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Bayesian Estimation of Origin and Destination from Masked Trip Data
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Abstract— This article introduces a statistical method to esti-
mate trips origin and destination locations from a masked trip
data set. The estimation method uses trip features, the graph
of the network, and publicly accessible external information
on the real-time congestion status to find the most probable
trips origin and destination based on a Bayesian approach,
Markov Chain rule, and rank aggregation method. A case study
of Porto, Portugal assesses the performance of the statistical
estimation method by comparing the estimated location with
the centroids of reported locations and with the actual trip
origin and destination. Despite the limitation of the available
data, the method provides better estimates of trips origin and
destination compared to the centroids of reported locations.

I. INTRODUCTION

With the emerging use of data on real-world problems,
more agencies are making data open to the public. Before
doing so, agencies mask data to protect citizens’ privacy.
However, there is a trade-off between privacy protection and
the loss of information [14]. Depending on the extensivity of
the masking method, the direct analysis not only of individual
features but also of aggregate features can be restricted [14].
This limitation has stimulated researchers to explore ways to
fully harness the potential of obfuscated data.

One way is to extract the individual features from the
masked data. The efforts to extract individual features have
been made in multiple fields. Notably, there have been many
works related to estimating system components reliability
through maximum likelihood estimation based on different
lifetime distributions [20], the Bayes approach [20], and the
EM algorithm [24]. In [13], authors present a deep neural
network framework capable of classifying masked images
into categories. In [7], patterned dropout is used to estimate
the emissions of undisclosed companies.

Similar works have been conducted in the field of trans-
portation engineering. One example is the re-identification
of the freeway bus patterns from publicly open anonymized
data on Taiwan electronic toll collection system [9].

In this article, we focus on estimating origin and des-
tination locations from masked data. While direct analysis
of masked data is possible, its analysis is less accurate and
unreliable as the quality of data resolution is degraded for
privacy protection [21]. Estimating origin and destination has
the potential to be a great supplementary tool for extracting
more accurate travel patterns from masked data.
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Estimating origin and destination also has profound poten-
tial benefits. Estimation of trip origins and destinations can
enhance traffic management and optimize vehicle energy use,
facilitating the implementation of intelligent transportation
systems [2], [1]. Another benefit is that ride-sharing can be
facilitated by determining and grouping the nearby passen-
gers with estimated origin and destination locations [6].

Past works mainly focusing on estimation of trip des-
tination are based on either data-driven methods trained
using historical trajectories [11], [12], [18], [8], or statis-
tical methods using temporal-spatial features [15]. External
information like driving patterns and driving behaviors are
considered to capture route preferences better [11], [12], [8],
[19]. Some studies regarding data-driven methods use Bayes
Rule, Bayesian Inference, the EM algorithm, or particle
filter/Bayesian filter to find the probability of a particular
location being the destination based on the trajectories [11],
[12] or historical travel patterns and velocities on edges [18].
Others utilize neural networks, including artificial neural
networks and convolutional neural networks based on partial
trajectories [3], [16] or correlations between locations [26].

To our knowledge, this study is one of the first to estimate
both origin and destination locations from the masked trip
data. The paper presents a probabilistic method to estimate
destinations and origins using a Bayesian approach and exter-
nal information on the congestion status of the network. The
paper does not utilize past trip patterns as prior knowledge of
states for estimating origin and destination locations through
techniques like the Kalman filter.

While the work presented in the paper estimates the
probable locations of the origin and destination, it does not
find the exact location of the origin and destination due to
the limitation in the details on the publicly available data.
The estimation algorithm provides the ranking of origin can-
didates and destination candidates based on the probability
ratio of different pairs of origin candidates and destination
candidates. Thus, the presented algorithm preserves privacy
while extracting probable origin and destination locations.

The paper is organized as follows. Section II presents
the steps of extracting the potential origins, destinations,
and paths of each trip. Section III presents the statistical
process for the Bayesian Markov analysis of paths. Section
IV describes how the rank aggregation method estimates
the probable origin and destination locations. Section V
demonstrates the case study of estimating the origin and
destination of taxi trips using 2015 Porto taxi trip trajectory
data from UC Irvine Machine Learning Repository [17].
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II. DATA EXTRACTION

In this section, we report how to identify origin candidates,
destination candidates, and potential paths for each trip.

