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Abstract— Although classical model predictive control with
finite control sets (FCS-MPC) is quite a popular control method,
particularly in the realm of power electronics systems, its
direct data-driven predictive control (FCS-DPC) counterpart
has received relatively limited attention. In this paper, we
introduce a novel reformulation of a commonly used DPC
scheme that allows for the application of a modified sphere
decoding algorithm, known for its efficiency and prominence in
FCS-MPC applications. We test the reformulation on a popular
electrical drive example and compare the computation times of
sphere decoding FCS-DPC with an enumeration-based and a
MIQP method.

I. INTRODUCTION

Model predictive control (MPC) is a widely used opti-
mization based control strategy, popular for its ability to
systematically consider system dynamics and constraints
[1]. In power electronics applications, constraints on the
control inputs often take the form of a finite control set
(FCS), e.g., when they represent inverter switch positions.
While conceptionally attractive, the FCS-MPC approach is
typically associated with high computational effort, since the
FCS constraints turn the associated optimal control problem
into a (mixed-)integer optimization problem. To counteract
this problem, different techniques have been proposed in
the literature, among which the sphere decoding algorithm
(SDA) stands out as the most popular choice [2].

Recently, direct data-driven predictive control (DPC) has
been introduced, which is an increasingly popular and al-
ternative approach to MPC. The inherent flexibility and
adaptability of DPC make it particularly appealing for power
electronic systems, where accurate modeling is often chal-
lenging due to dynamic operation modes, uncertainties, and
relaying [3]. In its basic form, DPC utilizes linear com-
binations of collected trajectory data to make predictions,
instead of relying on a system model (see, e.g., [4], [5],
[6]). Although exact predictions and equivalence to MPC
are generally only established for linear time-invariant (LTI)
systems and exact data (with some nonlinear extensions
offered; see, e.g., [5]), embellishments of DPC demonstrate
encouraging results, even when these conditions are not met
(e.g., [4], [6], [7], [8]). Despite the numerous extensions
introduced for DPC, its use in control of systems with finite
set constrained inputs, i.e., FCS-DPC, remains an unexplored

M. Klädtke and M. Schulze Darup are with the Control and Cyberphysical
Systems Group, Department of Mechanical Engineering, TU Dortmund
University, Germany. E-mails: {manuel.klaedtke, moritz.schulzedarup}@tu-
dortmund.de.

D. Quevedo is with Queensland University of Technology, Australia. E-
mail: dquevedo@ieee.org

area, and extending methods from FCS-MPC (like SDA) to
this data-driven framework is a non-trivial task.

In this paper, we address this gap by considering a DPC
setup with FCS constraints and introducing an equivalent
formulation that leverages the novel concept of implicit
predictors introduced in [9]. This formulation readily ac-
commodates the application of SDA, marking a first step
towards addressing the computational challenges associated
with FCS-DPC. We demonstrate the reduced computational
burden by comparing the computation times of SDA with
two other readily available methods. The structure of this
paper is as follows: In Section II, we provide a summary
of essential prerequisites for MPC, its extension to FCS-
MPC, and DPC. Section III elaborates on the derivation
of the equivalent FCS-DPC formulation suitable for SDA.
In Section IV, we showcase the computational efficiency
of this approach through simulations of an electrical drive
example that is popular in the FCS-MPC literature. Finally,
we conclude our work in Section V and preview future
challenges for FCS-DPC.

II. BASICS ON FCS-MPC AND DPC
In this section, we summarize some important preliminar-

ies on FCS-MPC and DPC. For simplicity, we will consider
an LTI state-space model

x(k + 1) = Ax(k) +Bu(k), u(k) ∈ Uk (1a)
y(k) = Cx(k), (1b)

of the system with inputs u ∈ Uk ⊂ Rm, states x ∈ Rn, and
outputs y ∈ Rp, where we assume no direct feed-through of
the input to the output. Crucially, note that the input u(k)
is constrained to a finite control set Uk, which necessitated
the development of specific methods for FCS-MPC and now,
similarly, FCS-DPC.

