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Abstract— In this paper, the output synchronization in large-
scale discrete-time networks is examined by utilizing the novel
phase tool, where the agent dynamics are allowed to be signifi-
cantly heterogeneous. The synchronization synthesis problem
is formulated and thoroughly investigated, with the goal of
characterizing the allowable heterogeneity among the agents
to ensure synchronization under a uniform controller. The
solvability condition is provided in terms of the phases of the
residue matrices of the agents at the persistent modes. When
the condition is satisfied, a design procedure is given, producing
a low-gain synchronizing controller. Numerical examples are
given to illustrate the results.

I. INTRODUCTION

In the last decades, the consensus and synchronization
problems have been popular in the field of coordination and
control of multi-agent systems, and have broad applications
in diverse domains, from robotics and autonomous vehicles
to distributed computing and social networks [3], [8], [19].

Output synchronization, in its essence, pertains to the
coordinated behaviour of multiple interconnected agents to
achieve a common output or goal. In the applications such
as a group of autonomous drones tasked with forming and
maintaining a particular geometric shape in the sky, ensuring
that all agents or subsystems work harmoniously to produce
a synchronized output is essential to optimize performance
and efficiency.

In the simplest case of the synchronization problem,
where all agents are identical integrators, synchronization
can be achieved with a uniform static network controller,
as shown in [11], [20], [22]. A more general scenario is
when the agents are general Linear Time-Invariant (LTI)
systems but remain homogeneous [9], [15], [16], [26]. Most
research efforts in this domain commonly exploit the intuitive
approach of utilizing a uniform controller across all agents.

Recently, attention has been paid to the heterogeneous
agents with complicated dynamics [1], [2], [14], [21]. A
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challenging issue is to characterize the allowable diversity
among agents to ensure that they can converge to a common
trajectory. One way is to treat the agents as nominal models
with perturbations, which are described by gain, passivity,
gap metric, IQC, and so forth [5], [12], [13]. When the
controllers are uniform, the extent of the uncertainties, i.e.,
the diversity among the agents allowable to ensure problem
solvability according to robust control, is rather small. Math-
ematically, allowing for different controllers makes the syn-
chronization problem easy to solve. Nevertheless, it is crucial
to acknowledge that this comes with a substantial increase in
both design and implementation costs. Conversely, imposing
the condition of a uniform controller significantly enhances
the complexity of the research problem.

The recently developed phase tool provides a new per-
spective [6], [7], [17], [18], [24]. This tool has demonstrated
its utility in accommodating large diversities, especially for
systems with various gains. In this paper, we will study
the synchronization problem by exploiting the phase theory
for multi-input multi-output (MIMO) LTI systems. We will
demonstrate how the notion of phase provides distinct ad-
vantages in addressing the diverse heterogeneity within these
networks, leading to a collection of novel results and deeper
insights.

The rest of paper is organized as follows. Necessary back-
ground and preliminaries are provided in Section II, which
are particularly related to graph theory, sectorial matrix and
matrix phases. The problem formulation of synchronization
is given in Section III. Main result is introduced in Section
IV. Section V presents the simulation results. The paper is
concluded in Section VI. Due to page limit, we omit all the
proofs in this paper.

Notation used in this paper is mostly standard. Let R and
C be the set of real and complex numbers, respectively. For
a matrix A ∈ Cm×m, A∗ denotes its complex conjugate
transpose. The sets of eigenvalues and their angles of A are
denoted by λ(A) and ∠λ(A). The Kronecker product of two
matrices A and B is denoted by A⊗B. The identity matrix is
denoted by I . For a vector x ∈ Cm, x∗ denotes its complex
conjugate transpose. We use 1 to denote the vectors with all
entries equal to 1. Denote by Rm×m the set of m×m real
rational transfer matrices and let RHm×m

∞ ⊂ Rm×m contain
all its proper stable elements. In this paper, we will adopt
the z-transform in discrete time. Therefore, RHm×m

∞ is the
set of real rational transfer matrices with poles in the open
unit disk.
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II. PRELIMINARY

A. Graph theory

Consider a directed graph G = (V, E) with a set of
vertices V = {v1, . . . , vn} and a set of directed edges
E ⊆ V × V . For the edge (vi, vj), the nodes vi and vj
are called the tail and head respectively. A sequence of
edges (v1, v2), (v2, v3), . . . , (vk−1, vk) with (vj−1, vj) ∈ E
for j = {2, . . . , k} is called a directed path from node v1 to
node vk. Here, we assume that the directed graph does not
have self loops. A directed graph G is strongly connected if
every vertex is reachable from every other vertex. A directed
graph has a spanning tree if there exists at least one node
called root with directed paths to all other nodes. A weighted
graph is a graph in which the weight is assigned to each edge.
A weighted directed graph is balanced if for each node, the
total coming weights are equal to the total leaving weights.

