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Abstract— In this paper, we adopt an energy perspective to analyze
the stability of converter-dominated dc grids under a hierarchical
(primary/secondary) optimal control strategy based on distributed
communications, and its robustness against cyber-threats. First,
we begin by showing that both the decentralized droop-controlled
dc microgrid, as well as the distributed secondary controller, admit
a port-Hamiltonian description. Second, we exploit the fact that
the closed-loop system can be interpreted as a lossy-interconection
between their (incremental) models to prove stability for the
unperturbed system. Third, we analyze the effect of malicious
attacks on the (linear) system and robustify the control system such
that resilience against cyber threats always is ensured at steady state.
Additionally, we show that by adequately tuning the controllers we
are able to significantly reduce the attack influence on the desired
steady state. Finally, we use time-domain simulations to support our
findings in a case study involving a low-voltage DC microgrid.

I. INTRODUCTION

POWER systems are using more renewable energy sources
(RES), causing the modern grids to gradually evolve into

multi-agent converter-dominated grids [1] [2]. On the low to
medium voltage end, dc microgrids (MGs) have gained extensive
attention as a solution to effectively implement these green energy-
generating units, due to the electrical nature of the RES [3]. From a
control perspective, it is crucial to shift paradigms and develop new
control schemes that are suitable for a rapidly and continuously
expanding RES-grid, and thus able to safely scale with the grid
without risking unstable operations. In addition, distributed control
strategies have emerged as a promising solution for ensuring
optimal operation of the grid with reduced communications,
providing flexibility and reliability to the grid. The use of commu-
nication networks and cooperative decision-making additionally
provides resilience to single-point-of-failure [4] [5]. Despite these
operational advantages, communication between neighboring units
increases the system’s vulnerability to cyber-attacks [6].

In the literature, the most prominent type of potential cyber
threat is false data injection attack (FDIA) propagating the system
signals by adding false information on top of existing signals.
When FDIAs are perturbing even more discretely in the dynamics,
control objectives such as load (power or current) sharing based
on consensus protocols still converge, however at a non-optimal
operating point. This subclass of attacks is then classified as an
intelligent stealth-attack as it can deceive the control system, hence,
making it even harder to detect and mitigate [7]. Several cyber
security strategies have been proposed as a solution to mitigate
the influence of these attacks, where the main techniques are
categorized into detection/mitigation or protection strategies [8].

Several detection and mitigation strategies concerning FDIA in dc
MGs have been proposed in [7], [9]–[11]. Present challenges in the
design of robust control strategies for microgrids revolve around
precise detection, localization, and identification of cyber-attacks.
A denser network topology is often necessary within the cyber
network, driven by the need for increased communication among
units, as additional information exchange becomes essential in the
detection and mitigation processes [7]. Additionally, these existing
approaches are often time-sensitive, requiring rapid threat removal
before the attacks compromise the reliability and stability of the
MG [12]. In order to provide privacy and security in the network,
even in hostile situations [4], [12]–[14] proposes a distributed
controller with the additional control objective of resilience
against cyber threats; i.e., aiming to ensure that the MG operates
as close as possible to the unforced system while being perturbed
by potential cyber threats, regardless of the attack location.

In [3] a nonlinear dc MG was proposed with a communication-
reliant distributed (primary and secondary) controller, ensuring
asymptotic stability at the optimal equilibrium where both control
objectives proportional power/current sharing and average
voltage control are ensured simultaneously. Due to the exploitation
of communication technologies, the system is prone to cyber
infiltration, and we aim to extend this model by investigating the ro-
bustness of the distributed controller against different cyber-attacks.
We are interested in the ability to always ensure convergence to the
desired optimal equilibrium and the capacity to always guarantee
stable operation. Firstly, we show that the nonlinear system admits
a port-Hamiltonian (pH) representation and assess the asymptotic
stability of the system seen from an energy viewpoint by applying
Lyapunov theory. Secondly, motivated by the resilient algorithm
in [12], the distributed control framework is robustified. We then
apply Lyapunov theory to the linear dc MG, aiming to ensure
input-to-state stability and consequently boundedness. Finally,
we propose a modified resilient version of the controller capable
of ensuring proportional current-sharing and average voltage
regulation in steady state even when subjected to potential attacks.

