipativity, which can be used to characterize, for example,
the ℓ2 gain of the system through appropriate choice of
the supply function. This system gain is equivalent to the
H∞-norm which is used to characterize performance in
the mixed-sensitivity setting. The dissipativity notion intro-
duced in [19] is defined for input-output representations
of dynamical systems. In particular, this notion does not
require a storage function and is equivalent to the notion
of dissipativity of [20].

Definition 2 (Dissipativity, [19]). A discrete-time LTI system
G with behavior B is said to be dissipative with respect to
the supply rate Π ∈ S(nu+ny)×(nu+ny) if

r∑
k=0

(∗)⊤Π
[
u(k)
y(k)

]
≤ 0, for all r ∈ N, (8)

holds for all trajectories (u, y) ∈ B with zero initial
condition. □

Fig. 1: LFR-based control interconnection between the gen-
eralized controller N and plant G

In [6], the classical dissipativity notion has been reformu-
lated for finite-horizon trajectories, which has been used for
data-driven control based on the Fundamental Lemma [21].

Definition 3 (L-Dissipativity [6]). A discrete-time LTI
system G with finite horizon behavior B|L is said to
be L-dissipative with respect to the supply rate Π ∈
S(nu+ny)×(nu+ny) if

L−1∑
k=0

(∗)⊤Π
[
u(k)
y(k)

]
≤ 0, (9)

holds for all trajectories (u|L, y|L) ∈ B|L with zero initial
condition. □

It has been shown in [22] that, under mild conditions,
L-dissipativity is asymptotically equivalent to classical
dissipativity. In the next section, we provide a tractable
condition, based on L-dissipativity, to verify whether the
closed-loop system satisfies the performance specifications.

IV. MAIN RESULTS

In this section, we will formulate a representation of the
closed-loop interconnection between a data-driven represen-
tation of the system G and a model-based representation of
the generalized controller N . A dissipativity analysis result
will subsequently be derived for the closed-loop representa-
tion.

Through the Fundamental Lemma, we only have a FH
representation of G. Hence, the LFR-based interconnection
of G and N can only be defined on the same finite horizon.
Towards this end, the FH behavior BN |L of N is defined as
all sequences (y|L, w|L, u|L, z|L) that satisfy

TL(Du)u|L = TL(Nuy)y|L + TL(Nuw)w|L,
TL(Dz)z|L = TL(Nzy)y|L + TL(Nzw)w|L.

(10)

Here the banded upper-triangular Toeplitz matrix TL(D)
with L block columns, related to the polynomial

D(ξ) = D0 +D1ξ + · · ·+Dℓξ
ℓ ∈ Rn×m[ξ], (11)

is introduced by [23] and is defined as

TL(D) =


D0 · · · Dℓ−1 Dℓ 0 · · · 0

0 D0 · · · Dℓ−1 Dℓ
. . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 D0 · · · Dℓ−1 Dℓ

. (12)
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Note that the interconnection between G and N eliminates
the shared signals u and y. To define a well-posed intercon-
nection, we require that the initial condition of the sequences
u|L and y|L of both G and N align on the same finite
horizon. For the dissipativity analysis, we require that this
corresponds to a zero initial condition. To specify the zero
initial condition finite-horizon (ZICFH) behaviors of both G
and N we define the following subset of an arbitrary FH
behavior B|T+L:

Bµ|T,L :=
{ µ︷ ︸︸ ︷
(0, · · · , 0)∧(u, y) ∈ (Rnu × Rny)µ+L

∣∣
(0, · · · , 0)︸ ︷︷ ︸

T

∧(u, y) ∈ B|T+L

}
. (13)

By definition we have B0|0,L = B|L. We denote the ZICFH
behavior by B0|L which is equal to B0|T,L for all T ≥
ℓ(B). The observation in [22] leads to the following implicit
characterization of Bµ|µ,L as a subspace of B|µ+L