A. Basics on MPC
In classical linear MPC, (1) is used to predict future system

behavior over a prediction horizon Nf . This model acts as an
equality constraint in the associated OCP, while the control
objective is chosen as a quadratic cost function and any
additional inequality constraints are assumed to be linear.
While there are many useful extensions to this basic setup,
we will focus on the OCP

min
u(k),x(k),y(k)

Nf−1∑
k=0

∥∆y(k + 1)∥2Q + ∥∆u(k)∥2R (2)

s.t. x(0) = x0,
x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., Nf − 1},

y(k) = C x(k), ∀k ∈ {1, ..., Nf},
u(k) ∈ Uk, ∀k ∈ {0, ..., Nf − 1}.
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Here, the cost function penalizes the squared output tracking
error ∆y(k) := y(k)−yref(k) relative to a specified reference
yref(k) and the squared change in control action ∆u(k) :=
u(k)−u(k−1), where Q ∈ Rp×p, R ∈ Rm×m are symmetric
positive semi-definite and positive definite weighing matri-
ces, respectively. Note that x0 refers to the most recently
measured state in closed-loop and (with some abuse of
notation) k is used as a relative time index for predictions
in (2), while it may refer to an absolute time index at other
points in this paper. To close the loop, (2) is solved at every
time-step and only the first element u∗(0) of the optimal
control sequence is applied to the system. In the most simple
setup, the control sets Uk are polyhedral, making the OCP
(2) not only convex but also allow for it to be cast into a
quadratic program (QP), which can be solved efficiently. In
contrast, for FCS-DPC, Uk is totally disconnected resulting
in non-convex input constraints (neglecting the trivial case,
where Uk are singletons).

B. Solving FCS-MPC via sphere decoding
Assuming that the elements of Uk are integers (this is

without loss of generality, since they can simply be mapped
to integers otherwise), the OCP (2) can be cast into a mixed-
integer QP (MIQP), which are generally NP-hard. Perhaps
the most naive way of solving the FCS-MPC problem would
be to enumerate all elements of U := U0 × . . . × UNf−1,
compute the resulting predicted state and output trajectories
via (1), and compare the associated costs. However, as the
cardinality of U scales drastically (i.e., exponentially for
|Uk| = const.) with Nf , this approach is typically intractable
for real-time computation in closed-loop, except for very
small Nf , where Nf = 1 seems to be a popular choice
in the power electronics community [10]. Thankfully, more
sophisticated methods exist for (mixed-)integer program-
ming, which often use a branch-and-bound [11] procedure
to determine suboptimality for large subsets of U without
needing to explicitly evaluate the associated cost of each
element. Specifically in FCS-MPC, a modified version of the
sphere decoding algorithm (SDA) [12, Alg. 1] has become
popular, which can indeed be classified as a branch-and-
bound method as illustrated, e.g., in [2, Fig. 3]. In general,
sphere decoding is an efficient method for closest (Euclidean
distance) point search in lattices. In the following, we briefly
summarize how this version of SDA can be applied to FCS-
MPC, where we assume a time-invariant control set, i.e.,
U0 = . . . = UNf−1, for simplicity. First, note that (1) is a
one-step prediction model that can be consecutively applied
to yield the multi-step predictor yf = Ox0 + T uf with

O :=


C
CA

...
CANf−1

 and T :=


0 0

CB
. . .

...
. . . . . .

CANf−2B . . . CB 0


and uf ∈ RmNf , yf ∈ RpNf being vectors containing the
(stacked) predicted input and output sequences, respectively.
Next, we stack the sequences yref(k) and ∆u(k) similarly,

where we find ∆uf = Iuf − Lu(−1) with

I :=


Im 0 . . . 0
−Im Im

. . . . . .
0 −Im Im

 and L :=


Im
0
...
0

 ,

and the previous time-step input u(−1) will act as a pa-
rameter, similarly to x0. Using these, the cost function of
the OCP (2) can be reformulated in standard quadratic form
1
2u

⊤
f Huf+f⊤uf+c, where c is a constant term with respect

to uf (i.e., irrelevant for the optimizer) and the remaining
parameters are given by

H := 2
(
T ⊤QT + I⊤RI

)
,

f := 2
(
(Ox0 − yref)

⊤ QT + (Lu(−1))
⊤ RI

)⊤
,

and Q := diag(Q, . . . , Q),R := diag(R, . . . , R). This
procedure effectively eliminates the predicted state sequence
xf and output sequence yf from the OCP, leaving only
the FCS-constrained input sequence uf as an optimization
variable. If we were to neglect the FCS constraint uf ∈ U
for a moment, the unconstrained optimum would be given by
u∗f,unc = −H−1f and the cost function can be equivalently
stated in terms of a squared distance to this unconstrained
optimum, i.e., 1

