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Abstract— Complex electrochemical processes of Li-ion bat-
teries result in nonlinear and high-dimensional dynamics. With
the increased presence in critical applications, there is a demand
for advanced fast-charging strategies to reduce the charging
time while maximizing the battery’s lifespan. Fast charging is
limited by several factors, such as elevated temperature, since
they accelerate electrochemical aging and, in turn, result in
increased lithium plating, higher mechanical stresses, and an
increased growth rate of the solid-electrolyte interface layer.
Here, we propose an aggressive but efficient charging strategy
using an adaptive control strategy that learns the closed-loop
system’s Jacobian from input/output data and optimizes the
response based on the learned dynamics. To avoid subjecting the
cell to accelerated aging, we optimize the electrical current for
minimum battery charge time while respecting constraints such
as maximum cell temperature and voltage. The battery data was
generated using the Doyle-Fuller-Newman (P2D) model with a
thermal model to characterize the cell’s thermal effects. Our
optimized charging strategy is comprised of a hybrid (mixed
continuous-discrete) solution that fully charges a 5Ah 21700
NMC-811 cylindrical cell, 66% faster than the recommended
0.3C constant-current constant-voltage strategy while respect-
ing safety constraints, including a maximum voltage of 4.2V
and a maximum temperature of 57°C.

I. INTRODUCTION
This research presents a novel fast-charging strategy while

maximizing the life of Li-ion batteries (LiBs) through learn-
ing and optimization of the electrical current input.

Over the last decade, LiBs have become the technology of
choice for grid storage, portable electronics, and specifically
electric vehicles (EVs). However, despite advancements in
battery technology and incentives like tax credits, EV adop-
tion still faces a major hurdle in slow charging times. Charg-
ing an EV battery pack to full capacity takes significantly
longer than refueling a conventional vehicle [1]. This has
led to increased demand for enhanced battery technologies
that deliver fast-charging protocols with minimal charging
duration while ensuring safety during operation.

The cycle life of lithium-ion batteries is significantly
affected by the selected charging protocol [2]. Furthermore,
fast charging can accelerate battery degradation. Thus, a
trade-off exists between charging speed and battery lifes-
pan [3]. The primary risk comes from subjecting the battery
to high C-rates and the elevated temperatures that a fast
charge generates [4]. Elevated temperatures can accelerate
electrochemical aging, resulting in increased lithium plating,
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higher mechanical stresses, and an increased rate-of-growth
of the SEI (solid-electrolyte interface) layer [5], [6].

The fast charging problem has been explored through
various methods, including passive charging strategies, such
as constant-current (CC), CC constant-voltage (CC-CV) [4],
multi-stage CC-CV [7], and pulse charging techniques [5];
and through active optimal charging protocols. Passive charg-
ing techniques are model-free methods that characterize their
predefined charging profiles with current, voltage, or power
constraints. These methods, however, ignore the battery’s
response and thus are considered heuristic [1]. This has
prompted the investigation of active optimal charging pro-
tocols to fulfill fast charging demands while mitigating their
adverse effects on battery health.

Active optimal charging can be split into two categories.
The first category uses empirical battery models such as
equivalent circuit models (ECMs) [8] or machine learning
models [9] to predict battery states using past measured data
and state observers such as Kalman filters [10], or moving
horizon estimators [11] to estimate the true/internal battery
states. Also, it includes a control or optimization scheme,
such as linear quadratic control [12], Pontryagin’s minimum
principle [13], or model predictive control (MPC) [14], [15],
to improve charging performance. A significant body of liter-
ature employs MPC to address the optimal charging problem.
This problem is framed as a constraint-based optimization
whose goal is to either minimize the time required to reach a
specific state of charge (SOC) or maximize the SOC achieved
within a set charging duration. However, this technique is
known for its computational intensity. Furthermore, real-time
implementations often use empirical models, which are un-
able to reflect physics-based parameters and compromise the
physical precision of the solution [14]. The second category
of optimal charging strategies involves using physics-based
models for calculating the battery states. These methods
often utilize an MPC control scheme along with reduced-
order methods such as the single-particle model (SPM) [16],
and electrochemical models with a constant electrolyte con-
centration [17] since they experience reduced computational
complexity when compared to full-order alternatives. This
approach allows for formulating a closed-loop optimization
problem to minimize charging time and can more naturally
include physics-based constraints. Nonetheless, its efficacy
is hampered by model inaccuracies stemming from the
simplified representation of the battery dynamics, alongside
its considerable computational complexity. Moreover, the
streamlined dynamics fail to exploit the system’s capabilities,
potentially resulting in a conservative or infeasible solution
depending on the problem formulation.
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This study proposes optimizing the charging profile (elec-
trical current) for minimum battery charge time while re-
specting constraints, including a maximum cell temperature
and a maximum voltage. This approach involves an adaptive
learning and control strategy that learns the Jacobian of a
closed-loop system from input/output data and optimizes the
response based on the learned dynamics [18]–[20]. The pri-
mary benefit of employing this approach lies in the flexibility
it offers to utilize full-order dynamics. The battery data was
generated using the full-order electrochemical Doyle-Fuller-
Newman (DFN, aka P2D) model [21], which is governed
by porous electrode and concentrated solution theories. We
also employ a thermal model that uses an energy balance
approach to characterize the cell’s thermal effects [22], mak-
ing our electrochemical-thermal-based control law close to
the actual battery mechanism. Our approach implements the
hybrid (mixed continuous-discrete) framework, which aims
to initially maximize current and subsequently dynamically
transition between operating modes to meet constraints.
Furthermore, our optimization approach initializes with in-
formation from a known solution (e.g., CC-CV). It optimizes
a set of control points [23] (waveform parameters) to yield
a charging strategy that meets fast charging demands and
sustains the safe operation of a LiB system.