II. ENERGY MODELLING, STABILITY AND EQUILIBRIUM

This section reviews the distributed control and optimization
proposal in unperturbed conditions from [3] used as a starting
point in our work, included here for completeness. Throughout
the paper, we use the following notations, Rn×m and Rn denotes
a set of n×m real matrices and n×1 real vectors, respectively.
col(···)∈Rn denotes a column vector of numbers and blkcol{···}
denotes a column vector of vectors of appropriate dimensions.
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blkdiag{···} denotes a diagonal matrix of vectors of appropriate
dimensions and diag(· · ·)∈Rn×n denotes a diagonal matrix of
numbers. I denotes a diagonal identity matrix. Given a scalar or
a vector x, the value at the equilibrium point is indicated as x̄.

A. Electrical Network: Physical Layer

The DC microgrid structure and parameters under consideration
are based on the model presented in [3]. The agents are the
distributed generators (DGs), located close to the power-
consuming loads (ZIP-loads), and are effectively interfaced with
the rest of the MG through voltage-controlled converters. The
DGs are interconnected both electrically and via distributed
communication links, forming a cyber-physical grid (CPG). Graph
theory is used to establish the physical and virtual interconnections,
see Section II in [3] for precise definitions of the included graphs.
Following the model presented in [3], the electrical dynamics are
presented in a compact form in (1). The converters are considered
equivalent zero-order models, hence, the internal voltage controller
and associated inner-loop dynamics are not considered.

LG İG=V G−βGV N−RGIG (1a)
LE İE=−βEV N−REIE (1b)
CN V̇ N =βE⊤IE+βG⊤IG−IL (1c)
IL=GcteV N+Icte+P cte/V N (1d)
V G=V ref=1nVnom−RDIG+uel, (1e)

where LG = diag(LG
i ) ∈ Rni×ni , RG = diag(RG

i ) ∈ Rni×ni ,
IG = col(IGi ) ∈ Rni , RD = diag(RD

i ) ∈ Rni×ni ,
uG =col(uGi )∈Rni are respectively the inductance, resistance,
current, droop resistance and control (voltage) input of the DGs
∀i∈RG. LE =diag(LE

j )∈Rnj×nj , RE =diag(RE
j )∈Rnj×nj ,

IE = col(IEj ) ∈Rnj are respectively the inductance, resistance,
and current of the transmission lines ∀j∈RE . CN =diag(CN

k )∈
Rnk×nk , V N =col(V N

k )∈Rnk , Gcte =diag(Gcte
k )∈Rnk×nk ,

Icte=col(Ictek )∈Rnk , P cte=diag(P cte
k )∈Rnk are respectively

the shunt capacitance, its voltage, the constant conductance,
constant current and constant power of the power-consuming
loads ∀k ∈ RN . Finally, Vnom is the nominal voltage, and
βG=[bik]∈Rnk×ni , and βE =[bjk]∈Rnk×nj are the incidence
matrices defining the network topology.

1) pH Representation: The input-state-output pH formalism
is now used to represent the electrical system in (1). The
set of transmission lines E, power-consuming loads N , and
DGs G all admit a port-Hamiltonian formalism, and thus the
power-preserving interconnection of these three subsystems
together constitute a pH system as well, as illustrated in Fig.1.
Furthermore, the DGs have additional port variables, uel and yel,
respectively defined as the input and output vectors that will be
used to interconnect the distributed passivity based secondary
controller. It is easy to see that the compact dynamics of the
physical system in (1) admit the following pH-representation∑

el

:

{
ẋel=(Jel−R

(
V N)

)∇Hel(xel)+Eel

yel=g⊤el∇Hel(xel),
(2)

with xel = blkcol{φG,φE , qN} ∈ Rn a collection of the flux
linkages of the DGs φG = col(φG

i ) ∈ Rni , the flux linkages of

Fig. 1: Closed-Loop MG based on the port-Hamiltonian Structure

the transmission lines φE = col(φE
j ) ∈ Rnj , and the electrical

charges of the loads qN = col(qk) ∈ Rnk with cardinality
n≜ (ni+nj +nk). Jel =−J⊤

el ∈Rn×n is a skew-symmetric
matrix containing all electrical interconnections, given as

Jel≜

 0 0 −βG

0 0 −βE

βG⊤ βE⊤ 0


while R = R⊤ ∈ Rn×n is the dissipation matrix, defined as
R
(
V N)

≜blkdiag{RG+RD,RE ,Gcte+ Pcte

V 2
N
}. uel=col(uGi )∈

Rni contains the control input of DG’s, with associated input
allocation vector gel=blkdiag{Ini×ni

,0(n−ni)×ni
}∈Rn×ni . Its

corresponding natural or passive output is then yel=col(yGi )∈Rni .
Eel ≜ col(1ni

Vnom, 0nj
,−Icte) ∈ Rn is a constant column

vector containing all constant sources of the electrical
network. Hel(xel) =

1
2x

⊤
elQelxel is the energy storage function

(Hamiltonian), where Qel=blkdiag{L−1
G ,L−1

E ,C−1
N }∈Rn×n.