2

(
uf−u∗f,unc

)⊤
H
(
uf−u∗f,unc

)
by completing

the square, where irrelevant constant terms have already been
discarded. This distance is not quite the Euclidean distance
needed for sphere decoding due to the Hessian H acting
as a weighing matrix. However, since H is positive definite
(due to R being chosen positive definite) and symmetric, we
can use the Cholesky decomposition of H−1 = L−1L−⊤

(where L is a lower triangular and positive definite matrix
such that L⊤L = H) to define a coordinate transformation
ũf := Luf (and similarly for ũf,unc). Using L, the optimal
input sequence u∗f solving the FCS-MPC problem can finally
be found by a (truncated) integer least-squares problem

u∗f = arg min
uf∈U

∥Luf − ũf,unc∥22, (3)

to which the modified SDA can be applied. Unfortunately,
a full explanation of this algorithm and discussion of its
variants is outside the scope of this paper, so we reference
the excellent explanations in [12], [2], instead. However,
note that, crucially, if the FCS-DPC problem can be stated
similarly to (3), the same algorithm can be applied for its
solution. Hence, this reformulation will be the focus of this
paper and treated in Section III, after introducing some basics
on DPC in the following section.

C. Basics on regularized DPC

In contrast to the linear MPC approach, which typ-
ically relies on an LTI model (1), DPC utilizes pre-
dictions derived from previously collected trajectory data
(u(1), y(1)), . . . , (u(ℓ), y(ℓ)). These predictions are con-
structed using linear combinations(

upred
ypred

)
=

(
u(1)

y(1)

)
a1 + . . .+

(
u(ℓ)

y(ℓ)

)
aℓ = Da.
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Here, the dimensions of the data matrix D ∈ RL(m+p)×ℓ

and the generator vector a ∈ Rℓ are determined by the
length L of recorded (as well as predicted) trajectories and
the number ℓ of data trajectories used for predictions. This
approach is grounded in a result applicable to LTI systems,
where, assuming that L exceeds the system’s lag, image(D)
is equivalent to the set of all possible system trajectories if
and only if [13]

rank(D) = Lm+ n. (4)
It is important to note that the condition (4) not only estab-
lishes a minimum rank requirement for capturing the whole
system behavior but also signifies the maximum rank that
the data matrix D can achieve for exact data. In situations
where individual trajectories (u(i), y(i)) correspond to time-
shifted sections of a single long trajectory, a well-known
sufficient condition for satisfying (4) is provided by Willems’
fundamental lemma [14]. To incorporate the current initial
condition of the system as the starting point for predicted
trajectories, the predicted I/O-sequence is typically divided
into two segments: a past section (up, yp) and a future section
(uf , yf ) with Np and Nf time-steps, respectively, yielding(

upred
ypred

)
=


up
uf
yp
yf

 =


Up

Uf

Yp

Yf

 a = Da.

The past section of a predicted trajectory is then constrained
to match the I/O-data ξ recorded in the most recent Np

time-steps during closed-loop operation. In other words, the
equality constraints

ξ =

(
up
yp

)
=

(
Up

Yp

)
a = Wpa

ensure that any predicted trajectory in (5) begins with the
most recently observed behavior of the system. In this
context, the past trajectory ξ can also be interpreted as the
state of a (typically non-minimal) state-space realization of
the system, and specifies the system’s initial condition when
Np is selected to be equal to or greater than its lag [15].

Remark 1: Due to how we set up the MPC problem with
no feed-through term (D = 0) in (2), we likewise modify
the DPC setup to predict

uf =

 u(0)
...

u(Nf − 1)

 , yf =

 y(1)
...

y(Nf )

 .

Note that this does not conflict with the theory supporting
direct data-driven predictions as it is equal to first extending
the prediction horizon by one step (i.e., predicting system
behavior in the (relative) time-steps k ∈ {0, ..., Nf}) and
then neglecting u(Nf ) and y(0) in the OCP formulation.

Crucially, it has been shown in [4] that DPC given by

min
uf ,yf ,a

∥yf − yref∥2Q + ∥∆uf∥2R + h(a) (5a)

s.t.

