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Abstract— This paper presents a method to design an optimal
controller-observer pair for a continuous linear time-invariant
system with respect to a quadratic cost. First, we propose a
novel generalized method that makes this otherwise complex
problem solvable within the linear optimal control framework.
Then, we derive a solution approach based on the augmented
Lagrangian method to handle the inherent structural con-
straints associated with the problem. Finally, we show the utility
of the proposed method through a numerical example.

I. INTRODUCTION

Optimal control refers to finding a control input to the
system that optimizes the given performance index while
moving the state vector from an initial to a final value.
One such problem for linear time-invariant (LTI) systems
is widely studied in the optimal control literature as linear
quadratic regulator (LQR) [1], [2]. This corresponds to de-
signing a static optimal gain matrix in the full-state feedback
setting that maps the system’s states to the control input.
However, measuring all the system states in general is not
always possible or feasible. In such a scenario, the system
can be controlled either by a static output-feedback control
[3] or state observer-based full-state feedback, often termed
as dynamic output feedback control [1].

Static output feedback is comparatively straightforward
and computationally efficient from an implementation per-
spective than dynamic output feedback. However, dynamic
output feedback is preferred due to its inherent robustness
properties, especially when the system has high-order dy-
namics and multiple outputs [2]. Additionally, verification of
the necessary and sufficient conditions for static output feed-
back stabilizability is a complex task [4], [5]. In contrast, the
stabilizability of the dynamic output feedback can be verified
by evaluating the system’s stabilizability and detectability.
Thus, dynamic state feedback is advantageous than static
output feedback if one has enough computational resources
to implement the observer in a sampled data setting [1].

The standard process of designing dynamic output feed-
back control within the optimal control framework is as
follows. First, the full state feedback optimal gain is designed
followed by a separate design of the observer gain [1],
[6]–[9]. This is done by leveraging the so-called separation
principle. For deterministic systems, the observer gain is
selected such that for a fixed optimal control gain, the perfor-
mance of the observer-based system is close to the optimal
state-feedback setting. In contrast, for stochastic systems,
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the observer gains are selected based on minimizing yet
another cost function to tune the variance of the steady state.
The weight matrices are decided based on the process and
measurement noise characteristics. Recent analytical results
provide insights into unifying the dynamic output feedback
problem for discrete deterministic systems to determine the
controller and observer gain simultaneously corresponding
to the standard linear quadratic performance index [10]. For
continuous systems, a solution method for such formulation
is presented in [11], [12] using a block pulse function-
based nonlinear programming problem with satisfactory per-
formance in the simulations. However, the performance index
was modified by replacing the state penalty with the output
penalty and adding an observation error term in the cost func-
tion. Considering the limited literature, this article discusses a
technique to obtain the optimal observer-controller gain pair
corresponding to the standard linear quadratic performance
index for a deterministic continuous LTI system.

Paper contribution: In this work, we formulate the optimal
observer-based control design problem for a continuous LTI
system corresponding to the standard quadratic performance
index. We define an extended linear system using state and
observer dynamics and with a performance index consist-
ing of controller and observer objectives. We show that
this extended dynamics is stabilized by a extended gain
matrix controller of specific structure and composed of
control and observer gain of original dynamics. We later
reformulate the time-dependent optimization problem into a
time-independent optimization problem with matrix equality
constraints. The structural constraints for the extended gain
matrix are represented as a set of linear constraints in the op-
timization problem. The reformulated optimization problem
is solved using the state-of-the-art augmented Lagrangian
method [13]. At last, the results are presented to show the
efficacy and utility of the proposed algorithm.

The paper is organized as follows: section II involves
the preliminaries, followed by the problem formulation and
methodology in Section III. Sections IV and V present the
results, conclusion, and future directions, respectively.

II. PRELIMINARIES

A. Notation

Let R denote set of real numbers. For a matrix X ∈Rm×n

having m−rows and n−columns, we use X⊤ for its transpose,
tr(X) for its trace and ∥X∥ for its Frobenius norm. We use
0 and I to denote the matrix of zeros and identity matrix,
respectively of appropriate sizes. For a matrix X , Xmn implies
X has m−rows and n−columns. For X ∈ Rm×m, X(⪰) ≻ 0
denotes X is positive (semi-)definite. For a matrix X , R(X)
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and N(X) denote its range space and null space respectively.
For a scalar function f , notation ∇X f denotes the gradient
of f with respect to X . ∂ f

∂X denotes the partial derivative of
f with respect to X .