B. Communication Network: Cyber Layer

Section III in [3] included the communication network
model and distributed control framework. In summary, the
communication model is based on an economic dispatch
convex optimization formulation, and communication between
neighboring units using a leaderless consensus protocol, aiming
to ensure the two control objectives: proportional power sharing
and average voltage regulation. N c

i is the set of the neighboring
DGs in the communication network and the proposed distributed
integral controller, vc=col(vci )∈Rnc

i , ∀i∈RNc

and following
pH model of the communication system is given in (3), where
uc = col(uci) ∈ Rnc

i : ∀i ∈ RNc

is the communicated values
among the DGs. KI > 0 is the integral gain and Finally, L =
[lij]∈Rnc

i×nc
i is the Laplacian matrix, containing the consensus

properties of the strongly connected communication network.∑
c

{
v̇c=gcuc gc=−KIL
yc=g⊤c ∇Hc(vc),

(3)

gc ∈ Rnc
i×nc

i contains the information about where, and how
the input values from the electrical network are entering the
communication network, with yc = col(yci ) ∈ Rnc

i the output
vector, and Hc(vc)=

1
2v

⊤
c K

−1
I vc the Hamiltonian.

C. Cyber-Physical Network Interconnection

Fig. 1 represents the interconnection between the systems
(2) and (3), both shown to admit the pH formalism, through the
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following lossy-interconnection subsystem∑
I

:

[
uel
uc

]
=

[
−r −(w−1)

(w−1)⊤ 0

][
yel
yc

]
+

[
b
bc

]
, (4)

where w−1=diag{w−1
ij }∈Rni×nc

i represents added weightings
in the power-preserving interconnections, important to ensure
voltage regulation of the MG, further explained in Section II-E.
In addition, r > 0 ∈ Rnc

i×nc
i contains the proportional part of

a PI-controller KP and can be viewed as the dissipation of
the interconnection between both networks. For generality, the
power-preserving interconnections also include some constants
vectors, b and bc∈Rni . The pH model of the closed-loop system
is then given in (5), by coupling the pH systems (2) and (3)
through the lossy interconnection (4).

ẋt=F
(
V N)

∇Ht(xt)+Et, (5)

ẋt=

[
ẋel
ẋc

]
, F

(
V N)

=

[
Jel−(R

(
V N)

+r) −gelω
−1g⊤c

gcω
−⊤g⊤el 0

]
,

∇Ht(xt)=

[
∇Hel(xel)
∇Hc(xc)

]
, Et=

[
Eel+gelb
gcbc

]
.

D. Lyapunov Stability Assessment

Proposition 1: Consider the pH system in (2) coupled with the
controller system (3) through the lossy interconnection (4). If r
is positive-definite, then the origin is asymptotically stable in the
following domain

D={x̃∈Rn :Gcte>
P cte

V̄ N (Ṽ N+V̄ N )
}

Proof: Considering the equilibria equations of (2), (3) and
(4), and defining the incremental variables x̃el ≜ xel− x̄el and
x̃c≜xc−x̄c, the closed-loop incremental model is then defined as

˙̃xt=FI

(
Ṽ N

)
∇Ht(x̃t), (6)

when replacing the resistance matrix of (5) with

RI

(
Ṽ N

)
≜blkdiag{RG+RD,RE ,Gcte−G

(
Ṽ N

)
},

when G
(
Ṽ N

)
=P cte/V̄ N (Ṽ N+V̄ N ). Adding the incremental

storage functions of subsystems (2) and (3), we obtain the
Lyapunov function

V(x̃t)≜Hel(x̃el)+Hc(x̃c)}>0,

with a minimum value at the equilibrium. The derivative along
the trajectories of the system (6) then reads

V̇t=∇⊤Vt(x̃t) ˙̃xt=∇⊤Vt(x̃t)FI

(
Ṽ N

)
∇Vt(x̃t)

=−∇⊤Hel(x̃el)(R
(
Ṽ N

)
+r)∇Hel(x̃el).

