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Abstract—In order to accurately model the dynamics of non-
linear electro-mechanical systems, it is imperative to consider the
contributions of coupling terms and dissipation. The Lagrangian
formulation alone is insufficient to fully capture the holistic be-
havior of the system. Coupling and dissipation mechanisms play
a pivotal role in shaping the system’s response. Consequently,
to effectively capture the dynamics of inter-coupled electro-
mechanical systems with dissipation, we propose an extended
Lagrangian-informed deep neural network framework in this
paper. Our approach leverages the underlying physics-based
knowledge of the system, incorporating it into the neural network
architecture. By employing the Euler-Lagrange equations as
constraints in the training process, we ensure that the learned
dynamics conform to the true behavior of the system. To validate
the theoretical framework, we conduct simulation experiments on
a DC motor with a cart system, which serves as a representative
model of dissipative nonlinear electro-mechanical systems. The
experimental results demonstrate the efficacy of our approach in
accurately capturing and integrating the dynamics to solve the
reference tracking model predictive control design.

Index Terms—Deep neural networks, Physics-informed learn-
ing, Nonlinear model predictive control, Extended Lagrangian
formulation, Electro-mechanical systems

I. INTRODUCTION

Complex electro-mechanical systems, such as high-speed
trains, aero-engines and high-quality computer numerical con-
trol machine tools, are composed of numerous mechanical
and electrical components. These systems are designed with
discrete elements to form complex, interconnected, and highly
responsive networks for transmitting power, energy and in-
formation [1]–[3]. Traditionally, dynamic models of electro-
mechanical systems have been derived using fundamental
principles such as Newton’s laws or Lagrange’s equations [4].
Even with substantial advancements in modeling and system
identification techniques, the learning of complex systems
remains a formidable challenge [5]. The existing literature has
tackled the challenge of learning models from data through
two main approaches: system identification and supervised
black-box function approximation. In system identification,
the kinematic structure’s knowledge is leveraged, enabling the
inference of linkage physics parameters using linear regression
[6]. However, it is crucial to note that the learned parameters
might not always be physically plausible [7]. Moreover, they
are limited to linear combinations and applicable only to
kinematic trees [8]. Another method involves combining the
composite rigid body algorithm [9] with system identification
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to infer parameters of the Euler-Lagrange ordinary differential
equations, including the mass matrix. On the other hand, for
function approximation, standard machine learning techniques
such as support vector regression [10], recurrent neural net-
works [11], and feedforward neural networks [12] have been
employed based on the data. However, the resultant estimated
models from data-driven methods often suffer from limited
generalizability and interpretation [13].

By combining the strengths of both traditional modeling
and data-driven methods, we can enhance system’s model-
ing, improve predictions, and address uncertainties or inac-
curacies in the existing formulations. An increasing body
of research is dedicated to incorporating physics principles
into the process of learning underlying dynamics [14], [15].
LINNs in [16] introduce a physics-informed energy-based
neural network framework for interconnected systems under
the port-Hamiltonian (pH) formalism. However, the authors
in [16] did not consider the coupling or dissipation terms in
the Lagrangian. Many authors also explored several cutting-
edge techniques that incorporate Hamiltonian mechanics and
Lagrangian knowledge within neural networks for model-
ing physical systems. These include Hamiltonian neural net-
works (HNNs), pH neural networks, DeLaN, and others [17],
[17]–[20]. However, the aforementioned modeling approaches
have their limitations, especially when dealing with com-
plex electro-mechanical systems. The inherent complexity and
nonlinear nature of such systems often make it challenging
to derive accurate mathematical models and identification of
coupling sources.

In addition, numerous control design methodologies have
been proposed for control of electro-mechanical systems,
including passivity-based sliding mode control [21], adaptive
backstepping control [22], fuzzy adaptive control [23], H∞
control [24], and control by feedback linearization [25]. Most
of the mentioned approaches use a physics-based model of
the system and lack integrating the data-driven model with
control strategies. On the other hand, papers from the proposed
literature integrate the learned dynamics to control the system.

