
A Model for Dynamic Knowledge Representation and Learning

Xinyuan Wang, Wenbiao Zhang, and Weilin Wang

Abstract— Knowledge of complex systems is often impre-
cise and subject to frequent modifications. Consequently,
creating a knowledge representation and inference model that
can adapt to changes in information is crucial. In this paper,
we integrate the functional link into the fuzzy Petri net and
propose a generalized model called functional link fuzzy Petri
net (FLFPN). This model retains the explanatory ability
of fuzzy Petri nets while acquiring the powerful learning
ability of functional link neural networks. Finally, since the
forming of congestion is highly sensitive to traffic situations
in peak hours, we use FLFPN to predict traffic situations of
an expressway ramp, which shows a significant improvement
in the prediction accuracy, as compared with the traditional
FPN model.

I. INTRODUCTION
For many years, researchers have developed knowledge

bases that permit non-experts to solve complex problems
that are typically solved only by experts [1]. In order to
facilitate the processing of real-world data by computers,
a variety of knowledge representation techniques have
been created, including production rules and fuzzy Petri
nets [2]. Fuzzy Petri Nets (FPNs) are Petri nets that
have been adjusted to model fuzzy reasoning processes
with propositional logic [3]. Based on fuzzy production
rules (FPRs), FPN could deal with imprecise, vague or
fuzzy information in complex systems [4][5][6].

The FPN’s parameters are learnable, and there
have been studies on enhancing its learning ability
[7][8][9][10][11][12]. By training the parameters with
historical data, it can more accurately make future
decisions. Moreover, the prediction accuracy of an FPN
is dependent on the rules to build it. The rules are
proposed and formulated by experts and should not
be changed. If we want to improve its learning ability
further while keeping the rules fixed, we need to change
its mathematical formula—its computational formula for
transferring the logical value.

The FPN’s reasoning process can be interpreted as
a linear transfer of truth values for propositions. While
the traditionalFPN model can effectively capture lin-
ear inputoutput relationships, it proves inadequate for
dealing with complex nonlinear relationships. Learning
these nonlinearities is difficult by relying solely on base

*This work is supported in part by PowerChina Grants KY2020-
JT-12-01-2022 and HDY-CGHT20-20231262Y.

Xinyuan Wang and Weilin Wang (the corresponding author)
are with the Department of Control Science and Engineering,
University of Shanghai for Science and Technology, Shanghai
200093 merewxy15@gmail.com; wlwang@usst.edu.cn.

Wenbiao Zhang is with Huadong Engineering Corporation Lim-
ited, Hangzhou 311122 zhang_wb@hdec.com.

parameters and expressions. To improve the situation,
we need a model with better representation power while
introducing few parameters and changes in structure as
possible.

The main structure of the FPN should remain unal-
tered to ensure interpretability, given that it is defined
by rules. With this constraint in mind, we introduce
additional higher-order inputs similar to the functional
link net (FLN). The functional link net methodology
was initially introduced in [13][14], as a type of higher-
order neural network boasting faster convergence and
lower computational requirements than traditional neu-
ral networks. The FLN removes the hidden layer and
adds higher-order units to the input layer to preserve
its non-linearity. This grants it the impressive ability
to capture non-linear relationships between inputs and
outputs, while also resulting in a simpler structure that
facilitates the determination and retention of network
parameters. This effective structure is appropriate for
our requirements, thus we propose a new model called
functional link fuzzy Petri net (FLFPN). The introduc-
tion of higher-order terms can significantly expand the
solution space, ultimately improving the original model’s
capacity to represent the data.

To test the improvement of FLFPN over traditional
FPN, we apply both models to predict the traffic situa-
tions of a highway ramp during peak hours. The forming
of traffic congestion is highly sensitive to traffic situations
when the traffic volume approaches the capacity. The
tests show that FLFPN achieves a one-third reduction in
min square error with respect to the actual observations
compared to traditional FPN in predictions.

The rest of the paper is organized as follows. In Section
II, we give the detailed definition, the reasoning and
learning algorithms of FLFPN. In Section III, to validate
the model, we conduct experiments applying FLFPN to
predict the traffic situations of an expressway ramp.

