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Abstract— We prove a new theorem on sufficient condi-
tions for ℓ∞-global asymptotic stability of infinite networks
composed of interconnected nonlinear time-delay systems. The
sufficient conditions are formulated in terms of ISS Lyapunov-
Razumikhin functions and suitable small-gain conditions. We
demonstrate the applicability of our small-gain conditions to
decentralized stabilization of infinite networks of nonlinear
control systems with time delays.

I. INTRODUCTION

Large-scale networks composed of many coupled subsys-
tems, each of which has the state affecting the dynamics of its
neighbours, have many applications in industry and engineer-
ing: vehicle platooning [3], [27], [39] and power networks
[30], [29], multi-agent control systems [28], neural systems
[5], computer networks [33], shared (wired or wireless)
communication networks [18], networked force-reflecting
telerobotic systems [41], [40], [9], economic systems and
logistics [12], [10], chemical engineering [2], etc.

Stability analysis of large-scale networks composed of
interconnected nonlinear subsystems is a difficult and chal-
lenging problem and one of its central methods is the theory
of input-to-state stability (ISS) [43], [44] and small-gain
theorems [21], [23], [14], [22], [15]. It becomes especially
challenging in the case when the number of subsystems
is not limited, i.e., some nodes or subsystems can arrive,
some others can depart and one does not have any a priori
estimate of their maximal possible number. For this case,
the notions of string ISS or scalable ISS were introduced
and some suitable small gain theorems were proved [39],
[3], [4], [27]. It is also possible that the number of nodes
is very large, as an example one can consider such complex
neural systems as brain [5]. Therefore, it is natural to raise
the problems of stability and control for infinite networks,
which are composed of infinite set of nodes [8], [13], [24],
[25], [26], [35]. Paper [8] deals with infinite networks of
interconnected linear control systems, and recent works [13],
[24], [25], [26], [35] deal with input-to-state stability (and
decentralized stabilization [13], [35]) of infinite networks
composed of interconnected nonlinear subsystems.

At the same time, one of substantial classes of dynamical
systems is time-delay systems, and it is natural that the
control theory as well as the ISS theory and stability analysis
of large-scale networks of time-delay systems has received
a lot of attention [17], [45], [16], [38], [37], [47], [19], [7],
[11], [1], [28], [20], [3], [42], [6].
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A general small-gain theorem for finite large-scale net-
works of systems with time delays was proved in [11]. As
regards the case of infinite networks of time-delay systems,
general trajectory-based small-gain theorems were proved
in recent works [31], [32]. However, to our best knowl-
edge, there are no works devoted to Lyapunov-based small-
gain theorems for infinite networks of time-delay systems
as well as to their decentralized and distributed control
at this moment. (Let us note that one needs Lyapunov-
based small-gain theorems when solving the problems of
decentralized/distributed control, see, e.g. [36], [13]).

The goal of this paper is to prove an analog of the small-
gain Theorem 1 from [13] in the case when the infinite
network is composed not of just a countably infinite set of
systems of ordinary differential equations (ODE) as in [13]
but of a countably infinite set of time-delay systems. Sim-
ilarly to [13], we demonstrate how our small-gain theorem
can be applied to decentralized control of infinite networks
of control systems with time delays.

II. PRELIMINARIES

Throughout the paper, ⟨·, ·⟩ denotes the scalar product in
RN and |ξ| := ⟨ξ, ξ⟩

1
2 denotes the quadratic norm of ξ ∈

RN . All vectors from RN are treated as columns, i.e., RN ∼=
RN×1. For a, b from R, by ]a, b[ we denote the open interval
]a, b[:= {s ∈ R | a < s < b}; accordingly, we denote by
]a, b], [a, b[, the intervals defined by ]a, b] := {s ∈ R | a <
s ≤ b}, [a, b[:= {s ∈ R | a ≤ s < b}; intervals ]−∞, b[,
]a,+∞[, ]−∞, b], and [a,+∞[ are defined similarly.

If A is a finite set then |A| denotes the number of its
elements (thus, |A| = 0 for A = ∅ and |A| ∈ N otherwise).