The key contributions of this research are i) adaptive learn-
ing and optimization for the lithium-ion battery’s complex
nonlinear dynamics, ii) including physical constraints in the
optimization problem, iii) fast charging optimization of the
system through direct data-driven control, and iv) validation
of the optimal solutions using a high-fidelity full-order
electrochemical-thermal battery simulator. Additionally, the
presented approach can be adapted for constrained-based
optimization of other complex dynamical systems.

II. ELECTROCHEMICAL MODEL AND BATTERY
SIMULATION

Here we describe the electrochemical model, Doyle-
Fuller-Newman (DFN) model, used as the process dynamics
in §II-A and present the battery simulation process via the
Python Battery Mathematical Modelling (PyBaMM) package
in §II-B.
A. Full-Order Electrochemical Model

Fig. 1: Diagram of Li-ion Battery.

DFN is a comprehensive electrochemical lithium-ion bat-
tery model that characterizes the battery’s internal operations
using the principles of porous electrode and concentrated
solution theories [24]. The model comprises a separator

and two electronically isolated porous electrodes (anode and
cathode), as shown in Figure 1. Lithium exists in solid
and liquid phases. In the solid phase, a diffusion process
within the active material moves lithium ions along the r-
axis through the solid-electrolyte interface via Butler-Volmer
kinetics. In the liquid phase, ions in the electrolyte travel
through the separator along the x-axis to reach the oppo-
site electrode [25]. A combination of ordinary differential
equations (ODEs) and partial differential equations (PDEs)
are used to describe the internal dynamics of the battery,
encompassing electrochemical kinetics, diffusion, and inter-
calation. The DFN model uses the following state variables
including the electric potential in the electrolyte (ϕe(x, t))
and the solid phase (ϕ±

s (x, t)), the concentration of lithium
in the electrolyte (ce(x, t)) and the solid phase (c±s (x, r, t)),
the ionic current in the electrolyte (i±e (x, t)), and the flux
density between the solid phase and electrolyte (j±n (x, t)).

The physical model takes as an input the applied current
I(t) and yields the voltage across the current collectors V (t)
as the model output. The model output is represented by:

V (t) = ϕ+
s (0

+, t)− ϕ−
s (0

−, t). (1)

The battery’s available energy can be determined by the
volume-averaged solid-phase lithium concentration in the
anode [15]. This calculation assumes the anode capacity to be
the limiting factor and yields the SOC calculation as follows:

SOC(t) = 100


(

1
L−c−s,max

∫ L−

0
c−s,avg(x, t)dx

)
− θmin

θmax − θmin

 ,

(2)
where c−s,avg represents the volume-averaged solid phase
concentration in each solid particle in the anode, c−s,max,
represents the maximum solid phase concentration in the
anode, L− represents the anode length, and θmax and θmin

represent the SOC at the fully charged/discharged states,
respectively. We note that these parameters are defined by
the anode’s stoichiometric limits.

