
On Handling Variable Stiffness Parameters in Compliance
Control via MPC

Nikolas Thelenberg and Christian Ott

Abstract— In variable impedance control the desired
impedance parameters of a robot manipulator are adjusted in
real-time. It has been observed that time varying impedance
parameters can lead to a non-passive interaction and even
destabilize the system. In this paper we consider a compliance
controller, where the desired impedance is specified via a time-
varying stiffness and damping. We propose to compute the
controller gains from an additional online optimization instead
of applying the desired time-varying stiffness and damping
references directly. In this way the effect of the time-varying
impedance parameters is evaluated over a finite time horizon.
Together with a terminal constraint on the state this controller
formulation aims to avoid a destabilization of the system due
to the impedance variation. The proposed method is validated
for free movement in two different simulations as well as for
physical interaction on a Franka Research 3.

I. INTRODUCTION

Since its first introduction by Hogan [1] in 1984,
impedance control (IC) has been intensively studied and
further developed. Due to its compliant behavior, this con-
trol approach is suitable for interaction with humans and,
more generally, for interaction with unknown and changing
environments. Loosely speaking, the error at the end-effector
is controlled to imitate a virtual mass-spring-damper system
with desired inertia, stiffness and damping properties.

The growing interest in human-robot interaction in recent
years [2] has led to a change in requirements for stiffness.
Focused aspects of the interaction have been safety [3]
or save performance [4]. Another one is the ability to
change the stiffness especially during a task. Therefore, IC
has been extended to variable impedance control (VIC).
One approach is to apply learning algorithms in order to
learn the stiffness and damping matrices [5]. One problem
inherent in learned stiffness is that stability statements are
difficult to obtain. In [6] state-independent conditions on the
time-varying stiffness and damping are presented, ensuring
asymptotic stability of the system. Another approach to
overcome this issue is by using energy tanks [7], [8]. The
proposed controller shows high performance, if there is
sufficient energy left, but its performance instantly drops,
when the reservoir is depleted.

However, it is in general not straightforward how to pick a
satisfactory time-varying target stiffness. One attempt depicts
the use of quadratic optimization [9]. Model predictive
control (MPC) has also been merged with both IC and VIC,
respectively. One possible combination of MPC and IC is
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presented in [10]. There, the compliant impedance behavior
has been successfully implemented into an MPC framework,
whereby the stiffness and damping parameters have not
been variable and were chosen before the usage. Whereas,
[11] proposed a combination of MPC and VIC, where the
impedance parameters are diagonal matrices and, thus, the
decoupled one dimensional mass-spring-damper system with
its scalar quantities is subject of the optimization.

Recently, the three fields MPC, VIC and learning algo-
rithms have been combined in various ways. One approach
is to learn the robot dynamics with a neural network and then
use these dynamics in MPC to minimize only the external
human-robot interaction force through various control pa-
rameters, mostly stiffness and damping. The optimal control
parameters are then used to adapt a low-level IC [12][13]. A
similar strategy is pursued in [14], where instead of the robot
dynamics the Cartesian impedance model has been trained
directly with a neural network.

In this paper, we present a MPC-based strategy to handle
variable stiffness parameters. The end-effector follows a
reference trajectory and, in addition, maintains its compliant
behavior. The virtual mass-spring-damper system, however,
obtains its stiffness and damping parameters from a MPC
optimization, which takes a variable target stiffness into ac-
count and, further, aims for stability. To reduce computational
effort, the optimization is performed over the eigenvalues of
the parameters instead of their full matrix representation.
This strategy does not limit the stiffness to be merely
adjustable by the algorithm, but enables the possibility to
plan explicit stiffness in advance for certain scenarios.