We define ℓ∞ as the normed vector space (actually,
Banach space) of sequences of real numbers of the form
Z = {zi}i∈N such that sup

i∈N
|zi| < +∞, and the norm of this

space is defined by ||Z||ℓ∞ := sup
i∈N

|zi|.

A function α : R+ → R+ is said to be of class K, if
it is continuous, strictly increasing and α(0) = 0, and K∞
is the set of all the unbounded K-functions. A continuous
function β : R+ × R+ → R+ is said to be of class KL if
for each fixed t ≥ 0 the function β(·, t) is of class K and
for each fixed s ≥ 0, we have β(s, t) → 0 as t → +∞ and
t 7→ β(s, t) is decreasing.

Let Bi, i = 1, . . . , N (with some N ∈ N) be some Banach
spaces. For convenience and brevity, we sometimes write∏

i∈{1,...,N} Bi instead of B1 × B2 × . . .× BN .
Definition 1: Let Bi, i = 1, . . . , N (with some N ∈ N)

be some Banach spaces and n ∈ N be some natural number.
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As in [6], we say that a a map F :
∏

i∈{1,...,N} Bi → Rn

is Lipschitz on bounded sets if, for any r > 0, there exists
L(r) > 0 such that

|F (ξ1, . . . , ξN )− F (η1, . . . , ηN )| ≤ L(r)

N∑
i=1

|ξi − ηi|. (1)

As usually, any such L(r) > 0 from (1) is referred to as a
Lipschitz constant for this map F and for this radius r > 0.

III. PROBLEM FORMULATION AND MAIN DEFINITIONS

In this paper, we consider infinite networks with time-
delays of the following form

Ẋi(t) = Fi(X
t
i , {Xt

j}j∈J(i)), i ∈ N, (2)

where Xt
i (τ) = Xi(t + τ), τ ∈ [−θ, 0], and Xi ∈ RNi is

the state vector of the i-th subsystem.
In general, Fi are functions of C([−θ, 0];RNi) ×∏
j∈J(i) C([−θ, 0];RNj ) to RNi and, to provide the exis-

tence and the uniqueness of the solution to the corresponding
Cauchy Problem we assume that they are Lipschitz continu-
ous on bounded sets in the sense of Definition 1, see below.

Throughout the paper, we assume that the entire state
vector X = {Xi}∞i=1 of system (2) is always an element
of ℓ∞ and system (2) has the following properties.

Standing Assumption (A1): The set J(i) ⊂ N of the
neighbors of the i-th subsystem is always finite, and, by
definition i /∈ J(i) for all i ∈ N, i.e. i-th node is not a
neighbor of itself. Throughout this paper, we assume that
sup
i∈N

|J(i)| < ∞ and sup
i∈N

Ni < ∞. For brevity, we also

denote I(i) := {i} ∪ J(i)
Standing Assumption (A2): For each i ∈ N, the corre-

sponding vector field Fi of the ith subsystem (2) is Lipschitz
on bounded sets in the sense of Definition 1 and, furthermore,
for each fixed i ∈ N and each fixed r > 0 a suitable Lipschitz
constant Li(r) > 0 from (1) can be chosen such that we have
sup
i∈N

Li(r) < ∞ for every fixed r > 0.

Standing Assumption (A3): For each i ∈ N, the corre-
sponding vector field Fi satisfies Fi(0, 0) = 0.

Remark 1: Let us note that Assumptions (A2),(A3) also
imply that, similarly to [13], the dynamics of (2) is “locally
ℓ∞- bounded” in the following sense: for each fixed R > 0,
we have

sup
i∈N

sup
||ξi||C([−θ,0];RNi )

≤R

||ξj ||
C([−θ,0];RNj )

≤R, j ∈ J(i)

|Fi(ξi, {ξj}j∈J(i))| < ∞.

