
Dynamic Trajectory Planning for Emergency Vehicle Clearance at
Traffic Intersections Using Model Predictive Control

Mohammad Al Khatib and Naim Bajcinca
Department of Mechanical and Process Engineering

RPTU Kaiserslautern
{mohammad.alkhatib, naim.bajcinca}@rptu.de

Abstract— This paper presents an innovative approach for
optimizing the clearance of emergency vehicles at traffic in-
tersections by employing Model Predictive Control (MPC) in
conjunction with reference trajectory generation. The algorithm
operates in two distinct phases: offline static map generation
and online dynamic trajectory planning. In the offline phase,
the algorithm constructs a static map of the intersection,
approximating the drivable area with a polytope covering.
In the online phase, the algorithm continuously gathers real-
time data on the positions of all vehicles present at the
intersection. Based on mixed-integer programming techniques,
our algorithm dynamically generates reference trajectories for
each vehicle, including the emergency vehicle to facilitate the
fastest possible passage for the emergency vehicle to its target
location while ensuring the safe clearance of the path ahead.
We demonstrate the feasibility and effectiveness of our model
predictive control-based algorithm in enhancing the response
time of emergency vehicles and minimizing intersection con-
gestion, ultimately contributing to the improvement of urban
safety and emergency response services.

Index Terms—Centralized MPC, Traffic control, Autonomous
driving, Trajectory planning.

I. INTRODUCTION

In recent years, the rapid advancements in autonomous
mobile systems, particularly autonomous vehicles (AV), in-
creased the challenges that accompany this progress [1]. In
fact AV can dramatically reduce the frequency of accidents
caused by conventional driving, where more than 5.3 million
automobile crashes in the United States in 2011, resulting in
more than 2.2 million injuries and 32, 000 fatalities, as well
as billions of dollars in private and social costs [2].

One of the significant challenges pertains to the manage-
ment of road scenarios involving emergency vehicles. Unlike
regular driving situations, emergency vehicle scenarios re-
quire vehicles to deviate from standard traffic rules while
ensuring the safety of all individuals involved. In traffic
accidents and disasters, every second counts. A quickly
and correctly formed emergency lane can have a life-saving
effect. Rescue service associations estimate that if emergency
services arrive four minutes earlier, the chances of survival
are increased by up to 40 percent. Further more, according
to statistics, an accident during an emergency response is
17 times more likely to occur compared to regular driving
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Fig. 1: To ensure a prompt and safe emergency response at
such an urban intersection, the traffic control center must
implement automated driving maneuvers.

without special privileges (8 times higher with injuries, 4
times higher with fatalities). In Germany alone [3], for
example, police vehicles cause up to 13, 000 accidents with
significant personal and property damage in a single year.
However, a correctly and timely formed emergency lane is
rare and difficult to implement without the foresight and
prudent actions of all road users. Many drivers lack an
overview of the situation of all the traffic around them, which
is why they often fail to react correctly. Addressing such
challenges and developing autonomous methods to navigate
these traffic situations is imperative. The urgency of these
situations demands swift computation of solutions, especially
in scenarios involving a substantial number of vehicles, such
as traffic jams.

In this paper, we present our innovative approach, the
Model Predictive Dynamic Trajectory Planner (MPDTP),
designed to efficiently tackle the emergency vehicle clear-
ance at traffic intersections problem as shown in Figure
1 and purposefully manipulate the collective behavior of
the traffic in order to facilitate safe and fast interventions.
In this problem a set of cars is given together with the
initial and target position of an emergency vehicle at a given
intersection. The objective is to find a set of collision-free
(valid) paths for all agents and for the emergency vehicle
that adhere to real-world constraints and lead the emergency
vehicle to its respective goal. The proposed MPDTP algo-
rithm addresses the challenges associated with the problem of
emergency vehicle clearance at traffic intersections, offering
a novel approach that yields optimal solutions, ensuring the
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safety of all individuals involved in emergency scenarios. Our
approach is based on the centralized model-predictive control
(MPC) strategy that can generate optimal trajectories online
for all cars and the emergency vehicle while guaranteeing the
satisfaction of state/input constraints and coupled collision-
free constraints. At each discrete time the MPDTP algorithm
solves an optimization control problem (OCP) and sends
paths to each vehicle that are safe over a given time horizon.
The vehicles have then to follow the given paths until the
algorithm sends them updated paths in the next time instant.