Additionally, the standard DFN model is extended with
a thermal model that couples the porous electrode theory
with an energy conservation approach to describe the cell’s
thermal behavior, including Ohmic heating in both the solid
and the electrolyte, as well as reversible and irreversible
heating resulting from electrochemical reactions [22]. The
spatially averaged cell temperature (T̄ ) is given by:

T̄ (t) =
1

L

∫ L

0

T (x, t)dx, (3)

This representation is justified since P2D models often have
negligible temperature variation in the cell [26].
B. Battery Simulations

We employed the Python Battery Mathematical Modeling
(PyBaMM) framework [27] for efficient battery simulations.
This framework solves electrochemical differential equations
using differential and numerical solvers. PyBaMM follows a
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”plug-and-play physics” methodology, facilitating the inte-
gration of thermal effects into battery models [22].

In this study, we adopt the battery chemistry found in a
commercial LGM50 21700 cylindrical cell. This specific cell
boasts a 5 Ah capacity, with Nickel Manganese Cobalt Oxide
(NMC) 811 as the positive electrode and a bi-component
Graphite (SiOx) as the negative electrode [28]. We used
the PyBaMM-DFN model for the calculation of relevant
battery outputs, such as voltage V , state-of-charge SOC,
and temperature T , for a selected electrical current I input
(e.g., CC-CV, pulse charging techniques, etc.). The battery
simulation and data collection process is shown in Fig. 2. We
note that the battery simulations initialize the battery SOC
to 0% and use an ambient/initial-cell temperature of 25oC.

Fig. 2: Schematic of Data Collection Process.
III. ADAPTIVE LEARNING OPTIMIZATION

Here, we developed a Jacobian learning method. This
method allows for optimizing the charging profile with
simulated battery response data from the full-order electro-
chemical model to prevent subjecting the battery to unsafe
operating conditions. The existence of the solutions is guar-
anteed as the optimizer initializes with a sub-optimal baseline
solution (e.g., CC-CV), and the adaptive learning optimizer
enhances the previous solution at each iteration.
A. Problem Formulation

We assume that the complex nonlinear lithium-ion battery
systems have the following general form:

ẋ = f(x, u). (4)

where x represents the states and u represents the inputs. The
goal is to find an optimal input (charging profile), u∗, that
maximizes SOC within a set charging duration. The general
formulation of the optimization criteria is given by:

u∗ = argmin
u∈U

∫ tf

0

φ(x(t), u(t), t)dt (5)

subject to the constraints:

ulb ≤ u(t) ≤ uub

xlb ≤ x(t) ≤ xub

where the constraints are defined by lower and upper bounds
on the inputs (ulb, uub) and the states (xlb, xub), respectively.
The constraints include i) bounds on the electrical current

Optim. Criteria / Constraints

SOC [%] Maximize value at tf
SOCd [%] 100% (fully charged)

Temperature [°C] maximum: 57
Voltage [V ] maximum: 4.2

minimum: 2.5
Current [C-rate] maximum: 2.5

minimum: 0

TABLE I: Optimization Criteria and Constraints

input and ii) limitations on the state variables for safe
LiB operation, such as a maximum and minimum battery
voltage and a maximum temperature. These constraints are
summarized in Table I. We note that the specific optimization
criteria and constraints depend on the specific battery and
the desired charging strategy. Furthermore, our method is
amenable to changes, e.g., other criteria and constraints.
B. Jacobian Learning Optimization

This section outlines the methodology of Jacobian learning
(JL), an adaptive optimization approach. JL employs learning
techniques to identify and recursively update the system’s in-
put/output sensitivity. It is leveraged to discern the dominant
characteristics of the target system using input-output data,
enabling model-free control of complex systems.

The Jacobian learning process is executed through a
recursive least squares approach [20]. After this process
is completed and the Jacobian (input-output sensitivity) is
acquired, it is applied with a gradient-descent optimization
strategy to perform constrained optimizations of the inputs.
The optimization process contains two sequential steps: the
first step entails conducting a full continuous-time simula-
tion, while the second step (discrete time) utilizes insights
from the first step to map out the subsequent simulation [19],
[29]. This iterative process persists until the optimization
metric (e.g., SOC) converges to the optimal solution or until
a predefined maximum iteration limit is reached.

a) JL Problem Formulation
Here, we introduce a category of static models frequently

encountered in various slow processes or in systems that
exhibit dynamics that can be disregarded in relation to the
sampling rate. These models are assumed to be zero-order
and are nonlinear but smooth [20]. As depicted in Fig. 3, the
desired output yd is attained through an iterative optimization
of the inputs u to the plant, based on a data-driven model
(Jacobian) developed from measurements of the inputs u and
outputs y. An overview of the methodology is given below.