 ξ
uf
yf

 =

Wp

Uf

Yf

 a, (5b)

uf ∈ U (5c)

based on exact data generated by an LTI system and without
regularization (h(a) = 0) is equivalent to the MPC in (2),
since (5b) is an exact (image) representation of the system
behavior. Note that this result holds for general constraint
sets U , and thus also for the FCS. While this basic approach
works for exact measurement data generated by an LTI
system, it generally fails whenever more realistic settings
with nonlinearities, noise, or disturbances are considered.
Generally speaking, their presence in the data causes the
space spanned by image(D) not only to be skewed, but
also typically increases its dimension. The latter allows for
unreasonable predictions, which are inevitably exploited with
respect to the cost function while solving the OCP. In the
most extreme case, D has full row rank, which renders the
constraint (5b) meaningless, since there exists a value a
solving the equation for any arbitrary left-hand side. For
a more detailed explanation of this effect, see, e.g., [16,
Sec. 6]. The currently accepted remedy for this effect (first
proposed in [4]) is the addition of a regularization term h(a)
to the cost function, which (ideally) restores meaning to (5b)
and renders the resulting cost function a trade-off between
optimism (given by the original control objective cost func-
tion) and realism (given by the regularization). There exist
several useful interpretations of this regularization effect for
different choices of h(a). In the present work, we will focus
on a quadratic regularization h(a) = λa∥a∥22 and its variation
h(a) = λa∥(I −Π)a∥22 utilizing the projection matrix

Π :=

(
Wp

Uf

)⊤
((

Wp

Uf

)(
Wp

Uf

)⊤
)−1(

Wp

Uf

)
introduced in [6], since they are popular choices if the true
system dynamics are assumed to exhibit (close to) LTI behav-
ior. Among existing interpretations, we reference [6], [7] for
sake of completeness but focus on the concept of implicit
predictors introduced in [9]. The latter will be utilized to
derive equivalent OCP formulations in the following.

III. APPLYING SPHERE DECODING TO FCS-DPC
As noted in Section II-B, the focus of this main section lies

in deriving an equivalent OCP for the DPC problem (5) with
FCS-constraint, to which the modified sphere decomposition
algorithm can be applied. In the following, we recall the
novel concept of implicit predictors introduced in [9], derive
an implicit predictor for the DPC problem (5) with FCS-
constraints, and apply it as an explicit constraint to derive
an OCP formulation, to which the SDA is applicable.

A. An implicit predictor for FCS-DPC

Contrary to MPC, an output predictor in the sense of an
input-(state)-output mapping is not explicitly present as a
constraint in (5). Nevertheless, we can characterize such a
mapping implicitly in the following way.

Definition 1 ([9]): We call ŷ(x0,uf ) an implicit predictor
for an OCP if including the constraint yf = ŷ(x0,uf ) does
not alter the (set of) minimizers (u∗f , y

∗
f ) and optimal value.

In the case of DPC, the past I/O-sequence ξ takes the role
of a state x0. Conceptually, the implicit predictor serves as
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a valuable tool for characterizing the predictive behavior of
DPC, as it inherently aligns with this behavior by definition.
In this context, its primary advantage can be viewed as a
descriptive mapping (though we will employ it as a prescrip-
tive mapping in Section III), shedding light on the somewhat
opaque predictive nature of DPC, as extensively discussed in
[9]. Similarly to [16], [9], we make the following assumption
to avoid special cases and to simplify the analysis.

Assumption 1: The data matrix D has full row rank.
While this is the extreme case mentioned in II-C, it is also
a reasonable assumption (as noted, e.g., in [16, Sec. 3]
and [9, Sec. 3]) in the presence of measurement noise, as
long as enough measurement data is available to make D
at least square, i.e., ℓ ≥ (m + p)(Np + Nf ). Crucially,
note that the specification (including choice of h(a)) of
the DPC problem (5) and Assumption 1 are sufficient to
determine the predictive behavior in the sense of Definition 1.
That is, we do not make any additional assumptions on
the system dynamics or type of noise present in the data.
This is because an implicit predictor as in Definition 1 only
characterizes the predictive behavior that the DPC scheme
attributes to the data based on D, and does not necessarily
align with the true system behavior. Essentially, if (5) is
poorly tuned or otherwise generally unfit to properly predict
the true system behavior, the use of implicit predictors will
not change that, but their analysis might shine a light on
this problem. To prepare for the derivation of the implicit
predictor in Theorem 2, we also recall the following Lemma
(slightly adjusted to the cost function of (5)).