B. System Dynamics

Consider a LTI system with the following dynamics

ẋ = Ax+Bu, y =Cx, x(0) = x0, (1)

where A ∈ Rn×n , B ∈ Rn×m, and C ∈ Rr×n are the system
matrices. Whereas, x∈Rn, y∈Rr, u∈Rm and x0 ∈Rn denote
the state, measured output, control input and some unknown
initial state the system, respectively. We assume that the
system (A,B) is stabilizable and (A,C) is detectable. We also
assume that rank(C) = r and r < n. Since all the states are
not directly measurable, so by virtue of detectability, we can
estimate the complete state by using a Luenberger observer
for the system (1) [14]. The observer dynamics is defined by

˙̂x =Ax̂+Bu+L(y−Cx̂), (2)

where x̂(t) is the estimate of x(t) and L ∈ Rn×r is the static
observer gain. We use the state estimate to define the control
input and the closed loop system as,

u = Kx̂, ẋ = Ax+BKx̂, (3)

where K ∈Rm×n is the static controller gain. We quantify the
system performance by the following quadratic objective,

fc =
∫

∞

0
[x⊤Q1x+u⊤R1u]dt, (4)

where Q1 ∈Rn×n, Q1 =Q⊤1 ⪰ 0 and R1 ∈Rm×m, R1 =R⊤1 ≻ 0
are weighing matrices. Note that fc is a function of x and x̂
(through u).

We intend to solve the problem of computing K, L for a
given Q1, R1 such that the performance objective fc is mini-
mized and the dynamics (1) is stabilized. Mathematically the
problem is expressed as,

min
K,L

fc =
∫

∞

0
[x⊤Q1x+u⊤R1u] dt

s.t. ẋ = Ax+Bu, x(0) = x0,

˙̂x = Ax̂+Bu+L(y−Cx̂), x̂(0) = x̂0

u = Kx̂,
x̂→ x and x→ 0 as t→ ∞ asymptotically.

(5)

In (5), the controller K and the observer gains L are being
simultaneously optimized. The constraint x̂→ x and x→
0 as t→∞ ensures that the state estimates finally converge
to the true state with time and guarantee the stability of the
system. However, solving problem (5) poses challenges, as
it requires more than a straightforward adaptation of estab-
lished linear quadratic regulator theory [1], primarily due to
the incorporation of observer dynamics. Subsequently, we
delve into these obstacles in depth and propose a systematic
solution approach for addressing (5).

III. PROBLEM FORMULATION AND SOLUTION METHOD

We first present the general controller-observer design
problem. Next based on Lyapunov stability theory [15]
we present an equivalent reformulation and then propose a
gradient-based solution procedure.

A. General controller-observer design problem

Consider the observer error e ≜ x− x̂. Using (1), (2) and
(3) the error dynamics is

ė = (A−LC)e. (6)

We introduce a new extended variable z = [x⊤ e⊤]⊤. The
extended dynamics combining (1) and (6) is

ż = A z+B u, u = K z, (7)

where,

A =

[
A 0nn

0nn A

]
, B =

[
B 0nn

0nm I

]
, K =

[
K −K

0nn −LC

]
.

To quantify the performance of the extended dynamics (7)
we have the quadratic objective

J =
∫

∞

0
[z⊤Q z+u⊤R u] dt, (8)

where
Q =

[
Q1 0nn
0nn Q2

]
, R =

[
R1 0mn
0mn R2

]
,

with Q2 ∈ Rn×n, Q2 = Q⊤2 ⪰ 0 and R2 ∈ Rn×n, R2 = R⊤2 ⪰ 0
are the weighing matrices. Notice that K is a static controller
gain for an auxiliary input u = [u⊤ u⊤e ]

T = K z to the ex-
tended dynamics (7). Here ue =−LCe can be conceptualized
as the control input for the observer error dynamics (6).
To optimally determine K, we state the general controller-
observer design problem as

min
K

J =
∫

∞

0
[z⊤Q z+u⊤R u] dt

s.t. ż = A z+B u, z(0) = z0, u = K z,
z→ 0 as t→ ∞ asymptotically.