Fig. 3: Diagram of the Learning and Optimization Algorithm
We assume the inputs u[k] and outputs y[k] to be related
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with a static nonlinearity

y[k] = S(u[k]) (6)

where S(u[k]) is a nonlinear and smooth function. Here,
the controller aims to minimize the error, e[k], between the
system output, y[k], and the desired output,yd, by optimizing
the input vector u[k]. The error is given by:

∥e[k]∥2 = ∥y[k]− yd[k]∥2, (7)

where yd[k] is the desired output vector at time k.
Next, we discuss the recursive least squares approach

for learning the Jacobian J[k] and recursively updating it
to maintain the learned sensitivity. First, we consider a
linearized time-varying approximation of the mapping S:

∆y[k] = J[k]∆u[k] (8)

where,

∆u[k] = u[k]− u[k − 1] , ∆u[k] ∈ Rr

∆y[k] = y[k]− y[k − 1] , ∆y[k] ∈ Rq (9)

and r and q represent the number of inputs and outputs,
respectively. We note, for multi-output systems (q > 1), (8)
is decompose into q single-output subsystems Jj [k]:

∆yj [k] = Jj [k]∆u[k] (10)

where j = 1, 2, ..., q. The optimal input update for minimiz-
ing the cost in (7) when the Jacobian J[k] is known can be
found from (8) using the pseudo-inverse J†[k] as [19].

u[k + 1] = u[k] + J†[k](yd[k]− y[k]) (11)

To prevent singularities, we introduce regularization of J†[k]
using H[k] as:

H[k] = JT [k](J[k]JT [k] + ρIq)
−1 for r ≥ q

H[k] = (JT [k]J[k] + ρIq)
−1JT [k] for r ≤ q

(12)

where Iq is the q × q identity matrix and ρ is a small
positive constant (ρ ∈ (0, 1)). However, often, the Jacobian is
unknown and must be estimated. Once learned, the estimated
Jacobian Ĵ can be used as a feedback control law of the form:

u[k + 1] = u[k] + Ĥ[k]G(yd − y[k]) (13)

where G represents the control gains with its diagonal
elements as gi ∈ (0, 2). If r ≤ q, Ĥ[k] is defined as:

Ĥ[k] = (ĴT [k]Ĵ[k] + ρIq)
−1 G ĴT [k] (14)

Here, we employ an adaptive learning approach to find
and recursively update the Jacobian to account for Jacobian
changes in time, which can be represented by:

Jj [k + 1] = J[k] + wj [k], (15)

∆yj [k] = ∆uT [k]Jj [k] + vj [k], j = [1, q], (16)

where the vector wj [k] signifies the process noise while
Qj = E{wT

j [k]wj [k]} denotes the expected covariance of
the model’s imprecision, and vj [k] characterizes the measure-
ment noise while Rj = E{v2j [k]} represents the expected

variance of the measurement noise [29]. Further, the Jacobian
of each simplified subsystems (10) can be estimated as:

ĴTj [k] = ĴTj [k − 1] +
Pj [k − 1]∆u[k](∆y[k]− Ĵj [k − 1]∆u[k])

Rj +∆uT [k]Pj [k − 1]∆u[k]
(17)

Pj [k] = Pj [k − 1]− Pj [k − 1]∆u[k]∆uT [k]Pj [k − 1]

Rj +∆uT [k]Pj [k − 1]∆u[k]
+Qj .

(18)

To accommodate for constraints, the optimal feedback
control law (13) can be reformulated as a constraint-based
optimization problem given by:

u∗[k] = argmin
u[k]

(∥yd − ŷ[k]∥2 + γ∥u[k]− u[k − 1]∥2) (19)

s.t. ŷ[k] = y[k − 1] + Ĵ[k](u[k]− u[k − 1]).
The update in (19) can be implemented through widely
accessible quadratic programming solvers, such as Matlab’s
FMINCON and LSQLIN functions.

IV. RESULTS

This section presents the optimal charging strategy synthe-
sized with our adaptive learning and optimization method.
Our approach employed a full-order electrochemical (DFN)
model coupled with a thermal model for capturing the bat-
tery’s thermal effects, making our electrochemical-thermal-
based control law close to the actual battery mechanism.

We explored different charging strategies, including pas-
sive changing strategies in §IV-A. Our optimal results are
presented in §IV-B along with a comparison to the other
charging strategies.
A. Passive Charging Strategies

Passive charging techniques are model-free methods that
charge the battery under preset instructions, as shown in
Fig. 4. The charging profiles developed with these methods
are characterized by their fixed terminal conditions, including
current, voltage, or power constraints. However, passive
charging algorithms do not consider the feedback of the
battery states, which may lead to a shortened battery lifespan.