Lemma 1 ([9]): Under Assumption 1, the regularized
DPC problem (5) is equivalent to

min
uf ,yf

∥yf − yref∥2Q + ∥∆uf∥2R + h∗(ξ,uf , yf ) (6)

s.t. (5c)

with unique

h∗(ξ,uf , yf ) := min
a

h(a) s.t. (5b). (7)
This lemma effectively allows eliminating a and (5b) from
the OCP, since (due to Assumption 1) their only effect is fully
captured by h∗(ξ,uf , yf ). Furthermore, analytic solutions to
(7) are derived in [9] as

h∗(ξ,uf , yf ) = λa∥yf − ŷSPC(ξ,uf )∥2Qreg
, (8)

h∗(ξ,uf , yf ) = λa∥yf − ŷSPC(ξ,uf )∥2Qreg
(9)

+ λa∥uf − UfW
+
p ξ∥2Rreg

+ λa∥ξ∥2(WpW⊤
p )

−1

for h(a) = λa∥(I−Π)a∥22 and h(a) = λa∥a∥22, respectively.
Here, we have simplified the expression in [9, Eq. (14)] via
block matrix inversion formulas and introduced

Qreg :=
(
Yf (I −Π)Y ⊤

f

)−1

Rreg :=
(
Uf

(
I −W⊤

p

(
WpW

⊤
p

)−1
Wp

)
U⊤
f

)−1

to shorten the notation. Furthermore, the mapping

ŷSPC(ξ,uf ) := Yf

(
Wp

Uf

)+(
ξ
uf

)

refers to the Subspace Predictive Control (SPC) [17] predic-
tor, where we will sometimes omit the arguments for brevity.
The connection of SPC and DPC (with deterministic LTI data
or quadratic regularization) is thoroughly discussed in, e.g.,
[18], [6], [16], [9], thus we defer to these sources for detailed
discussions. Given these preliminaries, an implicit predictor
for the FCS-DPC problem can be specified as follows.

Theorem 2: Consider the FCS-constrained DPC prob-
lem (5) with regularizer h(a) = λa∥a∥22 or h(a) =
λa∥(I −Π)a∥22. Under Assumption 1,

ŷDPC(ξ,uf ) = (λaQreg +Q)
−1

λaQregŷSPC(ξ,uf ) (10)

+ (λaQreg +Q)
−1 Qyref

is an implicit predictor for this problem.
Proof: The implicit predictor (10) is the minimizer

ŷDPC(ξ,uf ) = argmin
yf

∥yf − yref∥2Q + h∗(ξ,uf , yf )

to an inner optimization problem for (6), where not only
ξ but also uf act as parameters. Crucially, since uf is not
an optimization variable in this problem, the FCS-constraint
(5c) and cost term ∥∆uf∥2R are irrelevant here and have
thus been dropped. Furthermore, note that the only difference
between h∗(ξ,uf , yf ) for the two considered regularizers
are terms independent of yf and thus equally negligible.
Since dropping any further terms independent of yf does
not change the minimizer, we can simplify the problem as

argmin
yf

∥yf − yref∥2Q + λa∥yf − ŷSPC∥2Qreg

=argmin
yf

y⊤f (λaQreg+Q) yf−2
(
ŷ⊤SPCλaQreg+y⊤refQ

)
yf ,

which yields an unconstrained quadratic minimization
problem with the minimizer given by (10). Now, since
ŷDPC(ξ,uf ) is the parametric minimizer for any (ξ,uf ), the
minimizers (u∗f , y

∗
f ) to the regularized DPC problem must

naturally satisfy the relation y∗f = ŷDPC(ξ,u
∗
f ) for any ξ.