(3)
For systems (2), we are interested in sufficient conditions

for their global asymptotic stability.
Given any ξ = {ξi}∞i=1 with ξi ∈ C([−θ, 0];RNi)

and with supi∈N ∥ ξi ∥C([−θ,0];RNi )< ∞, let t 7→
X(t, 0, ξ) = {Xi(t, 0, ξ)}∞i=1 denote the maximal solution
to (2) with the initial condition X(0, 0, ξ) = ξ such that
supi∈N |Xi(t, 0, ξ)| < ∞. This means that t 7→ X(t, 0, ξ) is
defined on some maximal interval [0, tmax[ of its existence,
satisfies (2) for all t ∈ [0, tmax[ and X(t, 0, ξ) ∈ ℓ∞ for all

t ∈ [0, tmax[. Motivated by [38], [37], [12], [6] as well as by
[13], [24], [34], [25], [26], [35], we give the following main
definition.

Definition 2: System (2) is said to be ℓ∞-globally asymp-
totically stable or ℓ∞-GAS, if and only if there exists
β ∈ KL such that for each ξ = {ξi}∞i=1 with ξi ∈
C([−θ, 0];RNi) and with supi∈N ∥ ξi ∥C([−θ,0];RNi )< ∞,
we have

||X(t, 0, ξ)||ℓ∞ ≤ β(sup
i∈N

∥ ξi ∥C([−θ,0];RNi ), t). (4)

IV. MAIN RESULTS

The current version of our main small gain theorem is as
follows.

Theorem 1: Suppose (A1)-(A3) hold true and there exist
positive definite functions Vi(Xi) in C1(RNi ; [0,+∞[), i ∈
N (i.e., with Vi(0) = 0 and with Vi(Xi) > 0, whenever
Xi ̸= 0 ∈ RNi ) that will be called ISS Lyapunov functions
such that the following conditions hold
(i) There exists ρ(·) ∈ K∞ such that Vi(Xi) ≥ ρ(|Xi|)

uniformly for all Xi ∈ RNi , i ∈ N (i.e., Vi(·) are
uniformly radially unbounded)

(ii) For each R > 0 we have:

sup
i∈N

max
|Xi|≤R

Vi(Xi) < +∞,

sup
i∈N

max
|Xi|≤R

∣∣∣∂Vi(Xi)
∂Xi

∣∣∣ < +∞
(5)

(iii) There exists α(·) ∈ K, and there exists γ(·) ∈ K such
that γ(r) < r for all r > 0 and such that, for each
{ξj}j∈I(i) ∈

∏
j∈I(i) C([−θ, 0];RNj ), we have

Vi(ξi(0)) ≥ max
j∈I(i)

{
γ( max

τ∈[−θ,0]
Vj(ξj(τ)))

}
⇒

∇Vi(ξi(0))Fi(ξi, {ξj}j∈J(i)) ≤ −α(Vi(ξi(0))).
(6)

Then the following three statements hold true:
(I) Given any ξ = {ξi}∞i=1 with ξi ∈ C([−θ, 0];RNi)

and with supi∈N ∥ ξi ∥C([−θ,0];RNi )< ∞, the cor-
responding solution t 7→ X(t, 0, ξ) to (2) with the
initial condition X(0, 0, ξ) = ξ is well defined on the
entire [0,+∞[, it is unique and satisfies the condition
supt∈[−θ,+∞[ supi∈N |ξi(t)| < ∞.

(II) Define the Lyapunov function for system (2) by

V (X) := sup
i∈N

{Vi(Xi)} for all X = {Xi}i∈N ∈ ℓ∞.

(7)
Then, for every solution t 7→ X(t) = X(t, 0, ξ) defined
on the entire [0,+∞[ (see Item (I) above) by any
initial ξ = {ξi}∞i=1 with ξi ∈ C([−θ, 0];RNi) and
with supi∈N ∥ ξi ∥C([−θ,0];RNi )< ∞, the corresponding
function t 7→ V (X(t)) is locally absolutely continuous
on [t0,+∞[ and there exist α̂(·) ∈ K, and γ̂(·) ∈ K

such that α̂(r) ≤ α(r) and r > γ̂(r) ≥ γ(r) for all
r > 0 and such that

V (X(t)) ≥ γ̂( max
τ∈[−θ,0]

V (X(t+ τ))) ⇒
d[V (X(t))]

dt ≤ −α̂(V (X(t))) a.e. on [0,+∞[.
(8)

(III) System (2) is ℓ∞-GAS in the sense of Definition 2.
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Remark 2: Based on the notation and terminology pro-
posed in [45], [12], [6], we see that it is indeed possible
to say that Vi(·) are ISS Lyapunov functions (or even
ISS Lyapunov-Razumikhin functions) for the corresponding
subsystems of (2) and to say that Theorem 1 is a small-gain
theorem, or a Lyapunov-based small-gain theorem (or even
a Lyapunov-Razumikhin-based small-gain theorem).