Existing literature can solve the aforementioned problem
in the context of motion planning for autonomous driving.
A recent survey [4] discusses such search-based methods
which rely on abstracting the continuous state-space in the
OCP into a graph and search for a solution there. Core search
algorithms include A⋆ search [4] and dynamic programming
(DP) [5]. Variants of the A⋆ algorithm are also developed in
this context such as Hybrid A⋆ [6] and Semi-optimization
A⋆ [7]. Thus, in comparison to existing methods, the main
contribution of this paper is the development of an MPC
based planner to solve the emergency vehicle clearance at
traffic intersections problem in the continuous state-space,
resulting in less conservative movement and faster transition
times.

Various related works to solve our problem in the contin-
uous state-space using MPC exists as well. In [8] the authors
present a model predictive control algorithm to generate
trajectories in real-time for multiple robots. However non-
convex state-space constraints are not tackled and collision
avoidance constraints are rather quadratic. In [9] the authors
use nonlinear constraints to exactly reformulate collision
avoidance constraints using strong duality of convex opti-
mization. In [10] the authors propose tube-based nonlinear
model predictive control for a class of nonlinear multiagent
systems in the context of navigation in a multiagent setting.
The same problem is solved for linear systems in [10].
Nonetheless, [8] and [10] do not consider coupled nonconvex
constraints to ensure collision avoidance , as tackled in this
paper, and the nonlinear optimization problem formulated in
[9] requires large computational burden. In addition, unlike
the approach in [11] which solves the multi-agent motion
planning problem using an optimization-based method, the
collision avoidance approach therein is conservative when
no geometry of the agents is taken into consideration. In our
approach we consider the polytopic nature of the vehicles
formulate the problem into a mixed integer quadratic pro-
gram.

The rest of the paper is organized as follows: In Section
II, the emergency vehicle clearance at traffic intersections
problem is formulated. In section III, we reformulate the
problem as a centralized moving horizon optimization prob-
lem and explain the terms introduced by the cost function
and constraints. Finally, Section IV evaluates the proposed
algorithms before concluding our work.

Notations: We let R, R0+, R+, N and N+ denote the
sets of reals, non-negative reals, positive reals, non-negative
integers, and positive integers, respectively. For I ⊆ R0+,

let NI = N ∩ I . Given a set S that is a subset of Rn

and a real matrix A of size n × n, we define the set AS
as the set of all vectors x ∈ Rn such that there exists
a vector y in S satisfying x = Ay. Furthermore, for a
scalar a in the set of real numbers (R), we define aS as
the set obtained by scaling all elements of S by a. Here,
aIn represents the scalar multiplication of the n×n identity
matrix In by a. The interior of a set S is denoted by int(S),
while the convex hull of S is denoted by ch(S). We define
the Minkowski sum of sets S and S′ as the set of all
vectors x + x′, where x belongs to S and x′ belongs to
S′. Symbolically, S ⊕ S′ = {x + x′ : x ∈ S, x′ ∈ S′}.
We represent the set of compact subsets of Rn as K(Rn)
and the set of compact subsets of Rn containing the point
0 in their interior as K0(Rn). For a vector K ∈ Rl and
matrix H ∈ Rl×n having row vectors r1(H), . . . , rl(H)
and satisfying 0 ∈ int(ch({r1(H), . . . , rl(H)})) we denote
by P(H,K) the polytope {x ∈ Rn : Hx ≤ K} and by
vert(P(H,K)) its set of vertices. Finally for a given vector
x ∈ Rn we denote by max(x) the maximum element of x
and by xi its i-th element.

II. PROBLEM FORMULATION

In this section we formulate the problem of emergency
vehicle clearance at traffic intersection which is similar to
the well known multi-agent motion planning problem in
the literature. The latter is a large and active research area
which mainly relies on decoupling the problem into two sub-
problems. One which handles the complex nonlinear dynam-
ics of separate vehicles by a low-level tracking controller.
The other problem deals with the complexity of the overall
specification that the vehicles must satisfy together through
a global planner. In our setting we assume that a tracking
controller is given for each agent such that it can track the
reference path generated by our planner.