Hence, including the equality constraint yf = ŷDPC(ξ,uf )
with the regularized DPC problem does not change its
optimal value or minimizers, making ŷDPC(ξ,uf ) as given
by (10) an implicit predictor of this OCP.
Crucially, the implicit predictor characterized in Theorem 2
is not affected by the FCS constraint, since input constraints
do not affect the predictive behavior in the sense of Defi-
nition 1, as already noted in [9, Sec. III.C]. Therefore, this
implicit predictor is very similar to those characterized in
[9, Thm. 3, 4], differing only by a linear term in the cost
function stemming from output reference tracking, which
results in an additional constant term in the implicit predictor
given by (10). The predictive behavior is therefore not linear
but affine, as already noted in [9, Rem. 2]. Similarly to the
MPC multi-step predictor, we partition the affine implicit
predictor ŷDPC(ξ,uf ) = ODPCξ + TDPCuf + gDPC and the
linear SPC predictor ŷSPC(ξ,uf ) = OSPCξ + TSPCuf to
isolate the effect of the “state” ξ, input sequence uf and
constant term. Furthermore, since h∗(ξ,uf , yf ) penalizes the
difference between yf and ŷSPC(ξ,uf ) as apparent from (8)
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and (9), we introduce ∆O := ODPC − OSPC and ∆T :=
TDPC − TSPC for concise notation.

B. Reformulating FCS-DPC for sphere decoding

As per Lemma 1, we can effectively eliminate a and
(5b) by considering (6) instead. Furthermore, adding yf =
ŷDPC(ξ,uf ) as an equality constraint does not change the
solution of the OCP as per Definition 1. Therefore, instead
of the original FCS-DPC problem (5), we can consider the
equivalent OCP

min
uf ,yf

∥yf − yref∥2Q + ∥∆uf∥2R + h∗(ξ,uf , yf ) (11a)

s.t. yf = ODPCξ + TDPCuf + gDPC (11b)
uf ∈ U . (11c)

Remark 2: We acknowledge that this essentially turns the
direct data-driven approach of (5) into an indirect one by ex-
plicitly enforcing an estimated model given by ŷDPC(ξ,uf ).
However, since the enforced system model is the implicit
predictor of the direct approach and the objective function is
kept equally intact by maintaining the effect of the regulariza-
tion via h∗(ξ,uf , yf ), both are provably equivalent. Hence,
any advantages or disadvantages in closed-loop performance
that the DPC approach may have compared to traditional
indirect approaches are equally maintained by (11). Further-
more, (11) has the advantage that the optimization variables
remain independent of the number ℓ of columns in D, since
a ∈ Rℓ has been eliminated via Lemma 1.
Focusing on the case h(a) = ∥(I − Π)a∥22 in (8) for a
moment, we proceed similarly to Section II-B by eliminating
yf via (11b) and reformulate the cost function in quadratic
form 1

2u
⊤
f Ȟuf + f̌⊤uf with

Ȟ := 2 T ⊤
DPCQTDPC + 2I⊤RI + 2λa∆T ⊤Qreg∆T ,

f̌ := 2T ⊤
DPCQ (ODPCξ + gDPC − yref) + I⊤RLu(−1)

+ λa∆T ⊤Qreg (∆Oξ + gDPC) ,

where we already dropped all cost terms that are constant
with respect to uf . For the case h(a) = ∥a∥22 in (9), only
the terms 2λaRreg and −2λaRregUfW

+
p ξ need to be added

to Ȟ and f̌ , respectively. Given these specifications, the
remaining process is, again, similar to Section II-B. We use
the Cholesky decomposition of Ȟ−1 = Ľ−1Ľ−⊤ to define
the coordinate transformation ǔf := Ľuf and finally state
the optimal control sequence

u∗f = arg min
uf∈U

∥Ľuf − ǔf,unc∥22, (12)

as the solution of a truncated least-squares problem, to
which the modified SDA [12, Alg. 1] can be applied. Unsur-
prisingly, the transformed unconstrained optimum ǔf,unc =
−ĽȞ−1f̌ is defined similarly as for FCS-MPC. Note that,
while the implicit predictor (10) may be time-variant due
to changing references yref, this does not require a re-
computation of Ȟ or Ľ during closed-loop operation. Instead,
gDPC only affects f̌ , which already needs re-computation in
every time-step due to its dependence on ξ, u(−1), and yref.