(9)

The constraint z→ 0 as t→ ∞ ensures the stability of the
closed loop system.

Remark III.1. (Relation between (5) and (9)). It is worth-
while to note that if Q2 = 0nn and R2 = 0nn, problems (5)
and (9) are identical provided z(0) = [x⊤0 ,x

⊤
0 − x̂⊤0 ]

⊤.

Note that we can view the performance index J in (8) as a
combination of controller objective fc in (4) and the observer
objective fo =

∫
∞

0 [e⊤Q2e+u⊤e R2ue]dt where ue =−LCe. So
Q2 = 0nn and R2 = 0nn implies fo = 0 or no cost for the
observer objective. As (9) is still not in a computationally
viable format, we subsequently present a solvable equivalent
reformulation of (9).

Remark III.2. In observer objective fo, the weight matrices
Q2 and R2 act as the state and control weight matrices for
the observer error dynamics (6). The user can choose a non-
zero Q2 and R2 to tune the observer behavior to comply
with user-defined sensitivity requirements to output noise and
measurement errors [16].
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B. Reformulated controller-observer design problem

We use Lyapunov stability theory [15] to derive an equiv-
alent reformulation of (9). First we define the following set
of matrices,

K :=

{
X
∣∣∣ X ∈ R(m+n)×2n;

X =

[
Xmn −Xmn
0nn Xnn

]
;∃L ∈ Rn×r : Xnn =−LC

} (10)

Remark III.3. (Regarding structure of K). The subspace
K encapsulates the lower left block of K to be zero, upper
blocks being oppositely signed equal quantities, and other
structural constraints arising from incorporating the C matrix
as a gain multiplier. To identify an unique optimal observer
gain, L from optimal gain K, the gain component−LC should
be in the span of C. In the subsequent section, we will discuss
these structural constraints. •

Now we show that K ∈K stabilizes the system (A, B).

Theorem III.4. (Existence of stabilizing controller gain and
reformulation of objective function). Consider the dynamics
(9) with system (A, B) stabilizable and the performance
objective defined in (8). Then

(i) There exists some K =

[
K −K

0nn Θ

]
∈K which stabilizes

(A, B).

(ii) Let Z0 = z0z⊤0 then there exists a P=P⊤ ∈R2n×2n, P≻ 0
such that

(A+B K)⊤P+P(A+B K)+Q+K⊤R K = 0

and J = tr(P Z0).

Proof. (i) We have the closed loop system

A+B K =

[
A+BK −BK

0nn A+Θ

]
.

Now as (A, B) is given to be stabilizable and (A, I) is
obviously stabilizable. So from stability theory of LTI
dynamics [2] there must exists some K and Θ such that
A+BK and A+Θ are Hurwitz. As from structure of
A+BK, its eigenvalues are union of eigenvalues of A+
BK and A+Θ. Hence A+B K is Hurwitz and K ∈K

stabilizes (A, B).
(ii) Consider candidate Lyapunov function

V = z⊤P z

with P ≻ 0. Differentating with respect to time and
substituting the closed-loop dynamics we have

V̇ = ż⊤ P z+ z⊤ P ż = z⊤[(A+B K)⊤P+P(A+B K)]z.

Integrating both sides with respect to t with limits 0 to
∞ and adding J =

∫
∞

0 [z⊤Q z+ u⊤R u] dt on both sides
with u = K z we have∫

∞

0
V̇ dt + J =

∫
∞

0
z⊤[(A+B K)⊤P+P(A+B K)

+Q+K⊤R K] z dt

Now
∫

∞

0 V̇ dt =V (∞)−V (0). As A+B K is Hurwitz so
z→ 0 as t→∞ which implies V (∞) = 0 using definition
of V . Also from Lyapunov stability theory [2], [15] we
must have P = P⊤ ≻ 0 such that

(A+B K)⊤P+P(A+B K)+Q+K⊤R K = 0.

Thus J =V (0) = z⊤0 P z0 = tr(P z0z⊤0 ) = tr(P Z0).