II. BACKGROUND AND PROBLEM DEFINITION

A. Robot Dynamics

Consider the joint space model of a serial robotic manip-
ulator with n ∈ N degrees of freedom (DoF)

M(q)q̈ + C(q, q̇)q̇ + g(q) = τc + JT(q)Fext, (1)

where q, q̇, q̈ ∈ Rn are the vectors of joint positions,
velocities and accelerations, respectively. Further, M(q) ∈
Rn,n is the symmetric and positive definite inertia matrix,
C(q, q̇)q̇ ∈ Rn contains the Centrifugal and Coriolis terms
and g(q) ∈ Rn represents the gravity terms. Moreover, the
controlled joint torques are denoted as τc ∈ Rn, while
the torques caused by the time-varying generalized external
force Fext(t) ∈ Rm at the end-effector appear in the term
JT(q)Fext.
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B. Cartesian Impedance Control

The configuration of the end-effector in task space x ∈ Rm

with m ≤ n is obtained by applying the forward kinematic
map f(q) = x. By differentiation the relations ẋ = ∂f

∂q q̇ =

J(q)q̇ as well as ẍ = J̇(q, q̇)q̇ + J(q)q̈ are obtained. Here,
the Jacobian J(q) ∈ Rm,n is the same as in (1). For the ease
of presentation, we assume that the Jacobian J has full row
rank for each joint position q.

For a simpler representation in the task space, the symmet-
ric Cartesian inertia matrix Λ(q) ∈ Rm,m, the weighted right
pseudoinverse J#(q) ∈ Rn,m and the Cartesian Coriolis
matrix µ(q, q̇) ∈ Rm,m are defined via

Λ(q) =
(
J(q)M−1(q)JT(q)

)−1

J#(q) = M−1(q)JT(q)Λ(q)

µ(q, q̇) = Λ(q)
(
J(q)M−1(q)C(q, q̇)− J̇(q, q̇)

)
J#(q).

(2)

Given are a time-varying reference trajectory xref(t) ∈
Rm and its derivatives ẋref , ẍref ∈ Rm, we define the error
between the actual state and the reference as x̃(t) := x−xref .
Using the task space matrices (2) to define the IC input

τc = g(q) + τnull + JTΛ
(
JM−1C − J̇

)
q̇

+ JT
[
Λẍref − µ ˙̃x−Dd

˙̃x−Kdx̃
]
,

(3)

where τnull ∈ ker(JM−1) denotes a torque for controlling
the nullspace motion. Plugged into (1) and pre-multiplied
with ΛJM−1 results in the closed loop Cartesian task space
system dynamics

Λ(q)¨̃x+ µ(q, q̇) ˙̃x+Dd
˙̃x+Kdx̃ = Fext. (4)

This virtual mechanical system is characterized by the inertia
matrix Λ, desired stiffness matrix Kd = KT

d ≻ 0 and
a desired damping matrix Dd = DT

d ≽ 0 [15]. The
advantage of using the Cartesian inertia matrix Λ in (4)
instead of an arbitrary desired inertia matrix is that the
control input (3) does not rely on a measurement of the
external force Fext(t) [16].

C. Variable Impedance

In the classic compliance control system (4) the desired
matrices Dd and Kd are constant with respect to time, but for
variable stiffness time-dependent matrices are needed. Using
time-dependent Kd(t), however, might be problematic from
a stability point of view. This becomes even clearer if one
takes a closer look at the generalized energy function V of
the closed loop system (4) and its derivative

V (t) =
1

2
˙̃xTΛ ˙̃x+

1

2
x̃TKd(t)x̃

V̇ (t) = − ˙̃xTDd
˙̃x+ ˙̃xTFext(t) +

1

2
x̃TK̇d(t)x̃.

Here, the term 1
2 x̃

TK̇dx̃ has indefinite sign and, thus, violates
the passivity/ stability. In previous work this issue has been
handled for example with energy tanks [7].

Impedance
Controller (3) Robot

MPC-based
parameter

optimization (14)

xref , ẋref , ẍref

Kref , ξref

τc Fext

q, q̇Kd,
Dd

Fig. 1: Schematic structure of the control loop showing the
low-level impedance controller and the high-level parameter
optimization

III. MPC-BASED VARIABLE PARAMETER OPTIMIZATION

The general schematic structure of the proposed control
system is pictured in Fig. 1. The low-level impedance
controller ensures the compliant behavior of the end-effector
by applying the control torque (3) to the robot and is
executed in real time. The high-level MPC-based parameter
optimization generates the symmetric and positive definite
stiffness matrix Kd(t) as well as the damping matrix Dd(t).
The optimization is executed based on the current errors
x̃, ˙̃x, the inertia matrix Λ, the target reference stiffness Kref

and the external force Fext, respectively. The core feature
of the algorithm, is to perform the optimization on the
eigenvalues of the stiffness and damping matrix rather than
on their entries. This reduces the number of optimization
variables drastically that even the simultaneous consideration
of stiffness and damping is compensated and the computation
time is shortened even further.