A. Creation of the Network: Graph Structure

The entire city network is represented through a weighted
directed graph consisting of nodes and edges. The nodes
of the graph are the intersections of the roads. Edges are
the roads between intersections. The direction of the edges
represents the direction of travel from one node to another.
The weight of an edge is the physical length of a road.
OpenStreetMap creates the weighted directed graph of the
network by extracting the coordinates of road intersections
and the length of roads. Mathematically, we can write a
weighted directed graph as G(V, E), where V represents
the set of all nodes v € V, and F represents the set of
all weighted edges e € E with weights w.. The features of
nodes and edges on the weighted directed graph are updated
with external information on the network congestion status
like real-time traffic flows, velocities, or traffic densities.

B. Data Available

In publicly accessible masked trip data, there is informa-
tion of a total of I trips. For each trip ¢ € 7 = {1, ...,
I}, we have reported trip distance §;, reported trip duration
t;, the exact time the trip started «;, and the exact time
the trip ended (;. Each trip ¢ has a corresponding reported
origin region A? and reported destination region A¢ that are
the predefined regions. The set C; = {d;,t;, i, (;, A, A}
represents the features of the particular trip ¢. The set of
nodes belonging to A¢ is defined as O; = {v € A?¢}, and
the set of nodes in A¢ is defined as D; = {v € A¢}.

C. Extraction of Origin and Destination Candidates

To extract the trip origin and destination candidates nodes,
we first find the actual travel distance of a particular trip
&». For (5}, we need to consider the possible error of the
measurement of J; by using the tolerance values for on-
distance tests for a taximeter listed on [4]. The measured
distance of a taximeter must not be over-measured by more
than 1% and under-measured by more than 4%. Therefore,
the actual trip distance is 0.996; =[5, < 5 < us;, = 1.049;
where the lower bound and the upper bound of the range
are l5, and wus, respectively. With Is,, us,, D;, and O;,
we define the set of origin candidates O; = {v € O; :
lv —w|| < us, forw € D;} and the set of destination
candidates D; = {v € D; : ||v — w| < ug, for w € O;}.

D. Extraction of Potential Paths
From D; and O;, we compute the set of all feasible paths

Si of each trip i. A path S7' is a sequence of nodes (vy; ;)2
with m,, being the total number of nodes in S]* and a being
the index of the node in S7'. S}* can also be represented

in a sequence of edges (ef)i'"; with e, being the edges

connecting v, _; ; and vy ;. The total distance traveled in the
path S}* must be between Is, and us,: l5, < X7 wen < ug,.
With this, we can define S; = {S}* : n € N} with N being

the total number of feasible paths for trip 7.

III. BAYESIAN MARKOV ANALYSIS OF PATHS

This section describes the steps of the statistical method-
ology for finding the ratio between the probability of ori-
gin candidates and the probability of destination candidates
based on the Bayesian approach and the Markov Chain rule.
The transitional probability from one node to its adjacent
node in the different paths S;* is also described.

A. Transitional Probability: Origin to Destination Direction

Given G(V, E) and its adjacency matrix B, the set W,
represents all adjacent nodes directly linked from node v.
The transitional probability from node v to node w € W,
for a particular trip ¢ is found in two steps.

1) The first step is the “Search Area Algorithm.” The
algorithm is based on the assumption that the drivers are
more likely to drive in the direction that they want to reach.
We define the “search area” as H, ;. If the node v ¢ D,
H,, ; is the convex hull of the set of nodes containing v and
D;, Conv({v} U D;). Otherwise, H, ; is the area created by
the line on the node v and the boundary of the destination
region. The line, ¥, ,; is perpendicular to the line from the
centroid of A{ to the node v, y,; as shown in Fig 1. The
probability of moving to the adjacent node w € H, ; is p’
while the probability of moving to the adjacent node w ¢
H, ;is 1—p'. Fig 1 shows the example of the “search area”.
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Fig. 1: Example of finding the search area when the node v
¢ D; (left) and v € D; (right).