II. FUNCTIONAL LINK FUZZY PETRI NET
In this section, we first present the representation

techniques of FLN and incorporate them into FPN by
defining FLFPN. Then, we present the techniques for
applying FLFPN for making decisions and training the
model.

A. Functional Link Net
The FLN model is a single-layer neural network. It

removes the hidden layer while maintaining nonlinearity,
provided that the input layer has higher-order units. The

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1044

computational cost is shifted from the hidden layer to
selecting a suitable input layer in FLNs [15][16].

There are different input patterns available for func-
tional link nets, including random vectors, tensor repre-
sentations, and function expansion representations [17].
According to [13], the use of second-order tensor repre-
sentations proves to be effective; therefore, this paper
will adopt the second-order tensor model as the input
pattern for the simple storage of structural parameters.

For example, the tensor representation pattern of the
inputs x = (x1, x2) can be

(
1, x1, x2, x

2
1, x1x2, x

2
2

)
, where

the constant term is usually omitted. The extended
input layer is equivalent to projecting the original
d−dimensional input space into a new space x =
(x1, x2, . . . , xd) → (ϕ1 (x) , ϕ2 (x) , . . . , ϕh (x)), where h
is the new dimension that takes into account both the
first and second order polynomial inputs.

We integrate the representation techniques of FLN into
FPN and propose the FLFPN model as follows.

B. Definition of FLFPN
Definition 1: An FLFPN structure is defined as a 12-

tuple:

FLFPN = (P, T,D, I,O, Th,W,CF,CD,α, β,M) (1)
where P = {p1, p2, . . . , pm}, T = {t1, t2, . . . , tn} and D =
{d1, d2, . . . , dm} are finite sets of places, transitions, and
proposition, with |P | = |D|. I and O are m×n incidence
matrices defining the directed arcs from places to transi-
tions. Th = [λ1, λ2, . . . , λn]

T , CF = [µ1, µ2, . . . , µn]
T ,

and M = [α1, α2, . . . , αm]
T are vectors denoting the

thresholds, certainty factors, and markings. α and β are
association functions. The former assigns a truth value
to each place and the latter defines the mapping between
each place and proposition. W = {W1,W2, . . . ,Wn} is a
set of weight matrices. Wi is a (m+ 1)× (m+ 1) upper
triangular matrix, i.e. the weight matrix of transition
ti, and its element, wjk, denotes the learned weight of
the functional link term of αjαk, for j = 1, 2, . . . ,m,
k = 1, 2, . . . ,m, j ≤ k. Element in last column, wj,m+1,
denotes the weight of the first-order term αj , for j =
1, 2, . . . ,m. CD is an m × n matrix, and the value of
cdij shows the relative importance of an input pi to its
output tj .

The FLFPN representation of a typical fuzzy produc-
tion rule is shown in Fig. 1. To make the model more
intuitive, instead of simply adding inputs to the input
layer, we treat the functional link inputs as an additional
hidden layer, which is denoted as the link layer. The
projection from input layer to link layer is presented as
αi → (ϕ1 (αi) , ϕ2 (αi) , . . . , ϕh (αi)) = Φj (αi), where
αi denotes the ith truth value set of input places,
and Φj (·) is the projection function of transition tj .
The dimension of the tensor-represented inputs is h,
and the encapsulated unit ϕl (αi) represents the lth
functional link inputs generated by the initial inputs αi,
for l = 1, 2, . . . , h.

Fig. 1. Internal structure of FLFPN.

C. Fuzzy Reasoning Using FLFPN
The basic definitions are given to better explain

the reasoning process with the FLFPN model. For a
transition tk ∈ T , let I(k) = {pI1, pI2, . . . , pId} be
the initial input set and for the sake of simplicity,
define xk = [x1, x2, . . . , xd]

T
= [αI1, αI2, . . . , αId]

T . The
expanded polynomial terms are represented as ϕk1 (xk) ,
ϕk2 (xk) , . . . , ϕkh (xk), and the corresponding weights
are wk1, wkw, . . . , wkh. Let O (k) = {pO1, pO2, . . . , pOl}
be the output set. The threshold value and certainty
factor of this transition are λk and µk, respectively.