(7)

Asymptotic stability follows for all x̃∈D, since R(Ṽ N )≥0, and
r>0 by design, leading to V̇t≤0.

Corollary 1: Suppose Proposition 1 holds, and let P cte = 0.
Then the closed-loop system is globally exponentially stable.

Proof: When P cte = 0 the physical resistance matrix is
expressed as RI=blkdiag{RG+RD,RE ,Gcte}≻0. For a given
r > 0, FI|sym becomes a matrix consisting of solely positive
definite terms. Consequently, the Lyapunov function V(x̃t) takes
on a quadratic form and hence radially unbounded, such that the
equilibrium becomes globally asymptotically stable for x̃t∈Rn.

E. Optimal steady state and closed-loop equilibrium

The matrix containing the primary control parameters is defined
as positive definite, α>0. In [3], an optimal economic dispatch
problem was formulated for the microgrid under consideration as

min

ni∑
i=1

Ci(IGi ), s.t.

ni∑
i=1

IGi =Idemand,

with Ci(IGi ) ≜ αi(I
G
i )

2 +βi(I
G
i )+ γi the cost function for the

ith generator, and weighted cost function parameters in the
economic dispatch optimizer αi, βi and γi. When this convex
optimization problem is solved with the Lagrangian method, the
Karush-Kuhn-Tucker (KKT) conditions for primal-dual optimality
give the necessary and sufficient stationary condition

lim
t→∞

λi=λj=λopt, with λi=2αiy
el
i +βi, (8)

or alternatively, in compact form:

λ=2αyel+β (9)

with α=diag(αi)∈Rni×ni and B=col(βi)∈Rni .
Proposition 2 (Proposition 3 in [3]): Consider the following

definitions
b=−Kpw

−1LB, bc=B,
r=−RD+Kpw

−1Lw−1, w−1=2α.

If the communication network is strongly connected and
undirected, the KKT optimality condition (8) is achieved at the
equilibrium point of the dc microgrid in closed-loop with the
controller of [3]. The controller also guarantees a near-nominal
voltage formation, which can be formulated as

lim
t→∞

ni∑
i=1

ωiV
G
i =Vnom

ni∑
i=1

ωi.

Proof: We derive the steady state equations of (5) by setting
ẋt=0n. Hence, the equilibrium set is given by

E ≜{xt∈Rn :0=FI

(
V N)

∇Ht(xt)+Et}. (10)

The steady state equilibrium of the cyber layer (3) is then 0 =
−KILλ. Due to the Laplacian propertyL1n=0 the above expres-
sion is satisfied when λ=λopt1nc

i
. Hence, the KKT condition (8)

is satisfied at the equilibrium ensuring proportional current sharing.
Subsequently, we investigate the near-nominal voltage regulation
in steady state. Following Proposition 2 and by multiplying the
sum of the weighted voltages 1ni

w on each side of the closed-loop
controller in (1e), the weighted voltage sum is expressed as
1⊤ni

wV̄ =1⊤w1ni
Vnom

−1⊤ni
w
[
Kpw

−1Lw−1ȳel+Kpw
−1LB

]
−1⊤ni

ȳc (11)

Using the pH system definition in (3), and the Laplacian property
1⊤nL=0, (11) simplifies to

1⊤ni
wV̄ =1⊤ni

w1ni
Vnom. (12)

The above equation reveals that the control ensures that the
weighted average voltage is regulated to Vnom at the equilibrium;
i.e., near-nominal voltage regulation in steady state.
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III. DC MICROGRID SUBJECT TO CYBER-ATTACKS

In this section, we analyse the linear dc MG following Corollary
1, together with the controller in [3] under perturbed conditions;
i.e., where xt is influenced by additional time-dependent bounded
disturbances under the following assumption.