2) The second step is based on the assumption that the
drivers are more likely to drive to reach their destination
as fast as possible. The second step starts by finding the
shortest paths from the node v and its adjacent node w to
every possible destination candidate. Then, we compute and
compare the travel duration taken by these shortest paths
from both node v and its adjacent node w to each destination
candidate when moving from node v to node w. From the
comparison, we can count 3, ,, ; —, the number of destination
candidates of a particular trip 7 where a travel time from node
w to destination is shorter than the travel time from node v
to destination. Similarly, we can count 3, ., ; +, the number
of destination candidates of a particular trip « where a travel
time from node w to destination is longer than the travel
time from node v to destination. p is multiplied to the ratio
of By w,i,— to the total number of destination candidates. In
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contrast, 1-p is multiplied to the ratio of 3, 4, ; + to the total
number of destination candidates.

The reason for having p and p’ is to consider that not
all drivers travel in the shortest or fastest paths. Factors like
familiarity with routes or the number of turns make drivers
not travel in the shortest or fastest paths [23], [25].

The transitional probability from the node v to the adjacent
node w € W, for a particular trip ¢ is defined as below:

p/[ﬁvl,gfl _p + ﬁvlg l‘ = (1 - p)]’
ifweW,NH,,
P Ziep + (- p))
ifweW, &wg¢W,NH,,.
(D

P(w|onC;) =

(1-

The transitional probability in (1) is the weighted sum of
£ '“l‘g‘jl*’ and 2 ”l’g’fl‘+ by p and 1 — p respectively. Then, it is
scaled by p’ or 1 — p’ based on whether the adjacent node is
in the search area or not. P(w|v A C;) is normalized so that

the sum of all transitional probabilities from node v is 1.

B. Transitional Probability: Destination to Origin Direction

The transitional probability in the direction from
destination to origin is computed similarly with some
differences. First, the “search area”, H{” is based on the
direction from the destination to the origin. If the node v ¢
O;, H] ; is the convex hull of the set of nodes containing v
and (’)Z, Conv({v} U O;). If the node v € O;, then H,, ; is
the area created by the line on the node v and the boundary
of the origin region. The line, yj_m is perpendicular to the
line from the centroid of A¢ to the node v, Yo i

In addition, the transitional probability in the direction
from destination to origin is based on S{L/, the sequence of
nodes (vy, _, ;)aro. Therefore, S7 is the reversed order
of S7. With this, we can define S} = {S" : n € N}.

The set of adjacent nodes in the direction from destination
to origin is based on B’, the transpose of adjacency matrix
B. Based on B’, the set W) represents all adjacent nodes
directly linked to a node v.

When moving from node v to the adjacent node z € W,
we can count 7, , ; —, the number of origin candidates of a
particular trip ¢ where the travel time of the shortest path
to node x from an origin is shorter than the travel time of
the shortest path to node v from an origin. Similarly, we
can count 7, ;; 4+, the number of origin candidates of a
particular trip ¢ where the travel time of the shortest path
to node x from an origin is longer than the travel time of
the shortest path to node v from an origin. Equation (2)
computes the transitional probability to the adjacent node x
€ W/ from the node v for a particular trip ¢ in the direction
from the destination to the origin.

pIMETr + s (L =),
if 2 € W, N H, ;
A =P)HE P + (- p)l
if e e W, &axg¢ W, NH,,
(2)

P(z|onC;) =

P(z|vAC;) is normalized so that the sum of all transitional
probabilities from node v is 1.