Now we consider a traffic intersection Φ(ϕ1, . . . , ϕM ) as
a covering defined by

Φ(ϕ1, . . . , ϕM ) =

M⋃
r=1

ϕr (1)

for polytopes ϕr = P(Hr, 1) and given matrices Hr ∈
Rlr×n, r ∈ N[1,M ]. At the intersection we have N + 1
vehicles one of which is an emergency vehicle V [0] =
P(V [0], 1) and the others are given by V [i] = P(V [i], 1),
for given matrices V [i] ∈ Rpi×n, i ∈ N[0,N ]. We note that
based on the context, we interchangeably use the notation V
to denote the polytope representation of the vehicle or just
to refer to the vehicle itself. A simple linear time-invariant
model is considered in discrete-time to model the dynamics
of each vehicle as:

x[i](tk+1) = A[i]x[i](tk) +B[i]u[i](tk) k ∈ N (2)

where x[i](tk) ∈ Rn is the state of an individual vehicle V [i],
u[i](t) ∈ Rm is its control input, x[i](0) = x

[i]
0 is its initial

state, and the matrices A[i], B[i] are of appropriate dimen-
sions. We denote the state and control input of the whole
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system to be the concatenations x = [x[0]; . . . ;x[N ]] and
u = [u[0]; . . . ;u[N ]]. Thus the dynamics of all vehicles could
be written in compact form as x(tk+1) = Ax(tk) +Bu(tk)
with appropriate matrices A and B and initial condition
x0 = [x

[0]
0 ; . . . ;x

[N ]
0 ]. To this end we can define the planning

problem as follows.
Problem 1: Given Φ(ϕ1, . . . , ϕM ), vehicles

V [0], . . . ,V [N ], initial positions x
[0]
0 , . . . , x

[N ]
0 , set

U = U [0] × · · · × U [N ], and a terminal position xf ∈ Rn.
Find a set of trajectories x[0](·), . . . , x[N ](·) satisfying the
dynamics in (2) such that

• x[i](0) = x
[i]
0 , i ∈ N[0,N ],

• u[i](t) ∈ U [i], ∀t, i ∈ N[0,N ],
• vehicle V [0] reaches xf in finite time; there exists tf <

∞ with x[0](tf ) = xf , and
• all vehicles stay in their drivable areas, with
• no inter-vehicle collisions; i.e. ∀t, ∀i, j ∈ N[0,N ], i ̸=

j,
(
{x[i](t)} ⊕ V [i]

)⋂(
{x[j](t)} ⊕ V [j]

)
= ∅.

Without loss of generality we assume that all vehicles V [i],
i ∈ N[1,N ], could interfere with the emergency vehicle and
thus the drivable area, which is assumed to be covered
by Mp sets Φ(ϕ1, . . . , ϕMp

), for all considered vehicles
is the same. In the general case, the set of vehicles at
an intersection is partitioned and only those that can in-
terfere with the emergency vehicle are considered in our
algorithm. In the next section, we reformulate Problem 1
as a mixed integer quadratic optimization problem. Then
within the model-predictive control paradigm we solve the
planning problem online and generate in real-time collision
free optimal trajectories for each vehicle so that the optimal
path of the emergency vehicle to the given target location is
safely cleared.

III. MPC FOR TRAJECTORY PLANNING

In this section, we propose a solution for Problem 1.
Given N +1 vehicles on an intersection Φ(·) we propose an
MPC which is responsible to generate safe trajectories for
all vehicles so that the emergency vehicle reaches as soon
as possible a given target location while the other cars clear
the way quickly while staying in the allowed drivable area.
Figure 2 shows the structure of the proposed algorithm.

The output of our algorithm will be trajectories x[i](·)
defined in discrete time tk+1 = tk + T , k ∈ N, where T
is the sampling time of the algorithm. Then in continuous-
time a piece-wise linear path will be generated, and sent to
the low level tracking controller, defined as

S[i](s) = x[i](tk) +
x[i](tk+1)− x[i](tk)

T
(t− tk), (3)

for s ∈ [tk, tk+1].
We proceed to the next main section where we present

useful derivations first before presenting the algorithm after-
wards.