Bµ|µ,L := B|µ+L ∩Ker (V µ
L (u, y)) , (14)

where

V µ
L (u, y) =

[
Iµnu 0µnu×Lnu 0µnu×µny 0µnu×Lny

0µny×µnu 0µny×Lnu Iµny 0µny×Lny

]
. (15)

Based on this subspace of B|µ+L, the ZICFH behavior can
be defined as:

B0|L =

{
Jµ
L(u, y)

[
u|µ+L

y|µ+L

]∣∣∣∣∣(u|µ+L, y|µ+L) ∈ Bµ|µ,L
}
, (16)

if µ ≥ ℓ(B), where

Jµ
L(u, y) =

[
0Lnu×µnu ILnu 0Lnu×µny 0Lnu×Lny

0Lny×µnu 0Lny×Lnu 0Lny×µny ILny

]
. (17)

The following Lemma provides a computable basis for BG
0 |L

based on a data-dictionary DN of G.

Lemma 2. Given a data dictionary DN of G that satisfies
Lemma 1, where additionally the input is PE of order at least
ν + L+ nG. The ZICFH behavior of G is given by

BG
0 |L = Im

([
Bu

0,L

By
0,L

])
= Im

(
Jν
L(u, y)

[
Bu

ν,L

By
ν,L

])
, (18)

where[
Bu

ν,L

By
ν,L

]
=

[
Hν+L(u

d)
Hν+L(y

d)

](
V ν
L (u, y)

[
Hν+L(u

d)
Hν+L(y

d)

])
⊥
. (19)

Proof. By the PE condition on the input and the Fundamental
Lemma [3] we have that

BG |ν+L = Im

([
Hν+L(u

d)
Hν+L(y

d)

])
.

Next, we note that the matrix A(BA)⊥ is a basis for the
space Im(A) ∩ Ker(B), see [24]. Hence, we have that
BG

ν |ν,L = Im[(Bu
ν,L)

⊤ (By
ν,L)

⊤]⊤.Then the ZICFH behavior
BG

0 |L is simply defined as the image of the last L entries
of the signals defined by BG

ν |ν,L which is exactly given
by (18). ■

The ZICFH behavior BN
0 |L of N is defined as the

collection of signals (y|L, w|L, u|L, z|L) such that

T 0
L (Du)u|L = T 0

L (Nuy)y|L + T 0
L (Nuw)w|L,

T 0
L (Dz)z|L = T 0

L (Nzy)y|L + T 0
L (Nzw)w|L,

(20)

where T 0
L (D) is simply the lower right L-by-L block

matrix of TνN+L(D) such that νN ≥ ℓ(BN ). We define
the LFR-based closed-loop interconnection T = G ⋆ N as
the ZICFH behavioral interconnection denoted by BT

0 |L =
BG

0 |L ∥(u,y) BN
0 |L. This behavioral interconnection elim-

inates the shared signals u and y from the closed-loop
behavior and is defined as

BT
0 |L =

{
(w|L, z|L)

∣∣ (u|L, y|L) ∈ BG
0 |L and

(y|L, w|L, u|L, z|L) ∈ BN
0 |L

}
. (21)

Next, we provide the main result of this paper.

Theorem 1. Consider a given data-dictionary DN of G that
satisfies Lemma 2 and a minimal-lag input-output represen-
tation of N . The L-long trajectory (w|L, z|L) is a trajectory
of the closed-loop system T , if there exists a g ∈ R• such
that

T 0
L (Du)B

u
0,Lg = T 0

L (Nuy)B
y
0,Lg + T 0

L (Nuw)w|L,
T 0

L (Dz)z|L = T 0
L (Nzy)B

y
0,Lg + T 0

L (Nzw)w|L.
(22)

Proof. By Lemma 2, (u|L, y|L) ∈ BG
0 |L if and only if there

exists a g such that [
u|L
y|L

]
=

[
Bu

0,L

By
0,L

]
g.