C. Probabilities of Sequences

To find the probability of a sequence (vg_’i);":”fl given an
origin v{f’i, we use (3). Equation (3) is based on the chain
rule of the probabilities and (1):

My —2

H P a+12

a=0

P((U(ZL, )mn71|U0 i N C a,i A CZ) 3

In addition, we compute the probability of a destination
vy, ; considering the previous node sequence (v:j’i)zh‘;‘fl
based on the Markov Chain rule through (4). Markov Chain
rule is satisfied in the study as a driver’s decision to go to a
particular node from the current node in trip ¢ only depends

on the current node given Cj:
P(vy,, (Ug,i):znifl A Ci) = P(vy,,

Similarly, (5) makes use of the chain rule and (2) to find
the probability of (v} ;). ! given a destination v"

2|’Um7,711/\c) (4)

My ’L

P((ur )

i/a=1 ‘ mn,z HP Ug— lz a,i /\Ci) (5)

Markov Chain rule once again is used for (6) to find the
probability of an origin given the rest of the node sequences
(v )aes "

a1
P(ugl(vg)azt N Ci) =

P(vgilvi; ANCi).  (6)

D. Ratio of Probability of Origin and Probability of Desti-
nation

The direct calculation of the probability of origin and des-
tination is unattainable. Therefore, we utilize the Bayes theo-
rem to estimate the probability of node sequence (v;ﬂi)l’;ﬁfl
given the condition C; in two ways based on (3), (4), (5),

and (6) as shown in (7) and (8):
P((o] )7 |C)

P n mn—l /\CZ
- e ) - P(oy,, i1Ci)
P(”%n,zl(v” )TN Cy) ’ -
P((”gz)’””_lwm S ACY)
B CPO™ |C;
P(U’ZZL” i 1)71?17L—1 i A C ) (,Um”’l )
P((vg )0 |C)
P n mn_l /\C
= ((Za,z) - m|z}01 ) ) P(v6’ﬂ|c¢l)
P(’U07i|(’0 ) A C ) (8)
P n mn—l /\C
- Uep)ai_|of; ) - P(vg;|C;).

P(Uo,i|v1,i AC)

As both (7) and (8) is solved for P((v;; e mhey), w
can set (7) and (8) equal. Then, we can solve for the ratio
between probabilities of a particular origin o; ; € O; and the
probability of a particular destination d; ;, € D; as shown in
9).j € J={1, ..., |O;|} represents the index of a particular
origin in O;. Likewise, h € H = {1, ..., |D;|} represents
the index of a particular destination in D;.
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Equation (9) finds the ratio between the probability of o; ;
and probability of d;j with two considerations. First, (9)
considers the possibility where there might be multiple paths
starting from o; ; and ending at d; 5 for a particular trip 4.
Also, (9) integrates the principle of mutual exclusivity, as a
person can only drive one path for a trip:

PloyIC) _ Z(W)
P(d; n|Cs) P(uz 1Ch)
N
(UO i— 01, J) ( ’mnl zh)
_ g P((v 2z)mn ‘Umn,z N Cy)P(vg vl A Cy)
P(op,, ilvn Co)P((vr )y og s A Ci)

My,01 "My, —1,0 a,
neN:
(v =05 )NV, ;=din)

9
IV. RANK AGGREGATION

Using the ratio of probabilities for all possible origin o; ;
and destination d; ;, pairs of a particular trip ¢ from (9), we
rank origins for each destination and the destinations for
each origin. Then, the rank aggregation method finds the
most probable location(s) of the origin and destination for a
particular trip ¢ based on the normalized overall rankings.

A. Ranking of Origins

We first compute ro, g, ,,, the ranking of the origins o; ; €
O; for each destination candidate d; j, based on (9). j € J =

{1, ..., |O;|} is the ranked index of a particular origin based
— P(0:,1]Cs)
on ro; d;, = [01'71,01‘,2, ey 04 5, "'701'7\01” S.L. Pd; ;‘C ) >
P(0;,10,11Ci)
° 2 P(di,h,\Ci)

We repeat the process for every destination candidate.
Afterward, matrix Ro, = [ro;d;,,T0;,d;2: " »TO;, D]
is formed where its columns are the ranking of origins
for a particular destination candidate d;; € D;. In addi-
tion, we construct the vector of importance weights wp,

Ty e ﬁ} with length of |D;|. Each destination
candidate has an equal weight, meaning that there is no
preference for certain destinations.