Define the (in-degree) Laplacian matrix as

Lij =

{
−aij i ̸= j,∑

j ̸=i aij i = j.

where aji is a positive real number (representing the weight)
if (vi, vj) ∈ E and aji = 0 otherwise. A Laplacian
matrix always has a zero eigenvalue with an associated right
eigenvector 1. A necessary and sufficient condition for 1
being also the corresponding left eigenvector is that the graph
is balanced [20]. Furthermore, the zero eigenvalue is simple
if and only if the graph has a spanning tree [22].

B. Matrix phases

Given a matrix A ∈ Cm×m, the numerical range of A is
defined to be

W (A) = {x∗Ax : x ∈ Cm, ∥x∥2 = 1}.

This is a convex and compact subset of the complex plane
[10, Section 1.2] and contains the spectrum of A. The matrix
A is said to be semi-sectorial if the origin is not in the
interior of W (A). A semi-sectorial matrix is said to be quasi-
sectorial if the origin is not on the smooth boundary of
W (A). Furthermore, it is said to be sectorial if the origin
is not contained in W (A).

For a nonzero semi-sectorial matrix A, its numerical range
W (A) is contained in a closed half plane. Define the (largest
and smallest) phases of A by

ϕ(A) = sup
x̸=0,x∗Ax ̸=0

∠x∗Ax,

ϕ(A) = inf
x̸=0,x∗Ax ̸=0

∠x∗Ax.

so that [ϕ(A), ϕ(A)] ⊂ [θ(A) − π/2, θ(A) + π/2] with
θ(A) = θ0(A) + 2kπ, k ∈ Z for some θ0(A) ∈ [−π, π).
One can see that values of the phases are determined mod
2π. When θ(A) = θ0(A), the phases are said to take the
principal values.

The phases defined above have many nice properties. We
first give the relation between the phases of a semi-sectorial
matrix and its compression.

Lemma 1 ([23]): Let A ∈ Cm×m be a nonzero semi-
sectorial matrix with phases in [θ(A) − π/2, θ(A) + π/2]
and Ã ∈ C(m−k)×(m−k) be a nonzero compression of A.
Then Ã is semi-sectorial and

ϕ(A) ≤ ϕ(Ã) ≤ ϕ(Ã) ≤ ϕ(A).
Another interesting property is about the matrix product.
Lemma 2: Let A,B ∈ Cm×m be semi-sectorial and

sectorial. Then the number of nonzero eigenvalues of AB
is equal to the rank of A, and the inequality

ϕ(A) + ϕ(B) ≤ ∠λi(AB) ≤ ϕ(A) + ϕ(B) (1)

is satisfied if ∠λi(AB) take values in (θ(A) + θ(B) −
π, θ(A) + θ(B) + π).

C. Matrix essential phases

In various applications, it is common to encounter a matrix
that is not semi-sectorial but can be transformed into a semi-
sectorial matrix through diagonal similarity transformation.
For a matrix A ∈ Cm×m, its (largest and smallest) essential
phases are defined by

ϕess(A)= inf
D∈D

ϕ(D−1AD) and ϕ
ess

(A)= sup
D∈D

ϕ(D−1AD),

where D is the set of positive definite diagonal matrices.
Here the infimum and supremum are taken over all diagonal
positive definite matrices such that D−1AD is semi-sectorial
and ϕ(D−1AD) and ϕ(D−1AD) take their principal values.
The essential phases lack a general analytic representation
for arbitrary matrices. However, for specific matrix classes
like Laplacian matrices, an analytic representation can be
obtained. For a real matrix A, if it can be made semi-
sectorial through diagonal similarity transformation, then ei-
ther D−1AD or −D−1AD is accretive, i.e., having positive
semi-definite Hermitian part. It follows that −ϕ

ess
(A) =

ϕess(A). Hereinafter, we denote ϕess(A) by ϕess(A) for
notational simplicity.