Note that K ∈ K has a specific structure. For a given
K ∈K and its Θ an L satisfying Θ = −LC may not exist.
Next result provides us conditions on general K ∈R(m+n)×2n

such that it also belongs to K and determination of a L for
a given C is possible. First we state some definitions which
will be used to prove the result.

Π1 =

[
Inn 0nn
0nn 0nn

]
, Π2 =

[
Imm 0mn
0nm 0nn

]
, Π3 =

[
0nn 0nn
Inn 0nn

]
,

Π4 =

[
0mm 0mn
0nm Inn

]
, Π5 =

[
0mm 0mp
0nn N(C)

]
,

where N(C)∈Rn×p where p is the nullity [17] of matrix C.
Now we are ready to state our result.

Lemma III.5. (Constraints on K and determination of L).

Consider dynamics (7). Let K =

[
K1 K2
K3 Θ

]
∈ R(m+n)×2n be

a controller gain such that A+BK is Hurwitz. Then K ∈K
and there exists a L ∈Rn×r given by L =−ΘC⊤(CC⊤)−1 if

K Π1 +Π2 K Π3 = 0,
Π4 K Π5 = 0.

Proof. As K Π1+Π2 K Π3 = 0 is true so we have
[

K1 0
K3 0

]
+[

K2 0
0 0

]
= 0. The only nonzero solution possible is K2 =

−K1 and K3 = 0. Thus K ∈K.

The true statement Π4 K Π5 = 0 gives
[

0 0
0 ΘN(C)

]
= 0, i.e.,

ΘN(C) = 0. Therefore Θ belongs to R(C⊤) [17]. This en-
sures that there must exist an unique L =−ΘC⊤(CC⊤)−1 ∈
Rn×r such that Θ =−LC holds true.

Equipped with Theorem III.4 and Lemma III.5 we now
state equivalent reformulation of (9) for given Z0 = z0 z⊤0 .

min
K,P≻0

J = tr(P Z0)

s.t. A⊤c P+P Ac +Q+K⊤R K = 0,
Ac = A+B K,

K Π1 +Π2 K Π3 = 0,
Π4 K Π5 = 0.

(11)

In (11) when z0 is a random variable with zero mean and
covariance Z0, then J = tr(P Z0) is the expected value of
the objective function keeping the constraints same. In such
cases, we take Z0 = I. Once we compute K we obtain K, Θ

and L=−ΘC⊤(CC⊤)−1 from Lemma III.5. We next propose
an iterative solution procedure to solve (11).
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C. Solution Procedure and analysis

To solve (11) for K of a specific structure we use the aug-
mented Lagrangian method (ALM) [13], [18] with suitable
modifications. ALM starts with a structured or unstructured
initialization of K denoted by K−1 and minimizes series of
unstructured problems. Finally these minimizers converge
to the structured minimizer of (11) [13]. We define the
augmented Lagrangian as follows,

Lc(K,V,U) = J+ Juv + Jcc, (12)

where

J = tr(P Z0),

Juv = tr
(
V⊤(K Π1 +Π2 K Π3)

)
+ tr

(
U⊤(Π4 K Π5)

)
,

Jcc =
c1

2
∥K Π1 +Π2 K Π3∥2 +

c2

2
∥Π4 K Π5∥2.

Here c1 > 0, c2 > 0 are the scalar penalty weights on the
constraints. U, V in Juv are the Lagrangian multipliers [18]
of the constraints. Jcc is the quadratic penalty function which
ensures fast convergence to the structured solution. Details
regarding ALM can be read in [13], [18]. We now summarize
our modified ALM in Algorithm 1.