The reference stiffness Kref = Kref(t) ∈ Rm,m must
be symmetric and positive definite at every time. Since
the optimization algorithm is time-intensive, the high-level
MPC-based parameter optimization is executed with a lower
frequency, i.e. for j = 1, 2, . . . only at certain sample
instances tj .

A. Prediction Model

Beginning with tj , we want to predict the system dynam-
ics (4) for future T > 0 seconds. For ease of presentation
the shifted time interval [0, T ] of [tj , tj + T ] is considered
for the prediction and likewise the optimization. First, for
the prediction on [0, T ], the Cartesian inertia matrix Λ is
kept constant, i.e. Λ = Λ(q(tj)) = const. As a result, the
Cartesian Coriolis matrix µ(q, q̇), which ensures passivity
of (4), is not required in the prediction model. As well as
the inertia matrix, the generalized external force Fext =
Fext(tj) = const. is considered on [0, T ]. Moreover, we
abbreviate Kref(tj + t) with Kref

j (t) for t ∈ [0, T ]. Since x̃
represents the error of the end-effector, which is computed
in real time and used in the control input (3), its prediction
is denoted as y(t) ∈ Rm with t ∈ [0, T ].

With these definitions and assumptions, the complete
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prediction model is stated as

Λÿ +D(t)ẏ +K(t)y = Fext (5)

for t ∈ (0, T ) and the initial values y(0) = x̃(tj) and
ẏ(0) = ˙̃x(tj). The symmetric and positive definite stiffness
and damping matrices K ∈ Rm,m and D ∈ Rm,m will be
optimized over the time horizon [0, T ] and afterwards applied
as Kd and Dd in the control input (3).

B. Double Diagonalization and Optimization Variables

Our objective is that the stiffness K follows the given
reference Kref as closely as possible and ideally coincide
with it. Therefore, the damping matrix D is designed such
that it depends directly on the reference stiffness Kref

j as
well as on the inertia matrix Λ. The used method for the
design of the damping matrix is double diagonalization [17].
First, A Cholesky decomposition of Λ = LLT is performed
with the lower triangular matrix L ∈ Rm,m. Then, two
matrices Qref , H ∈ Rm,m as well as the vector vref ∈ Rm

are computed as follows[
Qref , vref

]
= eig

(
L−1Kref

j L−T
)

and

H = LQref ,
(6)

where Qref contains the eigenvectors and vref the corre-
sponding eigenvalues of L−1Kref

j L−T. Using these matrices
and the subsequent relation Λ = HHT, the prediction
model (5) can be rewritten into the form

HHTÿ +Dẏ +H diag(vref)HTy = Fext. (7)

If we use an arbitrary vector v ∈ Rm instead of vref in (7),
the stiffness matrix of the system becomes

K(v) = H diag(v)HT ̸= Kref
j . (8)

With this step the reference stiffness Kref
j is not directly

applied to the system any more, but it is still utilized to
compute Qref and, thus, the transformation matrix H . Then,
the chosen damping matrix has the form

D(ξ, v) = 2H diag(ξ ⊙
√
v)HT, (9)

with the vector of damping ratios ξ ∈ Rm. In
√
v the square

root is taken element-wise and also ⊙ denotes the element-
wise multiplication of ξ and

√
v.

With the double diagonalization technique, the stiffness
and damping matrix are adjustable in terms of their trans-
formed eigenvalues v and damping ratios ξ, respectively. If
the optimization were performed directly on K and D and all
their entries were considered as optimization variables, there
would be m(m + 1) variables due to the symmetry of the
two matrices. Whereas, by choosing v and ξ as optimization
variables, we can modify and, therefore, optimize K(v) and
D(ξ, v) with the reduced amount of 2m variables.