Despite the advancements achieved in the aforementioned
methodologies for learning and control, these approaches con-
tinue to confront inherent constraints and limitations. Most of
the approaches focus specifically on mechanical subsystems,
incorporating physical knowledge from Lagrangians into the
neural networks to learn equations of motion from data.
Additionally, the utilization of canonical data assumes prior
knowledge of the target system’s mass, which can be a
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restrictive assumption in certain scenarios.
This work presents a comprehensive framework for physics-

informed learning and control of electro-mechanical systems
characterized by dissipation and coupling. The proposed ap-
proach combines extended Lagrangian modeling with a deep
neural network-based data-driven approach to capture the
complex nonlinear dynamics and inter-dependencies within the
control system. The key contributions are as follows:
● By incorporating physics-informed constraints to ensure

adherence of the fundamental laws and physics-based
principles governing electro-mechanical systems, we in-
troduce an extended Lagrangian-informed neural network
(ExLINN) approach that embeds physics-informed con-
straints into the neural network training process.

● For accurate data-driven modeling, our approach en-
ables the identification and estimation of specific sys-
tem parameters, including material properties, coupling
coefficients and damping coefficients, supporting system
design, optimization, and control.

● To solve the reference tracking problem, we employ a
nonlinear model predictive control (NMPC) approach by
embedding the learned ExLINN model for prediction.

● To demonstrate applicability to electro-mechanical sys-
tems characterized by nonlinearity, dissipative behavior
and coupling effects, we apply our approach to a DC
motor with a cart system.

II. BACKGROUND AND PROBLEM DESCRIPTION

This section focuses on modeling electro-mechanical sys-
tems using extended Lagrangian, which capture the mutual
influence between mechanical and electrical components char-
acterized by electro-mechanical coupling. We treat electro-
mechanical systems as lumped-parameter systems defined by
a finite set of mechanical and electrical variables. For a
comprehensive understanding of the modeling process, we
encourage readers to refer [26].

A. Extended Lagrangian Model

Let Tm represent the energy stored in a magnetic field and
Ve represent the energy stored in an electric field. For N
electrical and M mechanical terminals, the energy transmitted
to an electric and magnetic coupling field is described as [26]

d

dt
(Tm) =

N

∑
i=1
(q̇)i

dλi

dt
− (

M

∑
i=1
(fe)i

dxi

dt
+

M

∑
i=1
(τe)i

dαi

dt
), (1)

d

dt
(Ve) =

N

∑
i=1
(ef)i

dqi
dt
− (

M

∑
i=1
(fe)i

dxi

dt
+

M

∑
i=1
(τe)i

dαi

dt
), (2)

where for electrical subsystem, q̇ is the derivative of the
electric charge q w.r.t. time, λ is the flux linkage, and ef
is the coupling voltage. Similarly, within the mechanical
subsystem, there exists a damper with a damping coefficient
b, along with an electric or magnetic force denoted as fe
and an externally applied force f . The angular velocity is
α̇, horizontal displacement is x, and τe is the torque. The
left-hand side of (1) and (2) represent the rate of change in

the stored energy over time. Conversely, the right-hand side
represents the disparity between the two components. The
initial component signifies the input power at the electrical
terminal, while the second component denotes the input power
at the mechanical terminal.

In analyzing nonlinear electro-mechanical systems, it is es-
sential to introduce the concept of co-energy. An advantage of
the coenergy lies in its capacity to compute mechanical forces
and torques arising from electrical or magnetic sources. The
energy and coenergy functions for the electrical subsystems
are defined as [26]

Energy ∶ Tm = Tm(λ), We =We(q), (3)
Coenergy ∶ Wm =Wm(q̇), Ve = Ve(v),

where the magnetic energy is Tm which is a function of the
flux λ, while the magnetic coenergy, denoted by Wm, varies
with the current q̇. On the other hand, the electric energy Te
is a function of the charge q, and the electric coenergy We

changes with the voltage v.
For the electrical systems, the chosen coordinates to de-

scribe the system are the charge q and its derivative q̇, as well
as the flux linkage λf and its derivative ef . For a system with
N electrical terminals, the relationship is given by

Tm +Wm =
N

∑
i=1
(λf)iq̇i, Ve +We =

N

∑
i=1
(ef)iqi. (4)

The subsequent step in the modeling process involves incor-
porating the electro-mechanical coupling into the system’s
equations. For a system with a single coupled terminal, the
electro-mechanical coupling equations for systems that store
magnetic energy or electrical energy are as follows [26]

Magnetic ∶ Tm +Wm = q̇λ, (5)

(
dWm

dq̇
− λ)

dq̇

dt
+ (

dWm

dx
− fe)

dx

dt
+ (

dWm

dα
− τe)

dα

dt
= 0,

Electric ∶ Ve +We = vq, (6)

(
dWe

dv
− q)

dv

dt
+ (

dWe

dx
− fe)

dx

dt
+ (

dWe

dα
− τe)

dα

dt
= 0.