Definition 2: A transition tk ∈ T is enabled and fired
if
∑h

i=1 wkiϕki(xk) ≥ λk. Let sk =
∑h

i=1 wiϕi(x) be the
weighted summation.

A sigmoid function is used to approximate the thresh-
old judgment. The sigmoid function is denoted by σ (·),
and σ (βx) = 1

1+e−βx . We usually set β to a relatively
large value to keep the slope of the function large so that
it can act like a gating unit. So the output truth value
can be represented by f (sk) = skσ [β (sk − λk)].

If β is big enough, when sk > λk, f (sk) ≈ sk,
and when sk < λk, f (sk) ≈ 0. This approximation
of the step function using a sigmoid function enables
the smooth transition from a discrete to a continuous
problem, simplifying our subsequent derivation.

Definition 3: After transition tk ∈ T is fired, the token
in its input places will be transmitted to its output
places O (k), produced by its certainty factor. The new
truth values of tk’s output places are αOi = µf (sk) =
µskσ [β (sk − λk)]. Let G(sk) = µf (sk) denotes the final
output value of a transition tk. If a place has more than
one input transitions fired, then its new real value is
decided by the biggest truth value.
a, b and c are all m-dimensional vector and ai, bi,

ci are their elements respectively. Then we define new
operaters:

1) a : b = c

1045

where c is the concatenation of a and b.
2) a ◦ b = c

where ci = ai · bi, for i = 1, 2, . . . ,m.
3) max(a) = d

where d = max1≤i≤m {ai}.
The reasoning process of FLFPN is shown in Algo-

rithm 1.

Algorithm 1: Reasoning Algorithm of FLFPN
Input: P , T , I, O, Th, W , CF , and initial

marking M0

Output: Final marking Mk

1 Let k ← 1, where k means this is the kth
iteration;

2 Let Ii be the ith column of I, and Oj be the jth
row of O;

3 while Mk ̸= Mk−1 do
4 foreach ti ∈ T , i ∈ N+, 1 ≤ i ≤ n do
5 xi ← Ii ◦Mk−1 : 1;
6 si ← xT

i Wixi;
7 ei ← σ [β (si − λi)];
8 Set weighted summation vector

Γ← [s1, s2, . . . , sn]
T ;

9 Set enable vector E ← [e1, e2, . . . , en]
T ;

10 Ψ← Γ ◦ E;
11 foreach pj ∈ P , j ∈ N+, 1 ≤ j ≤ m do
12 αj ← max (Oj ◦Ψ ◦ CF);
13 Set Mk ← [α1, α2, . . . , αm]

T ;
14 k ← k + 1;

D. Learning Algorithm of FLFPN
We employ a nested structure consisting of a genetic

algorithm (GA) and a backpropagation algorithm (BP)
to learn parameters. Parameters are categorized into
basic parameters and structural parameters, representing
the precise combination of higher-order terms intro-
duced. We consider the thresholds, certainty factors,
and structural parameters as network hyperparameters,
which are determined by the GA encoding. Evaluation
of fitness can occur following weight training, leading to
the determination of overall parameter performance. The
overall procedure is shown in Fig. 2 and Algorithm 2.

1) Genetic Algorithm: GA is a global search opti-
mization that based on evolutionary theory [18]. For the
FLFPN model, there are three parameters required to
be coded: structural parameters, thresholds and certainty
factors.

A tensor representation pattern without the constant
term, such as (x1, x2, x

2
1, x1x2, x

2
2), can be coded by

a binary chromosome. For example, code (1, 0, 1, 1, 0)
denotes that the x1, x

2
1 and x1x2 terms are selected, so

a linear network with three weights will be constructed.
For a transition with d input places, there is a binary

Algorithm 2: Learning Algorithm of FLFPN
Input: Sets of data, population size ps, maximum

number of generations gmax

Output: A set of FLFPN parameters with the
best performance

1 Generate initial population of ps chromosomes;
2 Let g ← 1, where g means this is the gth

generation;
3 while g ≤ gmax do
4 foreach chromosomes Ci in gth generation,

i = 1, . . . , ps do
5 train the weights using BP;
6 compute fitness value;
7 if Ci has better fitness value than the

current optimal parameter set then
8 Cbest ← Ci;
9 Update the best weights;