C. State System Dynamics and Discretization

Up next, the state of the mass-spring-damper system (7)
is defined as z(t) := [yT ẏT]T ∈ R2m for t ∈ [0, T ]. Using
the state as well as the derived structure of the stiffness and

damping matrix in (8) and (9), respectively, the prediction
model (7) is rewritten in state-space representation as

ż =

[
A1,1 A1,2

A2,1 A2,2

]
z +

[
0

(HHT)−1Fext

]
=: h̃ (z, ξ, v,H, Fext) (10)

for t ∈ (0, T ) and the inital condition z(0) =
[yT(0) ẏT(0)]T = [x̃T(tj) ˙̃xT(tj)]

T. Note that the ma-
trix Λ is preserved in the expression HHT. The entries of
the matrix, which is used in (10), have the following values

A1,1 = 0, A1,2 = I

A2,1 = −H−T diag(v)HT

A2,2 = −2H−T diag(ξ ⊙
√
v)HT.

The interval [0, T ] is split equidistantly into N ∈ N subin-
tervals, which are each ∆T := T/N seconds long. The
continuous time differential equation (10) together with its
initial value can be approximated on the interval [0, T ]
with an appropriate discretization method, e.g. Euler method
or Runge–Kutta methods. This results in the discrete time
approximation

zi+1 = h (zi, ξi, vi, Hi, Fext) (11)

for i = 0, . . . , N − 1 and with the initial condition z0 =
z(0) = [x̃T(tj) ˙̃xT(tj)]

T ∈ R2m. To obtain the transfor-
mation matrix Hi, we can compute the double diagonaliza-
tion (6) with Kref

j (i∆T ) for i = 0, . . . , N − 1.

D. Optimization

The derived discrete time system (11) is optimized with
respect to the transformed eigenvalues v and damping ratio ξ.
The optimization problem is formulated as

minimize
v0,...,vN−1

ξ0,...,ξN−1

N−1∑
i=0

∥∥w ⊙ (vi − vrefi )
∥∥2 + η

∥∥ξi − ξrefi

∥∥2
s.t. z0 =

[
x̃T(tj) ˙̃xT(tj)

]T
(12)

zi+1 = h (zi, ξi, vi, Hi, Fext) for i = 0, . . . , N − 1∣∣∣∣zN−
[
(Kref

j (N∆T ))−1Fext

0

] ∣∣∣∣ ≤ ε. (13)

First, seeking for compensation between the different orders
of magnitude within the transformed eigenvalues v, which
due to experience reach from 15 up to 15.000, a weight-
ing parameter w ∈ Rm is added. Furthermore, in the cost
function the second weighing parameter η > 0 balances
the different orders of magnitude of transformed stiffness
eigenvalues and damping ratio. The damping ratio reference
ξrefi ∈ Rm is advised to be set to α[1 . . . 1]T with α ∈ (0, 1]
for all i = 0, . . . N − 1, which ensures a critically damped
or underdamped oscillation, respectively.

The terminal constraint (13) is evaluated element-wise
with the constraint vector ε ∈ R2m. The first m entries
of (13) imply that the final position of zN should be close to
the equilibrium position (Kref

j (N∆T ))−1Fext of the mass-
spring-damper system. In other words, the initial value z0
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is the current error of the end-effector and the final value
must be within a certain boundary. These two boundaries
for the system on [0, T ] are fixed. In between deviation of
the state is admitted and not penalized by the cost function,
which retains the compliant behavior of the virtual mass-
spring-damper system. The optimizer chooses eigenvalues
and damping ratios to fulfill first these two boundaries on the
state and second to be as close to the respective references
as possible.

The solution of (12) are two minimizing sequences
(v∗i )i=0,...,N−1 and (ξ∗i )i=0,...,N−1. The first element of the
sequences is marked with v∗ := v∗0 ∈ Rm and ξ∗ := ξ∗0 ∈
Rm.

E. Compute Control Parameter

The low-level impedance controller is executed much
faster than the high-level parameter optimizer can find solu-
tions. Therefore, v∗ and ξ∗ are updated only on the sample
points tj . But, there exists a whole interval [tj , tj+1] between
two sampling points, on which the high-level controller must
provide a stiffness matrix Kd and a damping matrix Dd for
the compliance control (3). In addition the inertia matrix Λ
varies on the interval as well.

Consider the time point t ∈ [tj , tj+1]. Then we can
repeat the double diagonalization (6) for each t. Perform
a Cholesky decomposition of Λ(q(t)) = LtL

T
t and compute

[Qt, vt] = eig
(
L−1
t Kref(t)L−T

t

)
as well as Ht = LtQt.