Algorithm 1 Augmented Lagrangian method

Input: A, B, K−1
, U0, V 0, c1, c2, γ1, γ2, Q, R, Z0, ε1

Output: K
1: Set i← 0
2: while ∥Ki−1

Π1 +Π2 Ki−1
Π3∥+∥Π4 Ki−1

Π5∥> ε1 do
3:

Ki
= argmin

K
L(K, U i, V i) ▷ see Algorithm 2

4: V i+1←V i + ci
1(K

i
Π1 +Π2 Ki

Π3)

5: U i+1←U i + ci
2(Π4 Ki

Π5)
6: ci+1

1 ← γ1ci
1

7: ci+1
2 ← γ2ci

2
8: i← i+1
9: end while

10: K← Ki

11: return K

From optimal K one can compute optimal K, L using
Lemma III.5. Generally V 0 = 0, U0 = 0, c0

1 ∈ [5, 10], c0
2 ∈

[5, 10], γ1 ∈ [3, 10], γ2 ∈ [3, 10], ε1 ∈ [10−6, 10−3] give
good results as observed from our numerical simulations.
K−1 is unstructured stabilizing controller gain for the system
(A, B) obtained from any known methods from control
theory [1], [2], [19].

To solve the minimization problem for the ith iteration
in Step 3 of Algorithm 1 to compute Ki we use gradient-
descent method [18], [20]. First, we derive an expression for
the gradient of the augmented Lagrangian function defined
in (12).

Lemma III.6. (Gradient of L with respect to K). Consider
L defined in (12). The gradient of L with respect to K is

∇KL = ∇KJ+∇KJuv +∇KJcc

where

∇KJuv = Π
⊤
4 U Π

⊤
5 +V Π

⊤
1 +Π

⊤
2 V Π

⊤
3 ,

∇KJcc = c1
(
K Π1 Π

⊤
1 +Π2 K Π3Π

⊤
1 +Π

⊤
2 K Π1 Π

⊤
3

+Π
⊤
2 Π2 K Π3 Π

⊤
3
)
+ c2(Π

⊤
4 Π4K Π5Π

⊤
5 ),

∇KJ = 2(R K +B⊤ P)W ,

with P = P⊤ ⪰ 0 and W =W⊤ ∈ R2n×2n solutions of

(A+B K)⊤P+P (A+B K)+Q+K⊤ R K = 0,
(A+B K)W +W (A+B K)⊤+Z0 = 0.

(13a)

(13b)

Proof. To derive our results, we will make use of known
matrix properties [1]. For matrices X , Y , tr(X Y ) = tr(Y X),
tr(X) = tr(X⊤) provided the matrices are compatible for
multiplication, and ∂ tr(Y X)

∂ X = Y⊤. Evaluation of ∇KJuv and
∇KJcc are straightforward using matrix operations. For ∇KJ
we follow approach in [21], differentiating (13a) with respect
to K. PK is the derivative of P with respect to K and dK is
the differential of K. We have

(A+B K)⊤PK dK +PK dK (A+B K)

+(B dK)⊤P+P (B dK)+dK⊤ R K +K⊤ R dK = 0

(14)

Pre-multiplying (14) by W , post-multiplying (13b) by PK dK,
taking trace and doing matrix manipulations we have

tr[2W (K⊤ R+P B)] = tr(Z0PK dK).

With differential dJ = tr(∇⊤K J dK) = tr(Z0PK dK) we get the
required result from comparison.

Typically ε2 ∈ [10−4, 10−2] for fast convergence. Now
we state the gradient-descent algorithm to minimize the
augmented Lagrangian L in the ith iteration in Step 3 of
Algorithm 1.

Algorithm 2 Gradient descent algorithm

Input: A, B, Ki−1
, U i, V i, ci

1, ci
2, Q, R, Z0, ε2, α, β

Output: Ki

1: Set j← 0, K j← Ki−1

2: while ∥∇KL(K j
, U i, V i)∥> ε2 do

3: Solve (13a) and (13b) to obtain P j
, W j

4: Compute ∇KL(K j
, U i, V i) using Lemma III.6

5: Compute step size s j using Armijo rule ▷ See
Algorithm 3

6: K j+1← K j− s j∇KL(K j
, U i, V i)

7: j← j+1
8: end while
9: Ki← K j

10: return Ki

The algorithm for Armijo rule [18] to determine the step
size s j is given next.
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Algorithm 3 Armijo rule [18]

Input: α, β , K j
, U i, V i

Output: s j

1: Set s j← 1
2: while L(K j − s j∇KL(K j

)) ≥ L(K j
) −

αs j
∥∥∇KL(K j

, U i, V i)
∥∥2 do

3: s j = β s j,
4: end while
5: return s j

Typically α = 0.3 and β = 0.5. Next we analyze some
properties of Algorithm 1 and the solution of problems (9),
(11).