V. PROOF OF THEOREM 1

First of all, we note that (ii) implies the existence of ρ̂(·) ∈
K∞ such that Vi(Xi) ≤ ρ̂(|Xi|) uniformly for all Xi ∈ RNi ,
i ∈ N.

Take any ξ = {ξi}∞i=1 with ξi ∈ C([−θ, 0];RNi) and with
supi∈N ∥ ξi ∥C([−θ,0];RNi )< ∞, Without loss of generality,
we assume that ξ ̸= 0, i.e., there is i ∈ N such that ξi ̸=
0 ∈ C([−θ, 0];RNi) (otherwise the solution is unique and is
identically equal to zero, and the statement is trivial). Then,
we define

V ⋆ := V (ξ(0)) > 0,
V 0 := ρ̂(supi∈N ∥ ξi ∥C([−θ,0];RNi )) > 0.

(9)

As in the Proof of Theorem 1 from [13], we split our proof
of Theorem 1 into the following steps.

Step 1. In this Step 1 we prove the existence of s⋆ > 0
such that the corresponding solution t 7→ X(t, 0, ξ) to (2) is
well-defined on [0, s⋆]. First, define the following constants

M := sup
i∈N

{
1+

sup
|Xi| ≤ ρ−1(2V 0)

||ξi||C([−θ,0];RNi )
≤ρ−1(2V 0),

||ξj ||
C([−θ,0];RNj )

≤ρ−1(2V 0)

j ∈ J(i)

∣∣∣∂Vi(Xi)
∂Xi

∣∣∣|Fi(ξi, {ξj}j∈J(i))|

+ sup
||ξi||C([−θ,0];RNi )

≤ρ−1(2V 0),

||ξj ||
C([−θ,0];RNj )

≤ρ−1(2V 0)

j ∈ J(i)

|Fi(ξi, {ξj}j∈J(i))|
}
;

s⋆ := V 0

4M+1 ;
(10)

and then define the Picard’s iterations {{Xi(q, ·)}i∈N}∞q=0 on
[0, s⋆] by

Xi(0, t) := ξi(0), t ∈ [0, s⋆],

Xi(q + 1, t) = ξi(0) +
∫ t

0
Fi(X

s
i (q, ·), {Xs

j (q, ·)}j∈J(i))ds,

t ∈ [0, s⋆], i ∈ N, q ∈ N.
(11)

Using (7),(9),(10),(11), we by induction on q = 1, 2, . . . , that
1
2V

⋆ ≤ V (X(q, t)) ≤ 3
2V

⋆ for all t ∈ [0, s⋆], q ∈ N, where
X(q, t) = {Xi(q, ·)}i∈N. Then, using (A2), and arguing as
for usual Picard’s iterations for Lipszhitz continuous dynam-
ics in finite-dimensional spaces, we find X(·) = {Xi(·)}i∈N
such that ∥ Xi(q, ·)−Xi(·) ∥C([0,s⋆];RNi )→ 0 as q → +∞.
Combining this with (11), we obtain that X(·) = {Xi(·)}i∈N
is the desired solution t 7→ X(t, 0, ξ) to (2) on [0, s⋆] with

X(0) = ξ. Its uniqueness can be proved by using (A2) and
the Gronwall-Bellman lemma. By the above construction,
this solution (along with X(q, t)) satisfies the inequality

1

2
V ⋆ ≤ V (X(t)) ≤ 3

2
V ⋆ for all t ∈ [0, s⋆]. (12)

Step 2. In this Step 2, we prove (8) on [0, s⋆], then extend
it to [0,+∞[, and obtain (I)-(III).