Among the two rank aggregation methods presented in [5],
we choose the fuzzy preference relation approach that uses
Ro, and wp, to find the overall ranking of origins, rf, .

B. Ranking of Destinations

The ranking of destinations and the most probable des-
tination are computed similarly. We compute rp, o, ;, the
ranking of the destinations d; 4, € D; for each origin
candidate o;; based on (9). h € H = {1, |D;|}
is the ranked index of a particular destination based on

T P(oi;|Ci
IDio; = [disdi2s ey di, - dip,)]” st % <
P(0i,;]1Cs)
— P(d;,p,|ICi)"

After ﬁndlng D, 0, fOr every origin candidate, we create
the matrix Rp, = [rD,,0,1,TDj,0125° " »TDy010,] Where
its columns are the ranking of destinations for a particular
origin candidate. Similar to wp,, we construct the vector
of importance weights wo, = = {ﬁ, . ‘71”}, where each
origin candidate has equal weight as there is no preference

for certain origins. The fuzzy preference relation approach
in [5] uses Rp, and wo, to find the overall ranking of
destination candidates, r*j:,i.

C. Most Probable Origin-Destination Pair

The set of most probable origin-destination pair(s) for the
particular trip 7 is based ra, r*bi, and S;. From S;, the
feasible origin-destination pairs of a trip ¢ are found. Then,
we find the overall ranking of the origin from rg, and the
overall ranking of the destination from rp, for each origin-
destination pair. The overall ranking of the origin and the
destination of each S}* is normalized by dividing its rank by
the total length of 7, and the total length of r;. respectively.

For each origin-destination pair candidate, we then com-
pute the combined normalized ranking of the pair by sum-
ming the normalized ranking of the origin and destination
of the pair. The origin-destination pair with the highest
combined normalized rank is the most probable pair(s) of
the particular trip ¢. Multiple origin-destination pairs can
have the same combined normalized rank, so there may be
multiple most probable origin-destination pairs. The most
probable origin-destination pair(s) are the estimates of the
origin(s) and destination(s) of a particular trip <.

V. CASE STUDY: PORTO, PORTUGAL

To evaluate the performance of the origin and destination
estimation method, the city of Porto in Portugal is used as a
case study. The assessment is done by comparing the actual
origin and destination locations of taxi trips in Porto to their
estimated origin and destination locations. We assume p and
p’ to be 93.2% and 70%, respectively, based on [8] and [22].
The next sections describe the case study in detail.

A. Porto Data

Different Porto data sets are utilized. The information on
districts of Porto is from [10]. From the UC Irvine Machine
Learning Repository, the data on the trajectories of taxis
operated in Porto are used [17]. In addition to these data
sets, the graph G of Porto is created using OpenStreetMap.
Fig 2 shows the graph of the network of Porto, Portugal.
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Fig. 2: The network of Porto, Portugal. There are 10,565
edges (red) and 5,029 nodes (blue) in Porto, Portugal.

1) Districts in Porto Data: Districts in Porto, Portugal are
used as predefined regions for reported origin regions and
reported destination regions where the pick-up and drop-off
of taxi trips have happened. 18 districts in Porto, Portugal
from [10] are shown in Fig 3.
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Fig. 3: Plot of Districts in Porto, Portugal

2) Taxi Trip Data: Among other publicly available taxi
trip data, Porto 2015 taxi trip data from [17] contains
actual coordinates of origin and destination in addition to
coordinates in each trajectory. While the data set contains
various features, only pick-up time, drop-off time, pick-up
coordinates, and drop-off coordinates of each trip are used.

From the trajectories of taxi trips, the travel distance and
travel time can be derived as GPS coordinates are recorded
every 15 seconds. The trajectories of taxi trips are also
utilized to estimate the mean velocity of links at a particular
time period. For performance evaluation purposes, the case
study utilizes the taxi trips that happened from 10:30AM to
10:45AM on multiple days.