Here we study the essential phases of Laplacians of the
graphs that have a spanning tree. This is the least requirement
on the graph connectedness in our application. The Laplacian
matrix in this case is reducible, and can be reduced to the
Frobenius normal form.

Lemma 3 ([4]): If the graph has a spanning tree, then
under a proper permutation the Laplacian matrix can be
written as a block lower diagonal matrix

L =


L11 0 . . . 0
L21 L22 . . . 0

...
...

. . .
...

Lk1 Lk2 . . . Lkk

 , (2)

where L11 is an irreducible Laplacian matrix or a zero matrix
with dimension one and Lii, i = 2, . . . , k is irreducible with
at least one row having positive row sum.
The essential phases of Lii, i = 1, . . . , k, take effect in
the synchronization context. A square matrix M is called
an M-matrix if it can be written as sI − A, where A is
nonnegative and s ≥ ρ(A). The matrix L11 is a special form
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of M-matrix, which is a Laplacian of a strongly connected
subgraph formed by all the roots. One can also observe
that Lii, i = 2, . . . , k, are nonsingular diagonal-dominant
M-matrices. An upper bound of essential phases of Lii is
provided in the following lemma.

Lemma 4: For a Laplacian matrix L in the form (2), there
holds

ϕess(Lii)≤ϕ(D−1
0i LiiD0i) ≤

π

2
, i = 1, . . . , k,

where D0i = diag(
√
xi1/yi1, . . . ,

√
xin/yin), xi and yi are

right and left eigenvector corresponding to the smallest real
eigenvalue of Lii.
Note that the analytic formula for the essential phases of
L11 can be obtained, i.e., ϕess(L11)=ϕ(D−1

01 L11D01). The
essential phases of Lii in general do not have a closed-
form expression. Nevertheless, a numerical solution can be
obtained. One may refer to [25] for more details.

III. PROBLEM FORMULATION

Consider a complex discrete-time dynamic network. The
agents are heterogeneous systems described by

xi(k + 1) = Aixi(k) +Biui(k),

yi(k) = Cixi(k), xi(0) ̸= 0,

for i = 1, 2, . . . , n, where xi(k) ∈ Rpi , ui(k) ∈ Rm and
yi(k) ∈ Rm represent the state, control input and output
of each agent i, Ai ∈ Rpi×pi , Bi ∈ Rpi×m, Ci ∈ Rm×pi

represent the state, input and output matrices respectively.
Let (Ai, Bi) be controllable and (Ci, Ai) be observable for
all i.

Assume that agents are all semi-stable in the sense that all
eigenvalues of Ai are contained in the closed unit disk. Let
Ai share the common eigenvalues on the unit disk, denoted
by ejΩ = {ej0, e±jω1 , . . . , e±jωq , ejπ}. With these internal
modes on the unit circle, the agents are all able to generate
same common persistent outputs autonomously. The stable
modes, i.e., the eigenvalues inside the unit disk of the agents
can be completely different.

The transfer function of each agent is

Pi(z) = Ci(zI −Ai)
−1Bi.

Denote the z-transform of input ui and output yi by ûi and
ŷi, then

ŷi(z) = Pi(z)ûi(z) +Ki(z)xi(0),

where Ki(z) = zCi(zI −Ai)
−1.

The partial fractional expansion of Pi(z) is in the form

Pi(z) =
N0i

z − 1
+

Nπi

z + 1
+

N1i

z − ejω1
+

N̄1i

z − e−jω1

+ · · ·+ Nqi

z − ejωq
+

N̄qi

z − e−jωq
+ P s

i (z),

(3)

where 0 < ω1 < · · · < ωq < π are the frequencies of
persistent modes, N0i, Nπi ∈ Rm×m are the residues of
Pi(z) at the pole 1 and −1, Nli ∈ Cm×m for l = 1, . . . , q,
are the residues of Pi(z) at the pole ejωl , and P s

i (z) is stable
and strictly proper.