D. Analysis

In this subsection, we prove salient properties of prob-
lems (9), (11). We first show that a controller K belonging
to the set K can never be computed from the solution of
some algebraic Riccati equation (ARE) [22] for the cases
when Q⪰ 0 and R≻ 0. These results shows the importance
of a method similar to that presented in the paper in obtaining
the optimal controller-observer gain pair when an observer
cost is present in the formulation.

Theorem III.7. (Non-determination of structured K from
ARE). Consider the dynamics (7), performance index (8) with
Q⪰ 0 and R≻ 0 such that system (A,

√
Q) is detectable. Let

the optimal stabilizing controller gain KO computed using
KO =−R−1 B⊤ S where S⪰ 0 is the solution of the ARE

Ψ := A⊤ S+S A+Q−S B R−1 B⊤ S = 0.

Now consider another stabilizing gain K for the system
(A,B). If K ∈K then K ̸= KO.

Proof. Before stating the proof first we determine the struc-

ture of S. Let S =

[
S1 S2
S⊤2 S3

]
and as Ψ is symmetric we

have Ψ =

[
Ψ1 Ψ2
Ψ⊤2 Ψ3

]
. Note that S1, S2, S3 are of same size.

Substituting S and using (7), (8) we have,

Ψ1 := A⊤ S1 +S1 A+Q1−S1 B R−1
1 B⊤ S1−S2 R−1

2 S⊤2 = 0,
Ψ2 := A⊤ S2 +S2 A−S1 B R−1

1 B⊤ S2−S2 R−1
2 S⊤3 = 0,

Ψ3 := A⊤ S3 +S3 A+Q2−S2 B R−1
1 B⊤ S2−S3 R−1

2 S⊤3 = 0.

Now (A, B), (A, B), (A, I) are stabilizable by assumption.
By virtue of (A,

√
Q) being detectable we have (A,

√
Q1)

and (A,
√

Q2) to be detectable. When S2 = 0, we have Ψ2
is fulfilled and Ψ1 and Ψ3 are AREs with S1 and S3 as
unknowns respectively. By [22, Corollary 13.8] there exists
unique S1 = S∗1 ⪰ 0 and S3 = S∗3 ⪰ 0 as solutions to AREs Ψ1

and Ψ3. Therefore S∗ =
[

S∗1 0
0 S∗3

]
⪰ 0 is the unique solution

of Ψ due to [22, Corollary 13.8]. Gain KO =−R−1 B⊤ S∗ =[
−R−1

1 B⊤ S∗1 0
0 −R−1

2 S∗3

]
. Now if K ∈K is true then clearly

from the structure of KO we get K ̸= KO.

Theorem III.7 proves that any stabilizing K ∈K cannot be
obtained by solving an ARE. The problem (5) (i.e., Q2 = 0nn,
and R2 = 0nn) can be treated as the limiting case in Theorem
III.7. However, a rigorous analysis is required to establish
the applicability of Theorem III.7 in such a scenario and
left as future work. We now derive a lower bound for the
optimal objective function value of (11).

Theorem III.8. (Lower bound for J). Consider the dynam-
ics (7), performance index (8) and reformulated controller-
observer design problem (11) with R ≻ 0. Let Z0 = z0 z⊤0
and J∗ be the optimal objective function value of (11). Then
tr(SZ0)< J∗ where S⪰ 0 is the solution of the ARE Ψ defined
in Theorem III.7.

Proof. From ARE theory [1], [22] the unique global min-
imum value the of J defined in (8) is tr(S Z0). The global
minimum optimal controller gain is KO = −R−1 B⊤ S. The
feasible set of (11) is the subset of set K. From Theo-
rem III.7 we know that KO /∈K so we must have tr(S Z0)<
J∗.

Thus, from Theorem III.8 we observe that the performance
index J in (8) is lower bounded by the full state feedback
LQR cost of the extended dynamics (7) computed using the
ARE. However such an full state feedback optimal controller
cannot be practically implemented.