VI. RESULTS

This section presents the results of the origin and desti-
nation estimation. Fig 4 shows the location of estimation,
centroid locations, and actual locations of a trip.
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Fig. 4: A Map with 1. Estimated origin and destination, 2.
Centroid location of origin area and destination area, and 3.
actual origin and destination locations

The performance assessment of the algorithm is done
through 1. mean average error (MAE), 2. plot of the percent
difference between estimate error and centroid error, and
3. box plots. We first compute the mean average error to
compare the distance from the estimated to the actual loca-
tion, Agctual,estimates, and the distance from the centroid of
the reported region to the actual location, Agctval,centroid-
For the case study, Agctual,estimates 1S 497.66 m while
Agctual,centroid 18 566.08 m. The MAE of the estimation
algorithm is 12.09% smaller than MAE between the centroid
locations of the reported region to the actual location. Note

that the estimated location is still within the reported region.
From MAE, we can see an improvement.

Fig 5 compares the performance of the estimates to the
centroid with respect to (a) the trip distance-to-centroid
distance ratio and (b) trip distance. Centroid distance is
defined as the haversine distance between the centroid of the
pickup area and the centroid of the dropoff area. Since the
centroid distance reflects the closeness of the pickup area
and the dropoff area, the trip distance-to-centroid distance
ratio shows the trip distance relative to the areas closeness.
The percent difference between estimate error and centroid
error is computed as follows:

A = Aactual,estimates - Aactual,centraid (10)
Aactiual.,cem&roid

From (10), negative A shows that the estimate is closer to

the actual location than the centroid as the distance between

the estimate to the actual location is shorter than the distance

between the centroid to the actual location for a trip.
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Fig. 5: Plots of A with respect to (a) Trip Distance-to-
Centroid Distance Ratio and (b) Trip Distance. Brown Points
represent trips with A greater than 0. Blue Points represent
trips with A less than 0.

From Fig 5, the percent difference generally increases as
the trip distance-to-centroid distance ratio increases. This
is because the number of origin candidates and destination
candidates is more likely to increase as the travel distance-to-
centroid distance ratio increases, which indicates that consid-
ering more origin and destination candidates in the estimation
process may likely reduce the estimation’s accuracy.

Fig 6 shows the box plots of the errors for both cases to
see the spread of the errors.

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Error (meter) Error (meter)

(a) Error Between Estimates
and Actual

(b) Error Between Centroid
and Actual

Fig. 6: Box Plots of Errors of (a) Estimates and (b) Centroids.
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The first-quartile (Q1), median (Q2), and third-quartile
(Q3) of the errors between the estimate and actual loca-
tions are 345.13 m, 469.96 m, and 584.54 m, respectively.
Meanwhile, Q1, Q2, and Q3 of the errors between the
centroid locations of the reported region and actual locations
are 372.27 m, 489.56 m, and 598.87 m, respectively. Fig
6 additionally shows that the error between estimates and
actual locations contains the outliers.

We additionally examine the effects of p and p’ on the
accuracy of the estimates.

p
0.5 0.7 0.9
05 46.17m 23570m 23570 m
=, 0.7 208397 m 13158 m 1814.87 m
09 208397m 13158 m 131.58 m

TABLE I: One Example of MAE with Different p and p’
combinations of trip 3498

From Table I, the MAE between estimates and actual
ranges from 46.17 m to 2083.97 m based on the choice of p
and p’. The MAE changes with p and p’ since it determines
the transitional probability.

VII. DiSCUSSION/FUTURE WORKS

While the estimates performed better than the centroids,
the error between actual and estimates is still large. This
can be due to several reasons. First, the speed of links is
estimated either from the trajectories data or is approximated
based on the nearby roads which introduces some error.
Second, the choice of p and p’ affects the performance
of the algorithm as seen in Table I. Third, the larger the
size of predefined regions, the more origin and destination
candidates, which lead to larger errors, as seen in Fig 5.

Considering possible reasons, the future work is to 1)
perform a detailed analysis of the errors with simulation in
different road networks, 2) conduct the analysis on p and
p’ to choose the best p and p’ for the estimation, 3) test the
algorithm in a different area where both real-time traffic data
with different traffic flow parameters and the actual trip data
are available.
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