10 Selection, Crossover, and Mutation;
11 Generate a new population;
12 g ← g + 1;

chromosome of length
(

(d+r)!
d!r! − 1

)
to represent its func-

tional link terms, where r = 2 in this paper.
The values of λ and µ for a transition depend on their

domain length and the required precision [19]. For a
variable with domain length τ and required precision p,
then b, the number of bits required for encoding, needs
to satisfy the following condition 2b−1 < τ · 10p < 2b.
Since the range of λ and µ is [0, 1], we have τ = 1. If the
required precision is two decimal places, then p = 2. b = 7
will satisfy the contidion, which means we need 7 binary
bits to code each variable. A complete chromosome in
the population contains n such binary fragments of each
transition in FLFPN model.

Since the GA requires a fitness function, we will
calculate the mean squared error (MSE) at the end
of BP’s training, based on the training data’s error
according to MSE =

∑N
i=0(ŷ−y)2

N , where N represents
the number of samples. The fitness function will then
use the inverse of MSE.

2) Back Propagation Algorithm: For ease of weight
learning calculation, the FPN model for each rule can
be divided into four layers, as illustrated in Fig. 3.

The first step of back propagation algorithm is to
propagate the input forward through the network. For
each transition, we have a(0) = α, a(1) = Φ

(
a(0)

)
, a(2) =

G (s) = µsσ [β (s− λ)], where s =
∑h

i=1 wiϕi(α) =

WTa(1), and a(3) = maxj a
(2)
j , where all fired tj have

a commom output place.
The weights we need to learn are located between the

link layer and transition layer, so the weight update rule

1046

Fig. 2. The training process of FLFPN.

Fig. 3. Layered Structure of FLFPN.

can be expressed as the following equation

W (m) (k + 1) = W (m) (k)− αδ(m)
(
a(m−1)

)T

(2)

where k denotes the number of iterations; α is the
learning rate; W (m) is the weights of the mth layer; δ(m)

is the sensitivities of the mth layer; a(m−1) is the input
items from the (m− 1)th layer.

Note that since the FLFPN differs from a neural net-
work in that the transition layer is not fully connected,
it is necessary to set to zero the positions where no
connection actually occurs after updating the weight
matrix of this layer.

The back propagation of sensitivities needs to be
divided into the following cases in accordance with
different layers.

As for the terminal output layer: δ(m) = e, where
e = a − t. t is the target values, and a is the output
values.

As for the other layers:

δ(m) =

(
∂a(m+1)

∂a(m)

)T

δ(m+1) (3)

=

BT δ(m+1) if Ltransition

Ġ(m) (s)
(
W (m+1)

)T
δ(m+1) if Llink

DT δ(m+1) if Linput

where
B is a matrix with its elements bij satisfying

bij =

1 if single fired transition to pj

or ti offers the biggest output to pj

a
(m)
i if ti is not the biggest output to pj

0 if no relation between ti to pj

Here we use the smooth derivative introduced in [20],

which is defined as ∂ max(y,p)
∂y =

{
1 if y ≥ p

y if y < p
This enhanced derivative can capture the real meaning

of y ≥ p in a vague context, and can serve as a measure
of fuzzy truth degree of the proposition “y is greater
than or equal to p”.
D is a matrix with its elements dij satisfying dij =

∂ϕi

(
a(m)

)
/∂a

(m)
j

Ġ(m) (s) is a diagonal matrix, and its elements Ġi (sj)
can be calculated by the following equation. Let G =
Gi (sj), then Ġ = ∂

∂sj
{µskσ [β (sk − λk)]} = βG +

σ [β (sj − λi)] (1− βG)
where the subscript i denotes that the G expression

is for the ith transition on this layer, and the subscript
j denotes that sj is the jth input of this transition. A
detailed justification of back propagation can be found
in [21].