Remark III.9. (Convergence of Algorithm 1). The conver-
gence of Algorithm 1 cannot be proved theoretical due to
the non-convex nature of the problem (11). However, the
empirical studies [13], [23], suggest that AML works well
when the value of penalty weights c1,c2 is sufficiently large
as the term associated with them locally convexifies the
objective function.

IV. EXAMPLE: AIRCRAFT SYSTEM

Consider the linearized model of lateral dynamics of an
aircraft system in vertical plane [12]. The nominal system
matrices are

A =

−0.746 0.006 −1 0.0369
−12.9 −0.746 0.387 0
4.31 0.024 −0.174 0

0 1 0 0

 ,

B =

0.0012 0.0092
6.05 0.952
−0.416 −1.76

6.05 0.952

 , C =

0 1 0 0
0 0 1 0
0 0 0 1

 . (15)

The model state vector x = [x1 x2 x3 x4]
T consists of the

side-slip angle (in degrees), the roll rate (in degrees/s), the
lace speed (in degrees/s), and the roll angle θ (in degrees),
respectively. The control inputs u = [u1 u2]

T are the angle
of elevator (in tenths of a degree) and the steering angle
(in degree), respectively. The structure of C implies that we
measure only three states. We consider performance index (8)
with the weight matrices as Q1 =CTC, Q2 = ζ1 Q1, R1 = I22
and R2 = ζ2I44. The following parameters are used in the
implementation of the algorithm: c0

1 = 8, c0
2 = 9, γ1 = 5, γ2 =
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7, ε1 = 10−6, α = 0.3 β = 0.5, ε2 = 10−3. For representation
purpose, we take K to be

K =

[
K1 K2
K3 K4

]
.

When K = K∗ we have K∗2 =−K∗1 , K∗3 = 0 and we compute
K∗ = K∗1 , L∗ = −K∗4 C⊤(C C⊤)−1. We use Z0 = I88 while
implementing Algorithm 1 to get a solution independent
of the initial state, which is often not completely known.
Note that Z0 = I88 implies the initial state of z, i.e., z(0) =
z0 is a random vector with zero mean and unit variance.
However, for validation purposes, we take the initial state
to be x(0) = [25, −35, 80, 35]

⊤
and x̂(0) = 041 giving us

z0 = [25, −35, 80, 35 ,25, −35, 80, 35]⊤ wherever required.
For comparison purposes we compute the optimal full-
state feedback controller KR = −R−1

1 B⊤ PR where PR is the
solution of the ARE

A⊤ PR +PR A+Q1−PR B R−1
1 B PR = 0.

For this, we evaluate (4) numerically for z0 and using the
full state feedback optimal controller u = KR x to get f R

c =
6686.5 which is the global optimal value of fc. We have used
MATLAB R2021a [24] for simulations. To test the utility of
the proposed algorithm, it’s evaluated for various scenarios,
and the results are listed below.

A. ζ1 = 0, ζ2 = 0

Considering the observer cost zero, we first report the re-
sults solving the optimization problem (5) using the proposed
algorithm for various initial gain settings. We also evaluate
the solution given by the proposed algorithm in case of full-
state feedback i.e. e(0) = 0 and C = I.

1) Case 1: Pole Placement: For this scenario, we start
with an initial gain K−1 ∈K where controller and observer
gains are selected by placing the poles to [−10 −9 −10 −
12], and [−8 −7 −8 −5], respectively. The initial value of J
for K−1 is 189.85. Applying Algorithm 1 and computing op-
timal K∗ the cost J = 6.52 yielding an improvement of 96%.
Further, using K∗, L∗ we numerically evaluate fc in (4) for
given z0 to get fc = 6765.68. Thus, using K∗, L∗ computed
using Algorithm 1 with incomplete state measurements leads
to ≈ 1.18% degradation compared to f R

c justifying utility of
our proposed theory.

2) Case 2: K0 = KR: For this scenario, we start with an
initial gain K−1 ∈K where controller gain is selected as
a LQR gain to system (A,B) with given Q1 and R1. Mean-
while, the observer gains are selected by placing the observer
poles to [−8 −7 −3 −5], respectively. The initial value of
J for K−1 is 7.32. Applying Algorithm 1 and computing
optimal K∗ the cost J = 6.52 yielding an improvement of
10%.