Then the stiffness and damping matrix are

Kd(t) := Ht diag(v
∗)HT

t and

Dd(t) := 2Ht diag(ξ
∗ ⊙

√
v∗)HT

t ,
(14)

for t ∈ [tj , tj+1], which are then applied in the compliance
control input (3).

Remark 1. The terminal constraint (13) is motivated by the
common approach to ensure stability of MPC algorithms
via equilibrium endpoint constraint [18]. According to the
MPC literature, a MPC algorithm with a feasible equilibrium
endpoint constraint zN = z∗ is asymptotically stable. The
mass-spring-damper system, however, is not controllable in
finite time to the equilibrium point z∗ = 0, i.e. the terminal
constraint zN = 0 is not feasible. Notice that in our case a
constant impedance parameter setting would ensure stability.
Therefore, we believe that the constraint from [18] is too
conservative in our application. However, a detailed stability
analysis is part of future work.

Remark 2. Due to the fact that the future course of the
external force Fext is unknown, we have assumed a constant
disturbance model. Furthermore, we assume a constant equi-
librium of the mass-spring-damper system. Since the system
is time-variant, this assumption induces a small error.

IV. SIMULATIONS AND EXPERIMENT

The performance of our MPC-based parameter opti-
mization algorithm has been validated in two simulations
and one experiment. The nonlinear optimization prob-
lem (12) is solved using the open-source symbolic framework
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Fig. 2: First Simulation - Comparison of the natural and
optimized system parameters

CasADi [19] in combination with the software packages for
large-scale nonlinear optimization Ipopt [20].

A. Application on an Unstable System

As a first benchmark example, our proposed method has
been tested on a single translational joint. Therefore, we
have reproduced the example from [7]. Consider the given
properties of the desired mass-spring-damper system

M = 10,

Dd = 1 and
Kd(t) = 12 + 10 sin(t),

(15)

while the system has the initial values x(0) = 4, ẋ(0) = 9
and should follow the trajectory xref(t) = 10 sin(t/10).
Further, no external force acts on the system, i.e. Fext = 0.
First, the impedance control law (3) from section II-B is
applied. The blue graph in Fig. 2(a) shows the course of the
position error x̃ between x and the reference trajectory xref ,
which clearly diverges.

Next, we evaluate the performance of our algorithm. For
this purpose, the stiffness in (15) is considered as reference
stiffness Kref(t), which is pictured as blue graph in Fig. 2(b).
Further the prediction horizon is set to T = 10 s, the amount
of discrete time system points equals N = 100 and the
optimization is executed every 50ms. Since the system has
one eigenvalue, w is not required and set to one. In addition,
the weighting parameter η is chosen to be 20 because the
orders of magnitude are close, but at the same time we want
to penalize deviation in the damping ratio more severely.
Its reference is based on the damping ratio in [7], i.e.
ξrefi = 0.5Dd/

√
MKd(0) ≈ 0.045 for all i = 0, . . . , N − 1.

At least, the terminal boundary is set to ε = 10−3[1 1]T.
As expected, our proposed method can handle the vary-

ing target stiffness in combination with a small reference
damping ratio and also causes the position error, visible in
Fig. 2(a), to converge to zero, i.e. stabilizes the system.
Moreover, the applied optimal stiffness Kd, generated by
the algorithm, coincide with the reference stiffness after an
initial deviation during transient conversion of the position
error.
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B. Simulated Unstable Robot

We applied the controller in simulation to a n = 7-
DoF Franka Research 3 robotic manipulator. In the m = 6
dimensional task space, the configuration of the end-effector
is described by x(t) = [pT(t) ϕT(t)]T, with the po-
sition p(t) ∈ R3 and the orientation ϕ(t) ∈ R3 in roll-
pitch-yaw angles. In the same structure, the reference tra-
jectory xref(t) ∈ R6 is given. The reference has a con-
stant Cartesian configuration except for the first coordi-
nate, which oscillates according to xref,1(t) = 0.3 +
0.1 sin(2πt). The properties of the mass-spring-damper sys-
tem are given as Dd = I and Kd(t) = diag(100 +
75 sin(2t), 200, 200, 50, 50, 50), while the system is in its
initial configuration at rest. Similar to the one-Dof simu-
lation, no external force Fext = 0 is applied. With these
quantities the impedance control law (3) is applied on the
robot. The blue graph in Fig. 3 shows the absolute error in
the position of the end-effector, which is strongly oscillating.
After approximately 31 seconds, the simulation terminates,
since the robot has reached its outstretched singular position.