A communication protocol utilizing relative output feed-
back is given by

ui(z) =
∑

(i,j)∈E

aijC(z)(ŷj(z)− ŷi(z)), (4)

where aij are the weight of edges and C(z) is a uniform
controller. The weights aij are given a priori while the
controller C(z) is to be designed. Assume that the digraph
has a spanning tree. Denote the corresponding Laplacian
matrix by L0.

Since the agents are heterogeneous and their state di-
mensions may differ, it is not possible to expect the state
synchronization among the agents. Therefore, the aim is to
design the controller C(z) such that the output synchroniza-
tion is reached in the network. The multi-agent system is said
to reach output synchronization if lim

k→∞
(yi(k) − yj(k)) =

0,∀i, j ∈ {1, 2, . . . , n} and all initial conditions.
By denoting x(0), û(z) and ŷ(z) as the concatenated vec-

tors of
[
x1(0)

′ · · · xn(0)
′]′, [û1(z)

′ · · · ûn(z)
′]′ and[

ŷ1(z)
′ · · · ŷn(z)

′]′, respectively, the network dynamics
can be written as

ŷ(z) = P (z)û(z) +K(z)x(0),

û(z) = −L0 ⊗ C(z)ŷ(z),

where

P (z) = diag{P1(z), . . . , Pn(z)},
K(z) = diag{K1(z), . . . ,Kn(z)}.

It can be obtained that

ŷ(z) = (I + P (z)(L0 ⊗ C(z)))−1K(z)x(0). (5)

The synchronization framework is shown in Fig 1. Introduce
the variable

ê(z) = (J ⊗ Im)ŷ(z), (6)

where J = In − 1
n1n1

′
n. Here ê(z) is referred to as the

disagreement vector. The matrix J has a simple eigenvalue
0 with a corresponding right eigenvector 1n. It can be seen
that lim

k→∞
e(k) = 0 if and only if y reaches synchronization.

In other words, the synchronization problem is converted to
a feedback stability problem. Hence, the techniques dealing
with stability problem can be naturally applied.

Let Q be an isometry whose columns form the basis
of the orthogonal complement of span{1n}. Denote U =[
Q 1√

n
1n

]
⊗ Im. In view of (5) and (6), we have

ê(z) = JUU ′(I + P (z)(L0 ⊗ C(z)))−1UU ′K(z)x(0)

= Q
[
S(z) 0

]
U ′K(z)x(0)

= (Q⊗ Im)S(z)(Q′ ⊗ Im)K(z)x(0),

(7)

where

S(z) = (Inm−m+(Q⊗ Im)′P (z)(L0⊗C(z))(Q⊗ Im))−1.

Here ê can be treated as tracking error of the reference signal
K(z)x(0). Thus, lim

k→∞
e(k) = 0 is equivalent to that S(z)
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is stable and the internal model of K(z) is contained in the
loop transfer matrices. The latter is automatically satisfied
since the internal model of K(z) is contained in the agent
dynamics.

P

K

L0 ⊗ C

−
û ŷ

x(0)

Fig. 1. Block diagram of synchronization.

IV. MAIN RESULT

In this section, we proceed to investigate the synchroniza-
tion synthesis problem with the attempt to design a uniform
controller such that the synchronization is enforced. There
are two major issues that need to be considered in the study.
The first is the synchronizability of the network, i.e., whether
there exists a uniforn controllers such that the heterogeneous
agents can achieve synchronization. It will be delineated that
the phase serves as a good characterization of the diversity of
the agents. The second is to provide a construction method
of the controller for the synchronizable multi-agent system.

We introduce the following definition.
Definition 1: The discrete-time multi-agent system (3)

with a fixed graph is said to be synchronizable under protocol
(4) if there exists a stable controller C(z) such that the output
synchronization can be enforced, i.e.,

lim
k→∞

|yi(k)− yj(k)| = 0,∀i, j ∈ {1, 2, . . . , n},

regardless of the initial conditions of all the agents.
By properly labelling the agents, the Laplacian matrix can

be written in the form (2). Divide the agents into k group
P1∗, . . . , Pk∗ according to (2). The size of Pi∗ is compatible
with the size of Lii. The agents in each group are strongly
connected. In particular, the first group contains all the roots
of the graph. It hence serves as the steering group as they
have directed path to all other nodes while receive no infor-
mation from other groups. When L11 is a zero matrix with di-
mension one, the multi-agent system only has one leader. The
agents in i-th group for i = 2, . . . , k can be treated as fol-
lowers. Let r0 = 0 and ri =

∑i
j=1 size(Ljj), i = 1, . . . , k.