Define α̂(·) := 1
2α(·) ∈ K, and fix any γ̂(·) ∈ K such that

α̂(r) < α(r) and r > γ̂(r) > γ(r) for all r > 0. Define

ε := 1
2 min

{
min

1
2V

⋆≤V≤ 3
2V

⋆
(α(V )−α̂(V )),

min
1
2V

⋆≤V≤ 3
2V

⋆
|V−γ̂(V )|

}
.

(13)

From (A2) and (5), we obtain the existence of L =
L(V 0, V ⋆) > 0 such that

∀i ∈ N ∀t′ ∈ [0, s⋆] ∀t′′ ∈ [0, s⋆]
|Vi(Xi(t

′))− Vi(Xi(t
′′))| ≤ L(V 0, V ⋆)|t′ − t′′|, (14)

and then

∀t′ ∈ [0, s⋆] ∀t′′ ∈ [0, s⋆]
|V (X(t′))− V (X(t′′))| ≤ L(V 0, V ⋆)|t′ − t′′|. (15)

Hence t 7→ V (X(t)) is absolutely continuous and differen-
tiable almost everywhere on [0, s⋆].

Then, there is τ ∈]0, s⋆

2 ] such that

∀t′ ∈ [0, s⋆] ∀t′′ ∈ [0, s⋆]∀i ∈ N
|Vi(Xi(t

′))− Vi(Xi(t
′′))| ≤ ε

4 ,
(16)

For every t ∈ [0, s⋆] and every δ ∈]0, ε], by Υ(δ, t) ⊂ N
denote the following set of indices

Υ(δ, t) := {j ∈ N | Vj(Xj(t)) ≥ V (X(t))− δ}. (17)

Then, as in [13] (proof of Theorem 1, Step 2) we easily
obtain the following Lemma.

Lemma 1: For each i ∈ N, each t ∈ [0, s⋆ − τ ] and each
h ∈ [0, τ ] we have:

Vi(X
∗
i (t+ h)) ≥ V (X(t))− 3ε

4 ⇒
V̇i(X

∗
i (t+ h)) ≤ −α

(
Vi(X

∗
i (t+ h))

)
and

Vi(X
∗
i (t+ h)) ≤ max{Vi(X

∗
i (t)), V (X(t))− 3ε

4
}.

and

∀i ∈ Υ(ε/2, t) V̇i(Xi(t+ h)) ≤ −α
(
Vi(Xi(t+ h))

)
.

Next we note that Υ(δ1, t) ⊂ Υ(δ2, t) for all 0 < δ1 <
δ2 ≤ ε and for all t ∈ [0, s⋆] and all δ ∈]0, ε

4 ] we have

V (X(t))= sup
i∈N

Vi(Xi(t))= sup
i∈Υ(δ,t)

Vi(X
∗
i (t)) (18)

and

∀i ∈ Υ(δ, t) V̇i(Xi(t+ h)) ≤ −α
(
Vi(Xi(t+ h))

)
.

(19)
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Then arguing as in Step 2 from Proof of Theorem 1 from
[13], and taking into account (iii) along with the inequalities

V (X(t)) ≥ γ̂( max
τ∈[−θ,0]

V (X(t+ τ))) ⇒

∀i ∈ N V (X(t)) ≥ γ̂( max
τ∈[−θ,0]

Vi(X(t+ τ)))

≥ γ( max
τ∈[−θ,0]

Vi(X(t+ τ))),

we obtain (8) almost everywhere on [0, s⋆]. Then we consider
Picard’s iterations (11) on [s⋆, 2s⋆], and extend our solution
to [s⋆, 2s⋆], . . . , [ks⋆, (k + 1)s⋆], . . . , [t0,+∞[, and even-
tually obtain (8) almost everywhere on [t0,+∞[. On every
step, the length s⋆ > 0 does not decrease because V (X(t))
does not increase and s⋆ > 0 was defined by (10). Hence
the Zeno effect is not possible. Finally, we note that (II)
implies (III) (function β ∈ KL from (4) from Definition 2
can be constructed by using our function γ(·) < id and by
following standard arguments), and this completes our proof
of Theorem 1.

VI. APPLICATIONS

Motivated by many papers devoted to backstepping de-
signs for time-delay control systems in pure-feedback form,
see, for instance, [47], [46], let us consider the following
problem.