Since dv, dx, dα and dq̇ can have any values, setting the
coefficients in the equations to zero, we get [26]:

dW∗e
dv
= q,

dW∗e
dx
= fe,

dW∗e
dα
= τe, (7)

dW∗m
dq̇

= λ,
dW∗m
dx

= fe,
dW∗m
dα

= τe. (8)

The coupling term can be determined using the above
equations depending on the system’s characteristics. To avoid
notational inconsistency, we denote the energy from coupling
byW∗ (the magnetic energy obtained through coupling asW∗m
and the electric energy as W∗e ), while we represent magnetic
coenergy as Wm and the electric energy as We.

Now, considering L as the Lagrangian for the mechanical
system, which is the difference between kinetic energy T
and potential energy V , and W as the Lagrangian for the
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electrical system which consists ofWm andWe, the extended
Lagrangian L for electro-mechanical systems is expressed as

L = L +W = (T − V ) + (Wm −We). (9)

Incorporating the electro-mechanical coupling within the ex-
tended Lagrangian framework is essential. While identifying
the coupling terminal is critical, the coupling itself may not
always be obvious. It is imperative to discern the nature of
the energy emanating from the coupling terminal and use the
established set of equations to derive the coupling energy
W∗. The coupling from the electric origin can be obtained
using (7), whereas the coupling from the magnetic source can
be obtained using (8). After obtaining the coupling, it needs to
be added to the respective energy. The sign of addition depends
on the source of coupling. Finally, the extended Lagrangian is
obtained as

L = L +W = (T − V ) + (Wm −We) ±W
∗. (10)

Lagrangian formalism characterizes a classical physics sys-
tem defined by coordinates x = (q, q̇), originating from an
initial state x0. We use Euler-Lagrange equations to deduce
the equation of motion (EOM) as

d

dt
(
∂L

∂q̇i
) −

∂L

∂q̇i
= Fi −

∂Di

∂q̇i
, (11a)

q̈ = (
∂2L

∂q̇2
(q, q̇))−1(Fi −

∂Di

∂q̇i
−

∂2L

∂q∂q̇
(q, q̇)q̇ +

∂L

∂q
), (11b)

where D represents a dissipative function that accounts for
viscous frictions and resistances, while F encompasses ex-
ternal forces and voltages, which are input to the system.
With a specified set of coordinates x = (q, q̇) and input
u = F , we have established a technique for determining q̈
from a Lagrangian, which can be integrated to get the system’s
dynamics. Let the nonlinear system dynamics be

ẋ(t) = f(x(t), u(t)) (12)

for an initial time t0 ∈ T and the states x ∶ T→ X ⊆ Rn, given
an initial condition x0 ∈ Rn, and the system input u ∶ T→ X ⊆
Rm. Let f be a continuous and locally Lipschitz continuous
function of the state.

B. Control Problem

We consider the reference tracking control problem of
electro-mechanical system (12) to determine control input to
ensure that states of the system closely track a predefined
desired reference trajectory. The system (12) is discretized
at equidistant time grid, i.e., tk = kTs + t0 resulting in the
corresponding discrete states xk = x(tk) and uk = u(tk) for
k ∈ {0, . . . ,N}. This problem can be solved using a nonlinear
model predictive control strategy considering the cost function
J ∶ X ×X × U → R+ which can be expressed as

J(xref
k , xk, uk) = ∥x

ref
k − xk∥

2

Q
+ ∥uk∥

2
R . (13)

The matrices Q and R are the penalties on the state variables
and control inputs, respectively. For each time step k = t, the

discrete-time moving horizon optimal control problem with
the horizon length of Np for the current time instant t is

min
ut,...ut+Np−1

J (xt+Np) +

k=t+Np−1
∑
k=t

J(xref
k , xk, uk) (14a)

s.t. xk+1 = f(xk, uk), uk ∈ U , xk ∈ X (14b)

where J (xt+Np) represents the cost associated with the ter-
minal state, and xref

k signifies the reference trajectory. The
subscript k is employed to indicate a sample taken at a fixed
time interval of Ts ahead of the current time t, while k + 1
denotes the subsequent evolution. The set of input constraints
is denoted by U , and X represents the state constraints.
Solving optimization problem (14) yields an optimal control
sequence, denoted as u∗ = {u∗t , . . . , u

∗
t+Np−1}, for the present

time step. The initial control input from this sequence is then
applied, and the entire process is iteratively repeated.