A. MPC-based planner design

We reformulate Problem 1 as a constrained mixed-integer
quadratic moving horizon optimal control problem which

MPC

Vehicles V [0], . . . ,V [N ]

xfΦ(·)

x[0](·), . . . , x[N ](·)x[0](tk), . . . , x
[N ](tk)

x
[0]
0 , . . . , x

[N ]
0

Fig. 2: The proposed MPC planning strategy. Here low level
controllers which are out of the scope of this work are
assumed to be embedded in the vehicles.

needs to be solved online at each time step tk = kT . The
optimization problem has the following form:

min
x,u

L∑
k=1

Jk

s.t. x(tk+1) = Ax(tk) +Bu(tk), ∀k ∈ N[1,L] (4a)

u[i](tk) ∈ U [i], ∀i ∈ N[0,N ], k ∈ N[1,L] (4b)

{x[i](tk)} ⊕ V [i] ⊆ Φ(ϕ1, . . . , ϕMp), (4c)
∀i ∈ N[0,N ], k ∈ N[1,L]

x(t0) = x0, (4d)
C(x(tk)) = ∅,∀k ∈ N[1,L] (4e)

Scalar L ∈ N is the prediction horizon. Sets U [i] ⊂ Rm,
i ∈ N[0,N ] are assumed to be given closed, bounded, and
convex sets. The objective, is to minimize the distance of
the emergency vehicle at each time step to the target state.
Thus the resulting cost function of the optimization problem
is given by:

Jk =
(
∥x[0](tk)− xf∥2Q +

N∑
i=0

(
∥u[i](tk)∥2R

))
, (5)

where matrices Q,R > 0 are the state and input weighting
matrices respectively. By such an approach any vehicle
crossing the optimal trajectory of the emergency vehicle
within the prediction horizon will be forced to move away as
needed. But since inter-vehicle collisions are prohibited by
constraint (4e) then other cars will be also moved allowing
for such clearance. Indeed (4e) is given as well by

C(x(tk)) =
(
{x[i](tk)}⊕V [i]

)⋂(
{x[j](tk)}⊕V [j]

)
, (6)

for all j ∈ N[i+1,N ], i ∈ N[0,N−1], and guarantees also that
the emergency vehicle will not collide with other vehicles
in its vicinity. Constraint (4a) embed the dynamics within
the generated trajectories. (4b)-(4c) define constraints on
the vehicle locations and speeds where vehicles at time tk,
P(V [i], V [i]x[i](tk)−1) = {x[i](tk)}⊕V [i] needs to be in the
drivable area with acceptable speeds. (4d) defines the initial
state for the system.

Now we simplify further, constraints (4c) and (4e). As for
constraint (4c) it requires every vehicle V [i], i ∈ N[0,N ] to
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be within the drivable area

Φ(ϕ1, . . . , ϕMp
) =

Mp⋃
r=1

ϕr. (7)

(4c) follows from the logical statement:
Mp∨
r=1

((
{x[i](tk)} ⊕ V [i]

)
⊆ ϕr

)
= 1. (8)

In other words, vehicle V [i] needs to be at least in one
of polytopes ϕr, r ∈ N[1,Mp] defining the coverage of the
drivable area. Consequently, logical statement (8) as well
as constraint (4c) could be then rewritten using additional
binary variables as in the following result:

Proposition 1: Constraint (4c) is satisfied if there exist
binary variables δ

[i]
1 (tk), . . . , δ

[i]
Mp

(tk) such that

Mp∑
r=1

δ[i]r (tk) = 1 (9)

and
Mp∑
r=1

δ[i]r (tk)Hrx
[i](tk) ≤ 1− b[i]r 1. (10)

where the offline computed constants b
[i]
r =

maxx∈vert(V[i]){max(Hrx)}.
Next, we reformulate in a similar reasoning constraint (4e)
to involve binary variables as well. To this end we need to
add N(N+1)