Substituting this parametrization of (u|L, y|L) in (20)
gives (22) and completes the proof. ■

Theorem 1 is the first contribution of the paper and
it provides a unified closed-loop representation between
general LFR-based interconnections between data-driven and
model-based representations. In order to analyse dissipativity
of the closed-loop system T , for which the behavior is given
by (22), we define the following inequality

(∗)⊤ΠL

[
w|L
z|L

]
= (∗)⊤

[
IL ⊗Q IL ⊗ S
IL ⊗ S⊤ IL ⊗R

][
w|L
z|L

]
≤ 0. (23)

The following theorem gives an LMI condition to verify the
dissipativity of the interconnection between model-based and
data-driven representations as an LFR.

Theorem 2. The closed-loop system T with zero initial
condition behavior given by (22) is L-dissipative with respect
to the supply rate ΠL (23), if

(∗)⊤
0 0 0
0 IL ⊗Q IL ⊗ S
0 IL ⊗ S⊤ IL ⊗R

B⊥ ⪯ 0, (24)

where

B =

[
T 0

L (Nuy)B
y
0 − T 0

L (Du)B
u
0 T 0

L (Nuw) 0
T 0

L (Nzy)B
y
0 T 0

L (Nzw) −T 0
L (Dz)

]
. (25)
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Fig. 2: Two-block reference tracking control configuration.

Proof. Note that (23) can be equivalently defined as

(∗)⊤
[
0 0
0 ΠL

] g
w|L
z|L

 ≤ 0,

which only has to hold for (g, w|L, z|L) such that the
constraint, defined by the first equation in (22), is satisfied.
This constraint can be formulated as

B

 g
w|L
z|L

 = 0.

Then the LMI (24) is obtained by applying Finsler’s Lemma
to the dissipativity inequality and the constraint which states
that x⊤Qx ≥ 0 for x such that Bx = 0 is equivalent to
(∗)⊤QB⊥ ⪯ 0. ■

With the LMI (24) it is possible to verify dissipativity
of general interconnections between model-based and data-
driven representations of dynamical systems. The LMI-
based dissipativity analysis provides a numerical tractable
performance evaluation for the closed-loop system T through
a mixed-sensitivity argument, which provides the second
contribution of this paper.

V. EXAMPLES

We now demonstrate the applicability of the result on
two simulation examples. The first example shows that
Theorem 2 can be used to approximate the H∞-norm. The
second example shows how the analysis results can be used
to design a controller with weighting filter specifications.

A. Two-block mixed-sensitivity example

In this example, we consider SISO reference tracking
as shown in Fig. 2 with the tracking error e and plant
output y as performance channels to shape the sensitivity
and complementary sensitivity of the closed-loop behavior.
We consider a two-mass-spring-damper system for G with
state-space representation

ẋ =


0 1 0 0

−k1+k2

m1
−d1+d2

m1

k2

m1

d2

m1

0 0 0 1
k2

m2

d2

m2
− k2

m2
− d2

m2

x+


0
0
0
1

m2

u,
y =

[
1 0 0 0

]
x,

(26)

which is discretized with a sampling time h = 0.1s. The
parameters have the following values: m1 = 10 kg, m2 =

15 20 25 30 35 40 45 50 55 60

L

0

0.5

1

` 2
-g

ai
n

Theorem 2
Model-based Finite `2-gain
H1-norm

Fig. 3: Finite-horizon ℓ2-gain computed with the data-driven
approach of Theorem 2 compared to the model-based finite-
horizon ℓ2-gain.