1047

Due to the introduction of functional link inputs,
the interpretability of the FLFPN model is reduced. In
traditional FPNs, the weights reflect the relative impor-
tance of each antecedent proposition [22]. In FLFPN,
the newly defined weights are essential for its learning
ability, allowing the model to capture highly non-linear
and complex relationships, however, FLFPN cannot ex-
plicitly explain the extent to which the input contributes
to the output.

Similar to the black box issue in neural networks, it
is arduous to discern the relative importance of each
variable in a neural network [23]. In this paper, we opt
to use the perturbation method. Following perturbation
tests on all inputs, we compare the MSEs of outputs
achieved with different levels of perturbation. The per-
turbation applied to each input will be divided into five
levels: 10%, 20%, 30%, 40%, and 50% of the input’s
original value.

III. APPLICATION IN PREDICTING TRAFFIC
SITUATIONS

A case study of local ramp control system mainly
consists of the following set of rules.

R1 : IF d1 AND d2 THEN d5 (CF = µ1) , λ1, cd11, cd21

R2 : IF d3 AND d4 THEN d6 (CF = µ2) , λ2, cd32, cd42

R3 : IF d5 AND d6 THEN d7 (CF = µ3) , λ3, cd52, cd63

where
d1 The local speed is small.
d2 The local occupancy is big.
d3 The downstream speed is small.
d4 The downstream occupancy is big.
d5 The current road is congested.
d6 The downstream road is congested.
d7 The ramp flow is low.

In accordance with the proposed rules, we could
establish the FLFPN model. We selected real traffic data
collected from detectors around Sunnyside and Johnson
Creek, Oregon, during the evening peak period of all
working days in a month for model learning [24], and
these data are processed by the corresponding fuzzy
membership functions. We utilize the collected speed
and occupancy data to forecast the ramp flow based
on our model and established rules, and compare it
to the actual data. The training results of the model
parameters are as follows: Th = [0.103, 0.052, 0.032]

T ,
CF = [0.977, 0.883, 0.963]

T , weights on the first layer:
w1 = 0.324, w2 = 0.444, w3 = 0.29, w4 = 0.36,
w5 = 0.244, w6 = 1.363, w7 = −1.201, weights on the
second layer: w1 = 1.533, w2 = −0.511, w3 = −0.555,
where the code of functional link inputs is (1, 1, 1, 0, 1),
(1, 1, 0, 0, 1), and (0, 1, 0, 1, 1), which denotes that the
tensor representation pattern of inputs to each transtion
is:

(
α1, α2, α

2
1, α

2
2

)
,
(
α3, α4, α

2
4

)
, and

(
α6, α5α6, α

2
6

)
.

The trained model’s MSE value is 0.042, compared to
an MSE value of 0.063 when training the FPN using a

same set of data without incorporating functional link
terms. Given the exclusive selection of data during peak
hours, even slight changes in traffic volume can lead to
road congestion. As a result, minor gains in accuracy are
crucial due to the heightened sensitivity to congestion.
The incorporation of FLFPN in ramp control resulted
in a 33% reduction in the MSE. This enhancement in
flow prediction accuracy is essential for avoiding ramp
congestion.

Fig. 4. The average and boundary values of MSE of the variable
perturb method.

As for the contribution degree parameter, we analyze
the relative importance of each input by the perturb
method. Based on the 50 models trained with varied
initial weights, each input variable produced 50 curves
to reflect the fluctuation of MSE with noise in the
experiment. As depicted in Fig. 4, the upper and lower
boundaries are represented by the dashed line, and
the mean is denoted by the solid line at the center.
The contribution required is obtained by calculating
the difference between the maximum and minimum
values of the mean. The larger the obtained value, the
more the MSE is affected by the noise and the higher
the contribution of the variable to its final output.
Normalizing the data leads to a CD matrix denoted
by: cd11 = 0.748, cd21 = 0.252, cd32 = 0.84, cd42 = 0.16,
cd53 = 0.772, cd63 = 0.228,

It can be seen that speed is more important than occu-
pancy, and local traffic conditions have a greater impact
on ramp traffic than downstream traffic conditions.

After the model is trained, we can conduct inference.
Given a set of input values, the FLFPN parameters are
as follows.