Assumption 1: All potential cyber-attacks perturbing the micro-
grids can be modeled as unknown, yet uniformly bounded attacks.
We evaluate the stability of the perturbed system using Lyapunov
theory, bounding the stability through the input-to-state property
induced by the attacks. Then we impose three different cyber-
attacks to the MG under considerations as follows. First, we
impose a false data injection attack (FDIA) in the actuators of the
generators: i.e., adding false values on top of existing signals. Sec-
ondly, we construct an FDIA perturbing the current measurements
of the DGs. The current sensors are located in the converters in the
physical network. However, as the DGs are the communicating
units, the potential cyber attacker may malign the measured values,
affecting the control configurations (both droop and secondary).
Finally, we impose a third-party man-in-the-middle (MITM)
attack infiltration in the communication links of the distributed
control network. An MITM attack may interfere with the system
as either a hijacking attack: i.e., completely replacing the existing
signals, or an FDIA. Regardless of the behavior of the attack, the
MITM attack changes the communicated values between the DGs
in the cyber layer of the MG.

In Section II-D under Corollary 1 the unforced linear system
is proven to globally asymptotically (exponentially) converge
to a stable equilibrium point. We now leverage Lemma 4.5 in
[15], which asserts that if the unperturbed system is globally
exponentially stable, the perturbed system is input-to-state stable
(ISS) and bounded by the external attacks. Furthermore, due to
the linearity of the system, boundedness immediately follows.

1) Cyber-Attack 1; FDIA in the Actuators of the Generators:
∆u is the attack-vector perturbing the energy transfer to the
system; hence, uel=−ryel−w−1yc+b+∆u. For the incremental
system, the attack-vector is then included in ũel in (5) changing
the time-derivative of the Hamiltonian of the physical system, and
thereby the Lyapunov function as follows

V̇C1(x̃t)=V̇t(x̃t)+∇⊤Hel(x̃el)gelζ∆ũ. (13)

Corollary 2: When the linear ISS system (2), (3), (4) is subject
cyber-attack 1, we can express the restrictive stability bound of the
states under the bounded input-bounded-state property (BIBS) as

∥∇⊤Hel(x̃el)∥≥
∥gelζ∆ũ∥

λmin(RI+r)
. (14)

Proof: We bound the stability of the Lyapunov function in
(13) subject to cyber-attack 1 as follows

V̇C1(x̃t)=V̇t(x̃t)+∇⊤Hel(x̃el)gelζ∆ũ,

=−∇⊤Hel(x̃el)(RI+r)∇Hel(x̃el), (15)

≤−λmin(RI+r)∥∇Hel(x̃el)∥2

+∥∇⊤Hel(x̃el)∥∥gelζ∆ũ∥≤0

where we have used (7) in the second equality, the eigenvalue
norm in the first inequality together with Cauchy-Schwarz
inequality. The proof is completed by forcing the last inequality
to be negative semi-definite and solving for ∥Hel(x̃el)∥.

2) Cyber-Attack 2; FDIA in the Current Sensors of the
Physical System: ∆I is modeled as the attack-vector and the
two controllers of the closed-loop control system, are given as:
uel=ryel−w−1yc−r∆I+b and uc=w−1⊤yel+w−1∆I+bc.

3) Cyber-Attack 3; MITM attack in the Communication Links:
The communicated values are previously defined as all the parame-
ters following the Laplacian. We define ∆λ and ∆vc as the attack-
vectors, and the two (cyber and physical) inputs are in closed-loop
re-defined as: uel=−ryel+w−1yc+b+r1∆λ+r2∆vc and uc=
2αyel+bc+∆λ, where r1≜−w−1KpL and r2≜−2αLKI .

IV. PERTURBED EQUILIBRIUM AND RESILIENCE STRATEGY

The perturbed linear system is proven to be ISS against any
potential cyber-attack. The subsequent objective is to assess the
capability to stabilize around an optimal operating point under
a resilient control strategy, ensuring both the KKT condition in
(8) and maintaining average voltage regulation, even under hostile
conditions.
A. Proposed Resilient Control Tuning Strategy

The controller under consideration is highly dependent on the
control parameter α, which suggests adopting the following initial
resilience strategy as a starting point.

Hypothesis 1: The resilience is ensured when tuning the
primary control parameter matrix α by a scalar to a sufficiently
high value, removing the effect of the perturbation term and
establishing a resilient controller robust against all cyber-attacks.
Notice that B and γ will need to be appropriately scaled to prevent
modifying the objective of the original cost function.
In the upcoming section, we evaluate the effectiveness of the
controller in steering the MG to an optimal steady state, where
the control objectives are met under perturbed conditions. Our
analysis reveals that Hypothesis 1, does not fully mitigate
the influence of attacks. More precisely, in hostile situations,
increasing the control parameter α is shown to improve the
consensus property at the equilibrium, but not improving the
improving the average voltage regulation. Motivated by this
shortcoming, we propose a new control modification aimed at
regulating the average voltage to a desired reference level.