2 constraints at every discrete-time tk having the
form

P(V [i],K [i](tk))) ∩ P(V [j],K [j](tk))) = ∅, (11)

with K [i](tk) = V [i]x[i](tk) − 1. (11) is equivalent to the
logical statement:

pj∨
l=1

(
rl(V

[j])(x[i](tk)−x[j](tk))
)
≥

K [j](tk) + (a
[i]
j + a

[j]
i )1,

(12)

where the offline computed constants a
[i]
j =

maxx∈vert(V[i]){max(V [j]x)}. In other words, (12)
enforces that at least one of the half-space inequalities
is violated so that x[i](tk) lies with a certain distance
outside P(V [j],K [j](tk))). Consequently logical statement
(12) as well as constraint (4e) are enforced using the
following result:

Proposition 2: (12) is satisfied if there exist binary vari-
ables ∆

[i]
l,j(tk), l ∈ N[1,pj ],j ∈ N[i+1,N ], i ∈ N[0,N−1], such

that:
lj∑
l=1

∆
[i]
l,j(tk) = 1 (13)

and
lj∑
l=1

∆
[i]
l,j(tk)

(
rl(V

[j])(x[i](tk)− x[j](tk))
)
≥

K [j](tk) + (a
[i]
j + a

[j]
i )1.

(14)

B. Algorithm

Given Φ(ϕ1, . . . , ϕM ), vehicles V [0], . . . ,V [N ], initial po-
sitions x

[0]
0 , . . . , x

[N ]
0 , and a terminal position xf ∈ Rn we

follow the derivations in Section III-A, and solve Problem 1
by iteratively solving at discrete times tk, as in Algorithm 1,
the following OCP:

min
x,u,δ,∆

L∑
k=1

(
∥x[0](tk)− xf∥2Q +

N∑
i=0

(
∥u[i](tk)∥2R

))
s.t. x(tk+1) = Ax(tk) +Bu(tk), ∀k ∈ N[1,L] (15a)

u(tk) ∈ U , ∀k ∈ N[1,L] (15b)
Eqs.(9)&(10), ∀k ∈ N[1,L] (15c)
x(t0) = x0, (15d)
Eqs.(13)&(14), ∀k ∈ N[1,L] (15e)

OCP (15) is a mixed-integer quadratic optimization problem
that we solve online using available solvers such as Gurobi
[12].

Algorithm 1 MPDTP algorithm

function MPDTP(Φ(·), x0, xf , U , V [0], . . . , V [N ], L)
1 : Set k = 0 and x(tk) := x0

2 : x(·) := C(Φ(·), x(tk), xf ,U ,V [0], . . . ,V [N ], L)
3 : Compute ulow(·) := κ(x(·))
4 : Apply the control input ulow(t) for t ∈ [tk, tk+1]
5 : Measure x(tk+1),
6 : Increment time index k := k + 1 and return to step 2

In the first line of Algorithm 1 we initialize our computa-
tions. In line 2, we solve online the optimal control problem
(15) for an initial condition x(tk) to find the vehicles’
individual trajectories (x[i](t))t∈N[tk,tk+L]

, i ∈ N[0,N ]. The
control input in continuous-time t ∈ [tk, tk+1] is then defined
in line 3, using a low level controller (as explained in Section
II) for tracking the generated trajectories in the previous
step, and applied to the system as in line 4. In line 5-6 we
measure the state at time tk+1 shift the horizon one step and
recompute iteratively the optimal trajectories as in line 2.

Remark 3: We note that OCP (15) could be further gen-
eralized to handle signal-temporal logic specifications as in
[11], [13]–[15] by translating such specifications into con-
straints with additional binary variables. Furthermore, in the
context of multi-agent motion planning our approach could
be easily extended to plan trajectories for multiple agents
to reach their individual targets optimally by appropriately
changing the cost function to include a final destination for
each vehicle.