Since I, O, W1, W2, and W3 are all sparse matrices, we
simply write down their corresponding nonzero terms.
I: I11 = I21 = I32 = I42 = I53 = I63 = 1
O: O51 = O62 = O73 = 1
W1: w11 = 0.29, w22 = 0.36, w18 = 0.324, w28 = 0.444
W2: w44 = −1.201, w38 = 0.244, w48 = 1.363
W3: w56 = −0.511, w66 = −0.555, w68 = 1.363
Th = [0.103, 0.052, 0.032]

T , CF = [0.977, 0.883, 0.963]
T

1048

M0 = [0.106, 0.284, 0.059, 0.194, 0, 0, 0]
T

The inference process is as follows.
x1 = I1 ◦M0 : 1 = [0.106, 0.284, 0, 0, 0, 0, 0, 1]

T

s1 = xT
1 W1x1 = 0.193

Similarly, we can obtain s2 = 0.324, s3 = 0, then
Γ = [s1, s2, s3]

T
= [0.193, 0.324, 0]

T

e1 = 1
1+e−β(s1−λ1) = 1

Then we have e2 = 1, e3 = 0, and E = [e1, e2, e3]
T
=

[1, 1, 0]
T ,

Ψ = Γ ◦ E = [0.193, 0.324, 0]
T

The new marking can be updated as:
M1 = [0.106, 0.284, 0.059, 0.194, 0.189, 0.286, 0]

T

Similarly, we can get the marking for the next itera-
tion:

M2 = [0.106, 0.284, 0.059, 0.194, 0.189, 0.286, 0.352]
T

The calculated M3 = M2, therefore, we can judge
that the termination condition has been reached and
the inference is completed.

IV. CONCLUSIONS
Our proposed FLFPN model, augmented with func-

tional link terms, exhibits enhanced learning perfor-
mance compared to traditional FPN while preserving
representational efficacy. This assertion is validated
through experiments on highway traffic flow prediction.
However, indiscriminate incorporation of such terms may
lead to heightened computational demands. Particularly
in the context of a chain structure, identifying the
optimal combination of function linking terms becomes
challenging. Thus, the future challenge lies in devising an
optimal architectural framework tailored for meaningful
applications, aimed at enhancing the model’s learning
efficiency while mitigating the computational overhead
incurred during training.

References
[1] D. Yeung and E. Tsang, “Fuzzy knowledge representation

and reasoning using petri nets,” Expert Systems with
Applications, vol. 7, no. 2, pp. 281–289, 1994. [Online].
Available: https://www.sciencedirect.com/science/article/pi
i/0957417494900442

[2] S.-M. Chen, J.-S. Ke, and J.-F. Chang, “Knowledge rep-
resentation using fuzzy petri nets,” IEEE Transactions on
Knowledge and Data Engineering, vol. 2, no. 3, pp. 311–319,
1990.

[3] C. Looney, “Fuzzy petri nets for rule-based decisionmaking,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 18,
no. 1, pp. 178–183, 1988.

[4] H.-C. Liu, J.-X. You, Z. Li, and G. Tian, “Fuzzy petri
nets for knowledge representation and reasoning: A literature
review,” Engineering Applications of Artificial Intelligence,
vol. 60, pp. 45–56, 2017. [Online]. Available: https://www.sc
iencedirect.com/science/article/pii/S0952197617300222

[5] H.-C. Liu, L. Liu, Q.-L. Lin, and N. Liu, “Knowledge acquisi-
tion and representation using fuzzy evidential reasoning and
dynamic adaptive fuzzy petri nets,” IEEE Transactions on
Cybernetics, vol. 43, no. 3, pp. 1059–1072, 2013.

[6] S.-M. Chen, “A new approach to handling fuzzy decision-
making problems,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 18, no. 6, pp. 1012–1016, 1988.

[7] X. Li, W. Yu, and F. Lara-Rosano, “Dynamic knowledge infer-
ence and learning under adaptive fuzzy petri net framework,”
IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 30, no. 4, pp. 442–450,
2000.