Let Nli∗ = diag{Nl(ri−1+1), . . . , Nlri}, l = 0, 1, . . . , q, π,
and i = 1, . . . , k. We have the following main result.

Theorem 1: The synchronization problem is solvable if
there exist nonsingular matrices K0,Kπ ∈ Rm×m and
K1, . . . ,Kq ∈ Cm×m such that

ϕ(e−jωlNli∗(Iri−ri−1 ⊗Kl)) <
π

2
− ϕess(Lii),

ϕ(e−jωlNli∗(Iri−ri−1 ⊗Kl)) > −π

2
+ ϕess(Lii),

for l = 0, 1, . . . , q, π, and i = 1, . . . , k.
When the conditions in Theorem 1 are satisfied, then one

synchronizing controller is given by C(z) = ϵH(z) for all
ϵ ∈ (0, ϵ∗), where H(z) ∈ RHm×m

∞ satisfies H(ejωl) = Kl

and ϵ∗ > 0 can be estimated from given data.
Next we provide a design procedure of H(z) ∈ RHm×m

∞
such that

H(ejωl) = Kl, l = 0, 1, . . . , q, π,

H(e−jωl) = K̄l, l = 1, . . . , q.

Let f(z) = z−0.5
z+0.5 . Denote z0 = 1, z1 = −1 and z2i =

ejωi , z2i+1 = e−jωi for i = 1, . . . , q. With the aid of
Lagrange polynomial, an H(z) can be given by

H(z) = K0

2q+1∏
j=1

f − f(zj)

f(z0)− f(zj)
+Kπ

2q+1∏
j=0,
j ̸=1

f − f(zj)

f(z1)− f(zj)
+

q∑
t=1

(Kt

2q+1∏
j=0,
j ̸=2t

f − f(zj)

f(z2t)− f(zj)
+ K̄t

2q+1∏
j=0,

j ̸=2t+1

f − f(zj)

f(z2t+1)− f(zj)
).

One can see that conditions in Theorem 1 only require the
information of residue matrices at the semi-stable modes.
The stable part of each agent does not appear in the theorem,
showing that the proposed controller design technique can
tolerate large heterogeneity among the agents. The method
is robust against the perturbations. Furthermore, the synchro-
nizability condition only depends on the phase information.
The gain of each agent can be arbitrarily large. Therefore,
the synchronization problem is likely solvable if the agents
have vastly different sizes but similar shapes.

The design of synchronizing controllers also suggests the
use of low gain controller, indicating that the coordination
among the agents does not need strong action. Instead it is
more critical to have the right directions of the action.

The consensus problem is a special case of synchroniza-
tion problem, where all the agents share only one common
pole, i.e.,

Pi(z) =
N0i

z − 1
+ P s

i (z).

Corollary 1: The multi-agent system is consensusable if
there exists nonsingular K ∈ Rm×m such that

ϕ(N0i∗(Iri−ri−1 ⊗K)) <
π

2
− ϕess(Lii)

for i = 1, . . . , k. The controller is given by C(z) = ϵK for
all ϵ ∈ (0, ϵ∗), where ϵ∗ > 0 can be estimated from given
data.

The very early studies assume that the agents are simply
all identical integrators Pi(z) = 1

z−1 . While the integrator
in continuous-time is passive, the integrator in discrete-time
is not passive resulting from the sampling process. The
controller C(z) = K with a sufficient small positive K
solves the problem, which is consistent with the result in
the literature.
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V. SIMULATION

We use a numerical example with five agents to illustrate
our theoretical result on the uniform synchronizing controller
design. Consider a group of agents P1, . . . , P5 with network
shown in Fig. 2, where the agent dynamics are given in (11).
The Laplacian matrix of the network is

L0 =


1 −1 0 0 0
−1 1 0 0 0
0 −3 4 0 −1
−2 0 −1 3 0
0 −2 0 −4 6

 .