As in related paper [13], we consider a countably infinite
network of switched control systems in the following form

ẋi,k(t) = xi,k+1(t) + ∆i,1(xi,k(t),Xi,k(t), xi,k(t−θ),
Xi,k(t−θ)), k = 1, . . . , n− 1,
ẋi,n(t)=ui+∆n(Xi,n(t),Xi,n(t), Xi,n(t−θ),Xi,n(t−θ))

i ∈ N
(20)

with controls ui ∈ R1, i ∈ N, with states
Xi,n:=[xi,1, ..., xi,n]

⊤ ∈ Rn of each ith subsystem and with
the entire state vector X = {Xi,n}i∈N ∈ ℓ∞, where vectors
Xi,k Xi,k, are defined by

Xi,k:=[xi,1, ..., xi,k]
⊤
, Xi,k={Xκ,k}κ∈J(i), k=1, ..., n

(21)
for all i ∈ N, and where each J(i) ⊂ N and denotes the set
of the “neighbors” affecting i-th agent (node) of (20), and,
as above, we assume that i /∈ J(i).

Assume that (20) satisfies the following conditions:
(C1) Every J(i) ⊂ N is finite for each i ∈ N and N :=

sup
i∈N

|J(i)| < +∞;

(C2) All ∆i,k(·) are functions of class C1, k = 1, n, i ∈ N,
and ∆i,k(0, 0) = 0 for all k = 1, n;

(C3) All ∆i,k(·, ·) and their partial derivatives are uniformly
locally bounded, i.e., for each R>0 we have:

sup
i∈N

max
1≤k≤n

max
|Xi,k|∞ ≤ R,

|χi,k|∞ ≤ R

|∆i,k(Xi,k, χi,k)| < ∞;

(22)
sup

i∈N, 1≤j≤k≤n
max

|Xi,k|∞≤R, |χi,k|∞≤R

{
max

κ∈J(i)∪{i}

∣∣∣∂∆i,k(Xi,k,χi,k)
∂xκ,j

∣∣∣} < ∞.
(23)

Our corollary of Theorem 1 is as follows.

Theorem 2: Suppose that system (20) satisfies (C1)-(C3).
Then, there is a decentralized feedback ui = ui(Xi,n) of
class C1 with ui(0) = 0, i ∈ N which renders the closed-
loop system (20) with this feedback ui = ui(Xi,n), i ∈ N,
ℓ∞-GAS in the sense of Definition 2.
The proof of Theorem 2 is obtained by the following
backstpping argument.

The auxiliary statement, which corresponds to the Base
Case of the corresponding backstepping design for (20),
deals with the following auxiliary infinite network of one-
dimensional systems of ODE

ẋi,1 = xi,2 +∆i,1(xi,1,Xi,1, ξi,1,Ξi,1), i ∈ N (24)

with virtual controls xi,2 ∈ R1, i ∈ N, with states
xi,1 ∈ R1 of each ith subsystem, with the entire state
vector {xi,1}i∈N ∈ ℓ∞, and with virtual external disturbance
vectors (Xi,1, ξi,1,Ξi,1) in R|J(i)|×R1×R|J(i)|. Here ξi,1 ∈
R1, and Ξi,1 := {ξj,1}j∈J(i).

Thus, (24) is obtained from (20) by taking each first
equation with xi,2 ∈ R1 treated as a virtual con-
trol and by replacing (Xi,1(t), xi,1(t−θ),Xi,1(t−θ)) with
(Xi,1, ξi,1,Ξi,1). In other words, motivated by [45], we treat
each (Xi,1(t), xi,1(t−θ),Xi,1(t−θ)) in (20) as the virtual
disturbance input of each xi,1-subsystem of (20) in the Base
Case of our backstepping gain assignment. We also define
the following “virtual Lyapunov functions”

Wi(xi,1) :=
x2
i,1

2
, Ui(ξi,1) :=

ξ2i,1
2

, i ∈ N. (25)

Then, for auxiliary infinite network (24), the following
lemma holds.