In this paper, we consider the problem of learning La-
grangian dynamics for the nonlinear electro-mechanical sys-
tem required in (14). Given a dataset of trajectories of the
coordinates along with the input to the system, we wish to
infer the learned system dynamics which can be solved to
determine the next states xk+1.
Problem Statement: Given the dataset of the system co-
ordinates and input, {(qi, q̇i, Fi)→ (q̈i)}

N
i=0 for the electro-

mechanical system using extended Lagrangian model, we aim
to find an unknown mapping Ψ which minimizes

N

∑
i=0

D((q̈i),Ψ(qi, q̇i, Fi)), (15)

where D is a distance metric.

III. PROPOSED METHODOLOGY

In this section, we introduce Extended Lagrangian Informed
Neural Networks (ExLINN) framework for physics-informed
learning and control of electro-mechanical systems character-
ized by dissipative coupling.

A. Extended Lagrangian Informed Neural Networks (ExLINN)

Euler-Lagrange Constraints

Extended
Lagrangian 

Dissipation
Function 

  Optimize MSE Loss

     

F

Fig. 1: Extended Lagrangian informed learning architecture

ExLINN incorporates the Lagrangian mechanics and em-
beds this prior knowledge into the deep learning framework.
Unlike many model learning techniques, ExLINN framework
employs a pair of deep neural networks (DNNs) to learn
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the extended Lagrangian and dissipation function in (12).
We employ DNNs to capture the inherent nonlinearity in the
system dynamics, and they offer a more trainable structure due
to their lower computational resource demands. We employ
two distinct DNNs due to the distinct physical properties
of the Lagrangian and dissipation function, which can be
effectively incorporated into each respective neural network
during the learning process. This will avoid the conflict in
learning the functions and enhance the accuracy of the neural
networks. Fig. 1 demonstrates the overview of computational
process involved in learning the ExLINN. The generalized
coordinates’ data is utilized to learn the extended Lagrangian
and dissipation function. The Euler-Lagrange equation, which
represents the equation of motion (EOM), is employed as
the loss function. We exploit the inherent property that the
equation of motion remains true for each state variable at every
data point. To assess the network’s performance, predicted
values are compared to the ground truth of input at the end of
each iteration, yielding the loss. Minimizing this loss function
optimizes the network parameters and provides an accurate
Lagrangian and dissipation function.

We begin by illustrating how to form the feature functions
to learn the exact Lagrangian of the underlying electro-
mechanical system. The formalism uses the system’s energy;
therefore, the extended Lagrangian L is a function of the
generalized coordinates x = (q, q̇). Throughout the paper, we
assume that a finite dataset D of system trajectories, i.e.,
time series data of the state variables and the input for the
system, is available. Let the dataset be D = {(x, ẋ), F}, and
x ∈ {xm, xe} where xm represents the state variables of the
mechanical subsystem, and xe represents the state variables
of the electrical subsystem. Assuming that the Lagrangian of
the electro-mechanical systems is of the form (10), often, the
kinetic energy is the function of the generalized velocity and
potential energy is often the function of the generalized posi-
tion. Also, the magnetic coenergy and electrical energy are the
function of the current and charge through the circuit. Hence,
the basis functions to represent the respective quantities are
T = t(ẋm), Wm = wm(ẋe), V = v(xm), and We = we(xe).

The coupling W∗ in (10) can be a function of
xm, xe, ẋm, ẋe and expressed as W∗ = c(xm, xe, ẋm, ẋe) ∈

({xm, ẋm}⨉{xe, ẋe}) where ⨉ represents Cartesian product
of two sets. Moreover, intricate dependencies on velocity and
surface properties are typically associated with dissipative
systems, which are effectively addressed by explicitly incor-
porating the dissipative drag force into the Euler-Lagrange
equations. If the dissipative force varies linearly with velocity,
it can be represented as a scalar potential functional of the
generalized coordinates known as the Rayleigh dissipation
function. The Rayleigh dissipation function, encompassing
linear velocity-dependent dissipative forces in Lagrangian and
Hamiltonian mechanics, is denoted as D = r(ẋm, ẋe).