Definition 1: The secondary control tuning parameter ζ is
added in the voltage controller resulting in

V G=Vnom−RDIG+ζuel,

with uel=−rnewyel−ω−1yc+b,
(16)

with rnew=−1
ζR

D+Kpw
−1Lw−1, Kp>0 and ζ= 1

µ>0.
The ultimate resilient tuning strategy is subsequently introduced,
combining Hypothesis 1 with the proposed modifications.

Hypothesis 2: The resilience is ensured when tuning both
the primary control parameters α, B and the secondary control
parameter ζ to appropriate values, removing the effect of the
perturbation term introduced by all cyber-attacks.

B. Equilibrium Analysis

1) Cyber-Attack 1: Following the same approach as in Section
II-E the weighted voltage sum in steady state under the attack is

1⊤ni
wV̄ =1⊤ni

w1ni
Vnom+1⊤ni

wζ∆ū (17)
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Recall, from the definitions in Proposition 2 thatω−1=2α. Hence,
increasing only this primary control parameter is not sufficient to
reduce the influence of the attack. However, following Hypothesis
2 sufficiently high tuning values of µ are shown to reduce the
influence of the attack, to the point where the average voltage
regulation is achieved at the new equilibrium. On the other hand,
following Hypothesis 2, the steady state operations of the cyber
layer is redefined as 0=−ζKILλ̄. The new steady state does not
hinder convergence to a unified optimal value ofλ. However, when
considering the dynamics given in (9), it becomes evident that care
must be taken when tuning these control parameters as µ≫2α
(i.e., ζ ≪ 2α). To prevent the derivative of the system tends to
zero regardless of the consensus value, under the significant small
ζ, we recommend the following practical tuning criteria: While
µ is tuned to a significantly high value above a given threshold,
α needs to be tuned with at least half the value of µ.

2) Cyber-Attack 2: For the attack under consideration, the
equilibrium of (3) now reads:

0=−ζL(2α(ȳel+∆Ī)+B)=−ζLλ̄∗. (18)

The above expression indicates that the forced control network
converges to the steady state equilibrium when −Lλ̄∗ equals
zero, which implies that λ̄∗ = 1nc

i
λ∗ is the consensus value.

However, 1nc
i
λ̄∗ ≠ 1nc

i
λ̄opt. Hence, the obtained consensus

property significantly diverges the converged equilibrium from
the unforced equilibrium. Eq. (18) indicates that neither tuning
of α nor ζ reduces the influence of the attack. When assessing
the voltage controller under this attack, the Laplacian ensures
that eq. (12) is satisfied, regardless of the attack or the tuning
of α and ζ. This is because the attack classifies as a stealth
attack, perturbing more discrete in the dynamics, able to deceive
the voltage controller. Both objectives appear to be ensured,
however, the consensus value is not the true optimal, preventing
the controller from steering the MG to the desired operation.

3) Cyber-Attack 3: For the attack under consideration, the
equilibrium of (3) now reads:

0=gcūc=−ζL(λ̄+∆λ̄)=−ζL
(
(2αȳel+B)+∆λ̄

)
(19)

The above expression demonstrates that the converged equilibrium
is not the optimum. From the above equation, it can be seen
that tuning of α (and B) to significantly high values in line with
Hypothesis 1 reduces the effect of the attack as λ̄=2αȳel+B will
be significantly greater than the attack value. When assessing the
voltage controller, under this attack, the Laplacian ensures that
(12) is satisfied, regardless of the attack or the tuning of α and ζ.

V. CASE STUDIES

In this section, the controller of [3] under our proposed resilient
tuning strategy is tested on a 48-volt dc network, powered by
4 DGs. The specifications of the generators, loads, transmission
lines, and control parameters follow the specifications given in
Table I in Section IV in [3]. To attain desired resilient performance,
α and B are tuned to 50, and µ is tuned to 100 such that ζ=1/100.