Here

L11 =

[
1 −1
−1 1

]
, L22 =

 4 0 −1
−1 3 0
0 −4 6

 .

It follows that ϕess(L11) = 0, ϕess(L22) = 0.2707. The
agents can be divided into two strongly connected groups
accordingly.

Solving the LMIs

e−j(π/4)N1iK1 + ej(π/4)(N1iK1)
∗ > 0, i = 1, 2,

e−j(π/4−0.2707)N1iK1 + ej(π/4−0.2707)(N1iK1)
∗ > 0, i = 3, 4, 5,

e−j(π/4+0.2707)NliK1 + ej(π/4+0.2707)(N1iK1)
∗ > 0, i = 3, 4, 5,

yields

K1=

[
11.96+14.11i 5.22 + 10.00i
8.97 + 15.13i 2.82 + 7.24i

]
.

One synchronizing controller is given by

C(z) = 0.014×
[ 36.05z−21.03

z+0.5
22.29z−16.53

z+0.5
34.8z−24.48

z+0.5
15.18z−12.45

z+0.5

]
,

which can indeed enforce synchronization as confirmed in
Fig 3 and Fig 4.

VI. CONCLUSION

In this paper, we examine the output synchronization in
large-scale discrete-time heterogeneous networks by utiliz-
ing the developed phase tool. Matrix essential phases are
introduced to reduce the conservatism of matrix phases in
the application. The synchronization synthesis problem is
formulated and investigated. We provide a sufficient con-
dition, answering the solvability question that under what
condition there exists a uniform controller such that a group
of agents will reach synchronization. If the condition is
satisfied, a design procedure is given, which produces a low
gain synchronizing controller. Numerical examples are given
to demonstrate the effectiveness of phase tool.
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P1(z) =

[
−0.22 + 4.06i 0.88− 5.42i
5.03 + 2.75i −4.83− 3.43i

]
z − ejπ/4

+

[
−0.22− 4.06i 0.88 + 5.42i
5.03− 2.75i −4.83 + 3.43i

]
z − e−jπ/4

+

[
−3.5z + 2.605 4.1z − 2.6
−11z + 7.8 12.3z − 7.7

]
z2 − 1.5z + 0.7

,

P2(z) =

[
−2.78 + 5.86i 4.28− 8.43i
3.70 + 5.21i −3.31− 7.20i

]
z − ejπ/4

+

[
−2.78− 5.86i 4.28 + 8.43i
3.70− 5.21i −3.31 + 7.20i

]
z − e−jπ/4

+

[
−1.1z + 0.8 1.2z − 0.7
−11z + 8.227 13.2z − 8.7

]
z2 − 1.545z + 0.625

,

P3(z) =

[
−6.09 + 12.01i 8.08− 17.84i
6.76 + 3.94i −5.38− 6.81i

]
z − ejπ/4

+

[
−6.09− 12.01i 8.08 + 17.84i
6.76− 3.94i −5.38 + 6.81i

]
z − e−jπ/4

+

[
−1.1z + 1.4 3.3z − 3.1
−15z + 10.9 16.9z − 10.6

]
z2 − 1.2z + 0.7

,

P4(z) =

[
−0.98 + 8.41i 1.28− 11.83i
2.20− 18.29i 1.81 + 17.88i

]
z − ejπ/4

+

[
−0.98− 8.41i 1.28 + 11.83i
2.20 + 18.29i 1.81− 17.88i

]
z − e−jπ/4

+

[
−6z + 5 9.2z − 7

12.9z − 10.8 −19.8z + 15

]
z2 − 1.2z + 0.6

,

P5(z) =

[
−2.95 + 4.39i 4.03− 8.01i
1.53− 17.06i 2.57 + 16.00i

]
z − ejπ/4

+

[
−2.95− 4.39i 4.03 + 8.01i
1.53 + 17.06i 2.57− 16.00i

]
z − e−jπ/4

+

[
0.97z − 0.27 0.5z − 1.1
12.9z − 10.7 −19.4z + 14.5

]
z2 − 1.1z + 0.5

.

(11)

Fig. 2. A directed graph.

Fig. 3. Trajectories of first output.

Fig. 4. Trajectories of second output.
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