3) Case 3: Full-state feedback: For this scenario, we
start with an initial gain K−1 ∈ K where controller gain
is selected as a LQR gain to system (A,B) with given
Q1 and R1. Meanwhile, the observer gains are selected by
placing the observer poles to (i) [−8 − 7 − 3 − 5] and (ii)
[−8 −7 −13 −15], respectively. We also have x(0) = x̂(0)

and C = I. As expected, the Algorithm 1 terminated in the
first iteration suggesting that the optimal controller observer
pair for this scenario is K∗=KR with any stabilising observer
gain L. We perform another test with an initial gain K−1 ∈K
where controller and observer gains are selected by placing
the poles to [−10 − 9 − 10 − 12], and [−8 − 7 − 8 − 5],
respectively. The initial value of J for this K−1 is 94.73.
In this test case, the Algorithm 1 terminated as soon as
K∗ =KR with a stabilising observer gain is achieved yielding
the optimal cost 6.62 which is also similar to earlier test
cases (i) and (ii). This verifies the rationality of the proposed
algorithm.

B. ζ1 ̸= 0 and ζ2 ̸= 0

When ζ ̸= 0 and C ̸= I, the observer objective fo =∫
∞

0 [e⊤Q2 e + u⊤e R2 ue] dt is also given importance in the
optimization process. Consider a scenario when ζ1 = ζ2 = 1
for the example under consideration. We take K−1 as per
Theorem III.7 where it has a block-diagonal structure. After
application of Algorithm 1, we get K∗ presented in (17) and
is of the desired structure. Furthermore the average initial
cost considering Z0 = I88 in Theorem III.8 i.e., tr(S I88) =
11.99 is less than J∗ = 17.52 obtained from Algorithm 1
and validates Theorem III.8.

K0
1 =

[
−0.1153 −0.5211 0.0363 −0.9346
−1.7056 0.2942 1.6640 −0.4193

]
K0

2 = 024, K0
3 = 044

K0
4 =

−3.2589 0.7674 0.3931 0.4290
0.7674 −0.3894 −0.2976 −0.2287
0.3931 −0.2976 −1.1635 −0.1219
0.4290 −0.2287 −0.1219 −0.8468


(16)

K∗1 =

[
0.1585 −0.3742 −0.1036 −0.7449
−0.9881 0.1386 1.1257 −0.4743

]
K∗2 =−K∗1 , K∗3 = 044

K∗4 =

0.0000 1.4437 0.6503 −0.1699
0.0000 −0.9490 −0.3801 −0.0242
0.0000 −0.4606 −1.8823 0.1298
0.0000 −0.2299 0.0456 −1.3765



L∗ =

−1.4437 −0.6503 0.1699
0.9490 0.3801 0.0242
0.4607 1.8823 −0.1298
0.2299 −0.0456 1.3765



(17)

Finally, to test how varying ζ1 and ζ2 affect the observer
poles i.e. closed loop poles of the system (A,C), we apply
the algorithm 1 with K−1 as given in (16) and the system
under consideration. The results are presented in terms of
a heat-map in Fig. 1. The trend shows that for a constant
ζ1, increasing ζ2 shifts the poles towards the right or the
imaginary line. At the same time, one can observe an
opposite trend for a constant ζ2, increasing ζ1.

V. CONCLUSIONS

This paper presents a novel framework for designing an
optimal observer-based controller for LTI systems. We refor-
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Fig. 1: Observer poles plot over varying ζ1 and ζ2. The values
shown in each block represents the maximum value of the real part
of poles of system (A,C) with observer gain L∗.

mulated the optimal observer-based controller using extended
state dynamics and presented an augmented Lagrangian-
based strategy to compute an optimal solution. We an-
alytically show that the controller of the extended state
dynamics has a specific structure to embed the controller
and observer gains of the original system. We also prove
that the specifically structured controller of the extended
state dynamics cannot be optimally obtained by solving an
algebraic Riccati equation. Finally, we justify our proposed
theory with an example. Our future work involves studying
the effect of increasing weightage on the observer objective,
the optimization landscape of (5), adding input constraints in
the formulation, computational aspects of Algorithm 1, and
application to large-size practical examples.
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