Lemma 2: Suppose that system (20) satisfies (C1)-(C3).
Then, for any γ ∈]0, 1[, there is a decentralized feedback
xi,2 = αi,1(xi,1) of class C∞ with αi,1(0) = 0, i ∈ N such
that the following properties hold:
(P1) All αi,1(xi,1) and their partial derivatives are uni-

formly locally bounded, i.e., for every R > 0 they are
bounded on the set |xi,1| ≤ R uniformly w.r.t. i ∈ N.

(P2) Each ith subsystem of (24) with its virtual feedback
xi,2 = αi,1(xi,1) satisfies the following ISS Lyapunov
inequality

Wi(xi,1)≥γmax
{

max
j∈J(i)

Wi(xi,1), max
j∈I(i)

Ui(ξi,1)
}
⇒

dWi(xi,1,Xi,1,ξi,k,Ξi,1)
dt

∣∣∣
(24),
xi,2 = αi,1(xi,1)

≤ −Wi(xi,1).

(26)
Proof of Lemma 2 is a special case (corresponding to p1 = 1)
of Step 2 (Base Case) Proof of Theorem 2 from [13], see
Eqs. (43)-(50) with p1 = 1.

Let us emphasize that, if n = 1, then Theorem 2 is
already proved: properties (P1)-(P2) of Lemma 2 imply
that the network of interconnected xi,1-subsystems of (20)
with the feedbacks xi,2 = αi,1(xi,1) satisfies (A1)-(A3) and
conditions (i)-(iii) of our main Theorem 1.

For our Inductive Step, we take the standard backstepping
transformation zi = xi,1, wi = xi,2 − αi,1(xi,1), and ηi =
ξi,2−αi,1(ξi,1), where ξi,2 appears after formal replacement

2382



xi,2(t−θ) 7→ ξi,2 (similarly to the above formal replacement
xi,1(t−θ) 7→ ξi,1). Then we denote Zi := {zj}j∈J(i),Wi :=
{wj}j∈J(i), Yi := {ηj}j∈J(i), and replace each (xi,1, xi,2)-
subsystem of (20) with the corresponding auxiliary infinite
network of two-dimensional systems of ODE

żi = wi + αi,1(zi) + ∆i,1(zi,Zi, ξi,1,Ξi,1),

ẇi = xi,3 + ∆̂i(zi, wi,Zi,Wi, ξi,1, ηi,Ξi,1,Yi);
i ∈ N

(27)

with virtual controls xi,3 ∈ R1, i ∈ N, with states [zi, wi] ∈
R2 of each ith subsystem, with the entire state vectors
{[zi, wi]}i∈N ∈ ℓ∞, and with virtual external disturbance
vector (wi,Zi,Wi, ξi,1, ηi,Ξi,1,Yi) (here, ∆̂i is defined by
∆i,2 and by our backstepping transformation zi = xi,1,
wi = xi,2−αi,1(xi,1), ξi,1 = ξi,1 and ηi = ξi,2−αi,1(ξi,1),).

Then we apply Theorem 3 from [36] (in the special case,
when there is no swtiching signals σ(·) and there is no
uncertainties θ) to each ith [zi, wi]-subsystem of our system
(27) (note that (C1)-(C3) from [36] and (14) from [36]
are again satisfied for each ith [zi, wi]-subsystem of our
system (27)). Then we eventually obtain the existence of
a decentralized feedback xi,3 = αi,2(zi, wi) which (after
the inverse transformation [zi, wi] 7→ [xi,1, xi,2]) provides
that the network of interconnected [xi,1, xi,2]-subsystems of
(20) with this feedback satisfies (A1)-(A3) and conditions
(i)-(iii) of our main Theorem 1 (the uniform boundness
for the obtained feedback follows from the construction in
the proof of Theorem 3 from [36] and from our current
condition (C3) with (22),(23)). If n = 2, then Theorem 2
is proved; otherwise, we follow the standard backstepping
transformation of states for n = 2, 3, . . . and eventually prove
Theorem 2 for any n.

VII. CONCLUSION

We proved a new small gain theorem for infinite networks
of time-delay systems in terms of ISS Lyapunov-Razumikhin
functions, and we demonstrated how to apply this result to
decentralized stabilization of infinite networks of hierarchi-
cally interconnected time-delay nonlinear systems in strict-
feedback form.
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