Optimal Operations: Initially, the unperturbed MG is simulated
serving as the baseline scenario. In the following subsections, this
system is simulated under the three hostile cyber-attacks while the
resilient strategy is implemented, aiming to maintain optimality. At

t=3s, the distributed controller is activated, replacing the primary
droop controller. Additionally, the optimal performance of the con-
troller is tested under smaller system changes, increasing and de-
creasing the power consumption at the loads up to 75%. The simu-
lations in Fig.2 illustrate a stable system, able to ensure both control
objectives in steady state. Fig.2(a) shows that the distributed DGs
compensate by cooperatively reducing and increasing their volt-
ages in these events, and simultaneously achieving average voltage
containment given in Fig.2(b). Additionally, they proportionally
share their generated currents in steady state as all DGs contribute
with the same amount of rated power, given in Fig.2(c) and Fig.2(d)
illustrates the optimal generated currents under these events.

Cyber-Attack 1. The system is now simulated under the
influence of the FDI attack-vector: ∆u = [5,1,0,10]

⊤. Fig.3(e)
illustrates that the attack prevents the system from achieving
average voltage regulation. However, under the proposed resilient
strategy the MG is steered to the optimal steady state where
near-nominal voltage regulation is ensured within a practically
tolerated ±5% deviation, as illustrated in Fig.3(f)1

Cyber-Attack 2. The stealth attack-vector: ∆I=[1,3,6,0]
⊤ is

implemented as a perturbation in the current sensors of the DGs.

1In Section IV-B.1-IV-B.3 neither the imposed cyber-attacks nor the resilient
strategy hinders proportional power sharing (under attack 1) or near-nominal
voltage regulation (under attack 2 and 3). This is also validated through simulations,
however, the simulation results have been omitted for compactness.

(a) (b)

(c) (d)

Fig. 2: Results for the unforced MG: (a) Generated voltages, (b) Average
sum of generated voltage, (c) Individual λ values, d) Generated currents.

(e) (f)

Fig. 3: MG under cyber-attack 1: Average sum of generated voltages (e)
without and (f) with proposed resilient tuning.
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Fig.4(g) shows that the DGs agree upon a rated current value when
subject to the attack, however higher than the optimal value in
Fig.2(c), consequently affecting the generated currents in Fig.4(h).
Additionally, Fig.4(i)(j) shows that our strategy does not remove
the influence of the perturbation. Cyber-Attack 3. The MITM
attack-vectors are simulated as perturbations in the communication
links between the DGs. To test the resilience against both constant
and time-varying attacks, we simulate ∆λ(t)=[5·sin(t),3,8,0]⊤
and ∆vc = [1,15,0,3]⊤. Fig.5(k)(l) shows that the DGs agree
upon a consensus value, varying and higher than the optimal
value, consequently disturbing the generated currents. However,
Fig.5(m)(n) shows that the resilient strategy ensures optimal
operations, reducing the influence of the attack. Even though the
consensus value λopt is significantly scaled due to the resilient
tuning, this optimal tuning still guarantees optimal operations of
the physical system as illustrated in Fig.5(n).

(g) (h)

(i) (j)

Fig. 4: MG under cyber-attack 2: (g) λi values, (h) Generated currents,
effect of proposed tuning on (i) λi values and (j) Generated currents.

(k) (l)

(m) (n)

Fig. 5: MG under cyber-attack 3: (k) λi values, (l) Generated currents;
effect of proposed tuning on (m) λi values and (n) Generated currents.

VI. CONCLUSION

This paper investigated the impact of cyber-threats of a dc
microgrid under the distributed (energy-based) control and
optimization proposal of [3], and proposed a tuning strategy along
with minor structural modifications to increase its resilience. After
reviewing the contribution in [3], we used the port-Hamiltonian
approach to ease the procedure in finding a Lyapunov function,
which we used to conclude input-to-state stability and bounded-
ness of the system, even in the presence of (bounded) cyber-attacks.
Furthermore, through a thorough equilibrium analysis this control
strategy is evaluated with respect to its ability to still ensure
optimal operations in steady state, giving rise to a tuning strategy
as well as a minor modification in the controller structure which
made it resilient against False Data Injection Attacks (FDIA) and
MITM attacks. However, for the more discrete stealth attacks,
in the current measurements of the voltage controller, these
modifications were not sufficient to bring the system close to the
unperturbed optimal operating conditions. The controller ensures
both control objectives in steady state, but achieves consensus
under false premises. Finally, through time-domain simulations,
we demonstrate the effectiveness of the method and validity of
the analysis for both time-varying and constant attack-vectors.
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