B. Network Optimization and Testing

We learn the dynamics Ψ (15) instead of a solution map
from the dataset D while leveraging the prior knowledge

because parameterizing dynamical equations model better ap-
proximate time-series data compared to directly estimating the
next state, and physical principles are usually best expressed
in the EOM. The dynamic model can be learned through two
approaches: forward and reverse. Depending on the control
approach, the control law is dependent either on the forward
model Ψ which maps the control input to the change of the
system rate, or on the inverse model Ψ−1 which maps the
system change to the control input, i.e.,

q̈ = Ψ(q, q̇, F ), (16)

= (
∂2L

∂q̇2
(q, q̇))

−1
(Fi −

∂Di

∂q̇i
(q̇) −

∂2L

∂q∂q̇
(q, q̇)q̇ +

∂L

∂q
),

F = Ψ−1(q, q̇, q̈), (17)

=
∂2L

∂q̇2
(q, q̇)q̈ +

∂2L

∂q∂q̇
(q, q̇)q̇ −

∂L

∂q
+
∂Di

∂q̇i
(q̇).

We train the ExLINN by learning an inverse model via a
supervised learning task with Lagrangian DNN L(q, q̇;Θ) and
dissipation DNN D(q̇;Φ) where the Θ and Φ are the network
parameters. Using (11), the EL constraints are enforced to
learn the optimal DNN weights while the loss function is
formulated as follows to minimize the error in the inverse
model (17)

(Θ∗,Φ∗) = argmin
Θ,Φ

l(Ψ−1(Θ,Φ), F ) + λΩ(Θ,Φ),

where, Ω denotes the L2 regularization term within the loss
function, while λ is weight associated with it. While testing
the ExLINN, we use the forward model (16) to predict the q̈
using the optimized parameters (Θ∗,Φ∗).

C. Control Strategy with ExLINN

Given the learned L(q, q̇;Θ∗) and D(q̇;Φ∗) using (16) by
the ExLINN approach, we can formulate a nonlinear model
predictive control (NMPC) problem (14) to design the control
policy for the electro-mechanical system (12). We learned the
underlying model (16) instead of the solution map that takes
from any initial state to the next step. At each time step, we
use the learned L and D to solve the forward model (16)
which is used as the prediction model in NMPC framework.
The receding horizon optimal control problem described

Extended Lagrangian

Plant

Optimize cost 

ExLINN model

Model Predictive Control

Dissipation FunctionF

Optimize cost 

cart

Model Predictive Control

Fig. 2: Model Predictive Control with ExLINN-based qLPV
model (left), DC motor with cart system (right)

in 14 requires solving the underlying system dynamics; we
implement the fourth-order Runge-Kutta method, a widely
accepted approach for fixed-time step integration, although
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utilizing alternative solver schemes remains a possibility.
Fig. 2 (left) and Algorithm 1 present the detailed steps
involved in NMPC design.

Algorithm 1: Model predictive control with ExLINN

1 Execute the following commands at each time step
ti ∈ N during sampling interval [ti, ti + h];

2 Measure states q, q̇ from plant;
3 Estimate system model parameters by inference from

the learned ExLINN;
4 Formulate optimization problem (14);
5 Solve (14) to get optimal input sequence u∗ for the

prediction horizon Np;
6 Apply the first element from u∗.

IV. CASE STUDY: DC MOTOR WITH CART

Simulation results are shown to demonstrate the perfor-
mance of the proposed method using a DC motor connected to
a cart via a scotch-yoke structure, as shown in Fig. 2 (right).
Here, v, Q and Q̇, α, L, and r represent the voltage source,
electric charge and current, angular displacement of the disk,
electric inductance, and resistance, respectively. d represents
the distance associated with the pin’s eccentricity. The scotch-
yoke mechanism converts rotational motion from the disk into
the translational motion of the cart.

The electrical subsystem is characterized by current IL = Q̇
and the mechanical subsystem by angular displacement and
velocity α, α̇. Hence, the extended Lagrangian is modeled
using generalised coordinates (α, α̇, Q̇). In the case of electro-
mechanical coupling, which involves the storage of magnetic
energy in the coupling terminal, from the six equations
presented in [26], dW∗

m

dα
= τe is applicable. The torque τe

is directly proportional to the armature current Q̇ in most
DC motors, and the magnetic field strength is represented
by the motor electromagnetic force constant, ke. Substituting
τe = keq̇, we get, dW∗

m

dα
= keQ̇ Ô⇒ W

∗
m = keQ̇α. Due to the

scotch-yoke structure, the cart’s horizontal displacement x can
be represented as a function of angular displacement α, i.e.,
x = d cosα Ô⇒ ẋ = −d sinα α̇. Substituting in the kinetic
coenergy we get T = jmα̇2

2
+ mcẋ

2

2
=

jmα̇2

2
+

mc(−d sinαα̇)2
2

.
The potential and electrical energy for this system are zero,
i.e., We = 0 and V = 0. The magnetic coenergy is given as
Wm +W