IV. EXAMPLE

To illustrate this FCS-DPC approach, we consider a three-
level three-phase neutral point clamped voltage source in-
verter driving an induction motor with fixed neutral point
example that is popular in the FCS-MPC literature, e.g., [19],
[12], [20], [2]. A detailed description of the setup and its
state-space model can be found in [19], [12], [20]. Some
example system parameters are provided in [19] and we used
the code provided with [21] to help set up our simulation.
Note that this example includes an additional switching
constraint ∥∆uf∥∞ ≤ 1, which we have not included in
our previous considerations. However, this constraint does
not affect any of the previously discussed theory and (see
the independence on input constraints in Theorem 2) and
can be easily included in any of the computation methods
considered in this section. Collection of persistently exciting
I/O data is done by choosing random inputs adhering to
u(k) ∈ Uk = {−1, 0, 1}3 and ∥∆u(k)∥∞ ≤ 1 until
the sufficient condition of persistent excitation according to
the fundamental Lemma [14] is satisfied and a square (or
wider) data matrix D is obtained. To make the simulation
more realistic and ensure that Assumption 1 is satisfied,
we retroactively added measurement noise with a signal-to-
noise ratio (SNR) of 40dB over the whole span of the data
collection phase to each output channel. Qualitatively, one
can expect the closed-loop performance to deteriorate for
lower SNR, since both the SPC, and the implicit predictor
become less accurate models of the true system dynamics.
The remaining parameters were chosen as λa = 103, Q =
I,R = 10−3I,Np = 4. We emphasize that the goal of this
paper is not a comparison of performance between FCS-
MPC and FCS-DPC. As we showed in Theorem 2, the
predictive behavior of DPC is the same, regardless of whether
FCS constraints are involved. Hence, this comparison of
performance can be inferred from more general setups,
like the ones considered in [6]. Instead, our purpose is to
introduce an approach aimed at accelerating the computation
times of FCS-DPC, while keeping its closed-loop behavior
unchanged. Therefore, we instead compare the computation
times (depending on Nf ) for different methods of solving
the FCS-DPC problem, namely:

(ENUM) Solving (5) via enumeration of U ,
(MIQP) Solving (5) via MOSEK’s [22] MIQP solver,
(SDA) Solving (12) via SDA.

Note that after a choice of uf , ENUM still needs
to solve (5) using a QP solver. For simplicity, we
chose MATLAB’s [23] quadprog function with the
trust-region-reflective algorithm, since the cor-
responding Hessian is generally positive semidefinite but
positive definite on the nullspace of the equality constraints.
With regard to SDA, we use conventional SDA with standard
initialization as classified in [2]. We report statistics of the
computation times in Fig. 1, which were recorded during
closed-loop simulation over 800 time-steps each. Further-
more, we performed all simulations using the projection-
based regularizer h(a) = ∥(I − Π)a∥22 as the choice of
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Fig. 1. A boxplot showing computation times over 800 steps of closed-
loop simulation. Crosses refer to outliers (all above the 75th percentile plus
1.5 times the interquartile range).

regularizer did not significantly influence computation times.
In our tests, SDA performs fastest among the three methods.
However, it is also the method with the most computational
variability (as discussed in [2, Sec. III.B]) and the most pre-
processing involved, where some additional pre-processing
could also benefit the other two methods. All in all, none of
the computation times were able to reach the system exam-
ple’s sampling time of 25µs of the platform used. However,
this example should be seen as a relative comparison of the
three methods rather than a test of absolute performance.

Remark 3: While we mentioned the reformulation (11) to
be equivalent in Remark 2, the actual computation revealed
some minor (in terms of suboptimality) discrepancies of
the optimal control sequences u∗f obtained via the SDA
approach. This difference is due to numerical errors involved
in computing the inverses required for (12), especially with
respect to the conditioning of, e.g., Qreg, where we observed
a higher SNR to correlate with worse conditioning.

V. CONCLUSION AND OUTLOOK

We showed how to reformulate the OCP associated with
a standard FCS-DPC setup in order to enable application of
the SDA popular in FCS-MPC. The reformulation was done
by using the novel concept of implicit predictors, deriving an
implicit predictor for the original OCP, and introducing it as
an explicit equality constraint. A numerical example popular
in FCS-MPC showed computation time improvements for
using SDA in FCS-DPC compared to two readily available
methods, i.e., an enumeration-based and a MIQP method.

Going forward, we aim to extend these ideas to be suit-
able for control of nonlinear systems with FCS constraints.
Doing so might necessitate a thorough analysis of implicit
predictors for different regularizers and other modifications
commonly used in DPC setups for nonlinear systems.
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