IV. CASE STUDIES

We demonstrate the functionality of Algorithm 1 at the
micromanagement levels, through a simple scenario at an
inner-city intersection of a multi-lane road with traffic lights,
an emergency vehicle, and two closely spaced vehicles. This
scenario takes advantage of the presence of communication
and computing infrastructure in the form of Edge Comput-
ing Devices (ECD), as well as controllable traffic lights
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where once the emergency vehicle approaches the traffic
intersection it sends a signal to the ECD through vehicle
to infrastructure (V2I) communication channels including its
position and target location. Then the ECD runs Algorithm
1 iteratively and sends online updated trajectories to all ve-
hicles in the intersection where once low level controllers in
the vehicles follow the assigned safe and optimal trajectories
the path is cleared in front of the emergency vehicle until it
reaches its target location.

All simulations run, using Matlab software, in real-time on
machine having a 1.4 GHz i5 processor with 8 GB memory.

The intersection we consider is on the Trippstadt Street
at Max Planck Institute in Kaiserslautern (Germany) as
depicted in Figure 3. A reconstruction of the intersection
in 2D is done and plotted in Figure 4. After that we under-
approximate tightly the drivable area there in, as shown in
Figure 5, using 14 polytopes ϕ1, . . . , ϕ14 and define the set

Φ(ϕ1, . . . , ϕ14) =
14⋃
r=1

ϕr.

After that we set the emergency vehicle V [0] in our controller
to be a rectangle of 3 meter length and 1 meter width. The
other 2 vehicles V [1] and V [2] are identical cars of 0.8 meter
width and 1.5 meters length. All matrices in (2) are the same
for the vehicles and are given by matrix A and B with:

A =

[
1 0
0 1

]
, B =

[
0.1 0
0 0.1

]
, (16)

where the time step is given by T = 0.1sec. Initial positions
are given by

x0 = [−140; 572;−160; 578;−163; 581].

The control inputs for the emergency vehicle are required to
be bounded in the set

U [0] = [−17, 17]× [−17, 17].

The other vehicles’ speeds are required to be more con-
strained in emergency situation where we set U [1] = U [2] =
0.6U [0]. The target location for the emergency vehicle is set
to xf = [−195; 520]. After setting the prediction horizon to
be L = 20 which corresponds to a duration LT = 2sec we
follow the steps of Algorithm 1 and simulate the intersection
for a total duration of 5sec. We note here that just for
simulation purposes we set the low level control inputs the
same as the control inputs u⋆(tk), . . . , u

⋆(tk+L) generated
by controller C(·) when solving OCP (15). We also feedback
these control inputs in line 4 of Algorithm 1 to system (2).
And thus in line 5 of the algorithm we have

x(tk+1) = f(x(tk), u
⋆(tk)),

as the measured state. As Figures 6 and 7 show, the emer-
gency vehicle drives safely toward the target location and
reaches destination in 5sec. As for the other cars we noticed
that they started clearing the path, without colliding with
each other or going out of the drivable area, from the very
beginning so that the emergency vehicle can still drive at

Fig. 3: A bird’s-eye view of the Trippstadt street section at
the Max-Planck-Institut at Kaiserslautern.

Fig. 4: A 2D reconstruction of the intersection at the Max-
Planck-Institut. It is clear that 6 islands are presented which
are not drivable, increasing the number of polytopes to cover
a tight under-approximation of the drivable area.

maximum allowed speed. After the emergency vehicle passes
next to the other vehicles, the latter almost stop moving since
they are no more in the former’s path.

V. CONCLUSION

In this paper, we propose a centralized MPC-based plan-
ning algorithm to solve dynamically the problem of emer-
gency vehicle clearance at a given intersection. Using off-the-
shelf optimizers, we show that the proposed controller is able
to generate online optimal trajectories for individual vehicles
that are safe and allow the emergency vehicle to reach its
target location in optimal time. Ongoing research related
to this topic include the design of distributed/decentralized
controllers for the clearance problem. Additionally, we aim
to demonstrate the performance of the algorithms on real
autonomous cars equipped with low-level real-time con-
trollers that can track the generated reference trajectories
by our MPDTP algorithm with high precision and good
performance.
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Fig. 5: A polytopic covering Φ(ϕ1, . . . , ϕ14) of the drivable
area in the traffic intersection. It is clear that islands are
excluded from the cover.
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Fig. 6: State trajectories for the emergency vehicle (green)
and the two other vehicles (red).
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