∗
m =

lQ̇2

2
+ keQ̇α. Now, the extended Lagrangian for

the dc motor and cart system is formed as follows:

L =
jmα̇2

2
+
mc(−dsin(α)α̇)

2

2
+
lQ̇2

2
+ keQ̇α. (18)

The generalized force for the mechanical coordinate α is given
by F1−

∂D1

∂α̇
. F1 = 0 and D1 =

bmα̇2

2
is the dissipation energy in

the mechanical subpart due to the viscous damping. Similarly,
for the electrical subsystem, the generalized forces are F2 −
∂D2

∂Q̇
. F2 = v and D2 =

rQ̇2

2
is the dissipation energy due to

the resistive effects. Now, the EOM using the EL condition
for the respective coordinates is given by (11). The dynamical

equations are given by [26]:

α̈[jm +mcd
2 sin2 α] + α̇[bm +mcd

2 sinα cosαα̇] − keQ̇ = 0,

lQ̈ + rQ̇ + keα̇ = v. (19)

A. Learning Results

We generated training data trajectories by fixing the DCwC
coefficients to the values jm = 0.1, bm = 0.5, ke = 1, l =
1, r = 5, and simulating until tf = 10 seconds with a time
step of ∆t = 1e−3. We used v = 2(0.5 sin (2t) + 2) as the
input voltage, where t is simulation time. The data is divided
into training and testing sets with an 80-20 split ratio. In our
approach, both DNNs are implemented as a multilayer per-
ceptron (MLP) with Rectified Linear Unit (ReLU) activation
functions and a single hidden layer containing 4 neurons. The
training of both DNNs is performed simultaneously using the
mean squared error (MSE) loss function. The training process
is executed over 20 epochs, utilizing the Adam optimizer with
a learning rate of 1e−3 and a weight decay of 1e−5. Using
a multi-sine signal for testing, we explore a wide range of
frequencies and interactions, validating the network’s ability
to capture complex data relationships. This comprehensive
examination across diverse frequency domains verifies the
model’s robustness and predictive applicability to various input
conditions.

Fig. 3 compares the measured ground truth to the ExLINN
model by presenting current and angular velocity over a span
of 2000 data points (equivalent to 2 seconds). We compute the
average MSE for testing, which is 1e−2, and upon comparing
the predicted states with the ground truth data, it becomes
evident that ExLINN effectively captures the dynamics of the
DCwC system. The results of estimated model with a test
voltage signal using forward dynamics, i.e., angular velocity
α̈, inductor current İL, Lagrangian and the dissipation function
are depicted in Fig. 3.
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Fig. 3: Responses of the learned dynamical model (–) on the
test data set (- - ground truth) w.r.t time in seconds

B. Nonlinear Model Predictive Control Results

The learned dynamical model is now combined with the
model predictive control as described in Section III-C to solve
the tracking control problem of the cart. The cart’s movement
x in the horizontal direction is restricted due to the scotch yoke
mechanism in the system. Since the x is the function of the
angular displacement α, we converted the desired trajectory
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x∗ in terms of the α and then substituted the corresponding
α∗ into the cost function of NMPC. For this reference tracking
problem, we set the penalty coefficients as Q = 10 and R =
1e−3 and opted for a prediction horizon of Np = 30. Fig. 4
plots the cost of the optimization problem J , input voltage v,
the cart position x and the corresponding angular displacement
α, showing that the position of the cart successfully tracks
the desired trajectory using the dynamical model learned by
ExLINN approach.
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Fig. 4: NMPC optimization cost J , input voltage v, cart horizontal
movement trajectory x, and angular velocity α with – predicted and
– ground truth trajectories.

V. CONCLUSION

This work presents a comprehensive framework ExLINN
for the modeling of coupled, nonlinear dissipative electro-
mechanical systems. The ExLINN model exhibited strong
learning capability, accurately capturing the complex dynamics
of the DC motor-cart system. Through training and testing, we
verified ExLINN’s predictive performance to unseen complex
voltage input waveforms, showcasing its capability to handle
diverse frequency domains and complex system behaviors.
The integration of ExLINN in NMPC further demonstrates
its practical utility for control design. The NMPC approach
successfully tracked a desired cart trajectory, highlighting the
successful integration of our learned dynamics model into
MPC. In a future work, we will extend our approach to
encompass comprehensive robustness and stability analysis,
with the ultimate goal of applying it to real-world systems,
particularly in the context of online implementation of NMPC.
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