[8] W.-M. Wang, X. Peng, G. niu Zhu, J. Hu, and Y.-H.
Peng, “Dynamic representation of fuzzy knowledge based on
fuzzy petri net and genetic-particle swarm optimization,”
Expert Systems with Applications, vol. 41, no. 4, Part 1, pp.
1369–1376, 2014. [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S0957417413006465

[9] M. Amin and D. Shebl, “Reasoning dynamic fuzzy systems
based on adaptive fuzzy higher order petri nets,” Information
Sciences, vol. 286, pp. 161–172, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025
514007014

[10] M. Gong, H. Song, J. Tan, Y. Xie, and J. Song, “Fault
diagnosis of motor based on mutative scale back propagation
net evolving fuzzy petri nets,” in 2017 Chinese Automation
Congress (CAC), 2017, pp. 3826–3829.

[11] L. Feng, M. Obayashi, T. Kuremoto, and K. Kobayashi,
“A learning fuzzy petri net model,” IEEJ Transactions on
Electrical and Electronic Engineering, vol. 7, 05 2012.

[12] X. Li and F. Lara-Rosano, “Adaptive fuzzy petri nets for
dynamic knowledge representation and inference,” Expert
Systems with Applications, vol. 19, no. 3, pp. 235–241, 2000.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0957417400000361

[13] Y. Pao, “Adaptive pattern recognition and neural networks,”
Reading: Addison Wesley, 1989, 1 1989. [Online]. Available:
https://www.osti.gov/biblio/5238955

[14] Y.-H. Pao and Y. Takefuji, “Functional-link net computing:
theory, system architecture, and functionalities,” Computer,
vol. 25, no. 5, pp. 76–79, 1992.

[15] A. Sierra, J. Macias, and F. Corbacho, “Evolution of functional
link networks,” IEEE Transactions on Evolutionary Compu-
tation, vol. 5, no. 1, pp. 54–65, 2001.

[16] Y.-C. Hu and F.-M. Tseng, “Functional-link net with fuzzy
integral for bankruptcy prediction,” Neurocomputing, vol. 70,
no. 16, pp. 2959–2968, 2007, neural Network Applications
in Electrical Engineering Selected papers from the 3rd
International Work-Conference on Artificial Neural Networks
(IWANN 2005). [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S092523120600453X

[17] S. Dehuri and S.-B. Cho, “A comprehensive survey on func-
tional link neural networks and an adaptive pso-bp learning
for cflnn,” Neural Computing & Applications, vol. 19, no. 2,
SI, pp. 187–205, MAR 2010.

[18] J. HOLLAND, “Adaptation in natural and artificial systems
: an introductory analysis with application to biology,”
Control and artificial intelligence, 1975. [Online]. Available:
https://cir.nii.ac.jp/crid/1572261550376545152

[19] A. Osyczka, Evolutionary algorithms for single and multicri-
teria design optimization. Heidelberg: Physica-Verlag, 2002,
indeks s. 214-218.

[20] A. Blanco, M. Delgado, and I. Requena, “Identification of
fuzzy relational equations by fuzzy neural networks,” Fuzzy
Sets and Systems, vol. 71, no. 2, pp. 215–226, 1995. [Online].
Available: https://www.sciencedirect.com/science/article/pi
i/0165011494002512

[21] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural
network design. Distributed by Campus Pub. Service,
Colorado University Bookstore, University of Colorado at
Boulder. [Online]. Available: https://cir.nii.ac.jp/crid/11302
82272136169216

[22] D. Yeung and E. Tsang, “Weighted fuzzy production rules,”
Fuzzy Sets and Systems, vol. 88, no. 3, pp. 299–313, 1997.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0165011496000528

[23] J. de Oña and C. Garrido, “Extracting the contribution
of independent variables in neural network models: a
new approach to handle instability.” Neural Computing &
Applications, vol. 25, no. 3/4, pp. 859 – 869, 2014. [Online].
Available: https://search.ebscohost.com/login.aspx?direct=tr
ue&db=aph&AN=97459937&lang=zh-cn&site=ehost-live

[24] P. S. U. PORTAL, “Transportation data archive for portland-
vancouver,” Available online:https://portal.its.pdx.edu/home,
accessed on 8 May 2023.

1049