0.5 kg, d1 = 200 Ns/m, d2 = 10 Ns/m, k1 = 3000 N/m,
and k2 = 1000 N/m. The generalized plant P is defined by
the rational matrix

P (z) =

WS(z) −WS(z)G(z)
0 WT(z)G(z)
1 −G(z)

, (27)

where z denotes the Laplace transform of the forward shift
operator q. The generalized plant is used to compute an H∞-
optimal controller K(z), with model-based synthesis. The
weighting filters WS(z) and WT(z) are chosen as

WS(z) =
0.7741z−0.7641

z−0.9998 , WT(z) =
25.9z−25.38
z−0.3333 , (28)

which specify a rise-time around 1 [s] and a bandwidth
around 1.68 [rad/s]. The resulting H∞-norm, computed with
model-based analysis, is approximately equal to 0.9779.
Next, we apply unit-variance white noise to the system G
and collect 400 input-output data points. We extract the data-
based representation of G into the upper block shown in
Figure 2 such that N is given by the rational matrix

N(z) =

 −K(z) K(z)
−WS(z)WS(z)
WT(z) 0

. (29)

The rational matrix representation N(z) is converted to an
input-output representation with the algorithm presented in
[25]. The finite-horizon ℓ2-gain calculated with Theorem 2
is compared to the model-based gain for ν = 15 and a depth
L ranging from ν to 60. This comparison is shown in the
bottom plot of Fig. 3, which shows that both computed finite-
horizon ℓ2-gains are equivalent and converge to the H∞-
norm.

B. Controller design example
In this example, we consider a discrete-time LTI system

G for which a model-based representation is not assumed
to be known, but for illustration, the Bode plot of G is
shown in Figure 4. We apply unit-variance white noise as
input and collect 2000 data samples from an open-loop
experiment. Based only on the measured data of G, we aim
to design a controller that satisfies the performance criteria
specified by the weighting filters shown in Figure 4. The
generalized controller N is given by the following input-
output representation[

Du 0 Nuy Nuw

0 Dz Nzy Nzw

]
=

DK 0 0 −NK NK

0 DS 0 −NS NS

0 0 DT NT 0

, (30)
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Fig. 4: Shaped closed-loop sensitivity functions with weight-
ing filters.

where the explicit dependence on the shift operator q is
left out. Here the pairs (DK , NK), (DS , NS), and (DT , NT )
denote the input-output representations of the controller K,
the sensitivity weighting filter WS , and the complementary
sensitivity weighting filter WT , respectively. In this example,
we consider the following parametrization of the controller:

K(z) = c
(z − 0.98)(z − r1)(z

2 − 2r2z cos(θ1) + r22)

(z − 1)(z − r3)(z2 − 2r4z cos(θ2) + r24)
. (31)

This controller consists of an integrator and a general third-
order filter. In order to ensure that the third-order filter
is stable and minimum-phase we enforce the constraints
|ri| < 1. We use Particle Swarm Optimization [26] to
find the controller parameters (r1, r2, r3, r4, θ1, θ2, c), which
minimize the finite-horizon ℓ2-gain based on Theorem 2. We
have used ν = 14 and L = 180 to design the controller
K, for which the resulting sensitivity S and complementary
sensitivity T are shown in Figure 4. The finite-horizon ℓ2-
gain is approximately equal to 0,907, which indicates that
the performance criteria are met. This is verified by visual
inspection of the sensitivity shapes in Figure 4.

VI. CONCLUSIONS

In this paper, we have given a unified LFR representa-
tion form of data-driven and model-based representations
on a finite horizon. This LFR structure is used to define
arbitrary interconnection between data-driven representations
of systems, for which only measured data is available, and
model-based representations of controllers and weighting
filters. The incorporation of weighting filters into the unified
framework allows for direct data-driven performance analysis
of the closed-loop system without the need to identify a
model for the system. Moreover, tractable LMI-based finite-
horizon dissipativity analysis results have been derived for
these LFR-based unified representations. The importance of
these results is that specifications of frequency-domain and
time-domain performance of designed controllers, for data-
driven representations, can be verified. For future work,
we aim to extend this framework toward convex controller
synthesis and applicability with noise-corrupted measured
data.
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