For our proposed algorithm, Kd is again considered
as Kref . The prediction horizon is set to T = 1 s, the
amount of discrete time system points equals N = 26 and
the optimization is executed every 80ms. In order to cope
with the computation cost for the optimization of the 7-DoF
robot, the prediction horizon as well as the amount of discrete
time points are reduced. The first weighting parameter is w =
[0.01, 0.1, 0.1, 1, 1, 1]T and the second is set to η = 1400,

0 5 10 15 20 25 30 35
−2

0

2

4

6

8

10

12

Time t (in s)

v
∗
−
v
re
f

Fig. 5: Second Simulation - Difference between optimized
eigenvalues v∗ and computed reference vref

in order to normalize the effect of stiffness and damping.
Further, the damping ratio is ξrefi =

√
2/2 [1 . . . 1]T for

all i = 0, . . . , N − 1. The terminal boundary is set to
ε = 10−3[1 . . . 1]T.

The red graph in Fig. 3 illustrates the systems behavior
with the MPC-based parameter optimization. Like in the
previous simulation, our algorithm can handle the time-
varying stiffness and drains the energy out of the system,
which causes the error to converge to zero. With Fig. 4
we can verify that all control torques, which are generated
by our algorithm, are all smooth and bounded. In Fig. 5
the deviation of the optimized eigenvalues v∗ from the
reference eigenvalues vref is shown. This figure illustrates
that adjustments of the eigenvalues are only necessary at the
beginning and they coincide after a short time.

C. Experimental Validation

In the two previous scenarios, our approach has only
been validated in simulations. Finally, it has been be used
for physical interaction on a real 7-DoF Franka Research 3
robotic manipulator. The end-effector is described by x(t) =
[pT(t) ϕT(t)]T, exactly as in the last case. The Carte-
sian reference xref ∈ R6 is a constant configuration.
The reference stiffness varies over time with Kref(t) =
diag(600, 600+100 sin(t), 600, 80, 80, 80). The optimization
parameters retain their values from the previous simulation,
except the amount of discrete time points, which is increased
to N = 30. Tests have shown that the dynamics can be
better reflected with a few more time points. After 1, 19
and 40 seconds forces have been applied on the end-effector
in several directions and have been hold for approximately
9 seconds.

Since each optimization usually took 80ms to be fully
solved, we have sampled at a frequency of 100Hz to leave
a buffer for any potential outliers. The Cartesian position
error of the end-effector is depict in Fig. 6(a). Here, the
effects of the applied forces are clearly visible as distinct
displacements. The slight deviation in the position when
no force is applied is a natural phenomenon in impedance
control, caused by friction. Our proposed algorithm generates
an optimal stiffness matrix Kd. We observed that its values
are close to the given reference stiffness matrix Kref and
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Fig. 6: Results of the Experiment - Characteristic course of
parameters of the Franka Research 3 robot due to an external
applied force

it has negligible off-diagonal elements. Therefore, Fig. 6(b)
shows only the diagonal elements of the optimal stiffness
matrix Kd. The elements associated with rotation, i.e. Kd,4,
Kd,5 and Kd,6, maintain their desired values of 80 over
time. While Kd,2 almost approximately follows its sinusoidal
reference and does not deviate from its shape despite the
presence of a force, Kd,3 shows an oscillating behavior.

V. CONCLUSION AND OUTLOOK

In this paper we have presented a MPC-based strategy to
handle variable impedance parameters. These are obtained as
the result of an optimization of a virtual mass-spring-damper
system. Our proposed algorithm has been validated in several
simulations as well as a hands-on experiment and has met
our expectations.

In future work, the algorithm will be examined in a
detailed proof of stability. Moreover, we will work on further
increasing the calculation speed of the optimization. One
option is to exploit the linearity of the virtual mass-spring-
damper system and incorporate it into the optimization
procedure.
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