Fig. 4: Passive Charging Structure

A common and arguably most widely used charging
strategy is constant-current constant-voltage (CC-CV) due
to its easy implementation and operation. This algorithm
initially charges the battery with a constant current until the
voltage reaches a preset upper limit. Then, the voltage is held
constant until the current is reduced to a preset minimum
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Fig. 5: Passive Charging Strategies: (a) CC-CV, (b) PPC

Strategy Charge Time (s) Max T (C) Max V (V)

CC-CV: 0.3C 12,500 27 4.20
CC-CV: 2.0C 4,000 64 4.20
Hybrid: 4,000 57 4.22

TABLE II: Comparison of Charging Strategies

value. In this study, we tested the CC-CV charging protocol
under different changing rates (C-rates) to fully charge a
5Ah 21700 NMC-811 cylindrical cell. First, we tested the
conventional 0.3C CC-CV charging strategy following the
battery manufacturer’s specifications. Next, we tested a fast-
charging 2C CC-CV charging protocol, which reduced the
charging time to around 4000 seconds from the 12000
seconds needed to fully charge the cell with the 0.3C CC-
CV. However, this reduction in time came with a substantial
rise in the battery’s temperature, surpassing the maximum
temperature of 63°C. Moreover, subjecting the battery to
elevated temperatures can lead to adverse effects on battery
health, such as accelerated electrochemical aging [5], [6].
The CC-CV charging protocols are baselines for comparison
against our constrained-based optimal solution, which aims
to fulfill fast charging demands while maintaining safe oper-
ating conditions by respecting constraints. The corresponding
plots and the summarized results are presented in §IV-B.
B. Optimal Results

Here, we present the optimal charging profile developed
with our adaptive optimization approach to maximize the bat-
tery SOC within a set charging duration (tf ) while respecting
safety constraints. This is achieved by minimizing the square
error between the SOC reached during the iteration and
the desired SOC (SOCd) of 100% (fully charged). The
optimization objective and operational constraints are defined
in (20) and summarized in Table I.

I∗ = argmin
I

∫ tf

0

(SOC(t)− SOCd)
2
dt (20)

subject to the constraints:

T (t) ≤ Tub

Vlb ≤ V (t) ≤ Vub

Ilb ≤ I(t) ≤ Iub

Our optimized charging strategy comprises a hybrid
(mixed continuous-discrete) solution, where continuous
refers to the direct simulation of operating modes (e.g., CC,
CV, pulse), and discrete refers to a transition between the
operating modes. This approach aims to maximize current

and subsequently dynamically transition between operating
modes to meet constraints. Since the battery has a smaller
resistance in the lower SOC range, the highest current is
applied as a positive pulse current (PPC), whose waveform
parameters (refer to Fig. 5) such as peak charging current
(Ip), pulse on-time (tp), relaxation interval time (tr), and
total pulse period (T ) are optimized via our adaptive learning
and control approach. Pulse charging was implemented,
as it can be an efficient and fast charging strategy that,
with proper selection of current waveform parameters, can
help prevent the side reactions caused by saturation at the
particle interface [30]. Following the PPC mode, the solution
switches to CV to avoid continuing temperature rise due to
the battery’s rapidly increasing internal resistance.

Our optimization approach initializes with information
(e.g., tf , Ich, Iend, etc.) from the 2C CC-CV profile. It
optimizes a set of control points (PPC parameters) to yield a
fast charge time while respecting safety constraints, including
a maximum voltage of 4.2V and a maximum temperature
of 57 °C corresponding to 90% of the maximum surface
temperature of 63°C. The optimized charging strategy fully
charged the 5Ah 21700 NMC-811 cylindrical cell, 66% faster
than the recommended 0.3C CC-CV strategy. It maintained a
temperature of 57°C or lower while the 2C CC-CV strategy
experienced higher temperatures, reaching upwards of 64°C.
The results are summarized in Table II, while the plots are
shown in Fig 6.

V. CONCLUSIONS

In this work, we developed a constrained optimal charging
strategy that meets fast charging demands and sustains LiBs’
safe operation. To avoid subjecting the cell to accelerated
aging, we propose optimizing the electrical current for mini-
mum battery charge time while respecting safety constraints,
including a maximum cell temperature and a maximum
voltage. We used a control strategy to learn the Jacobian
of a closed-loop system from input/output data generated
by a full-order electrochemical-thermal battery model. Based
on the learned dynamics, we optimized the response. Our
optimized charging strategy is comprised of a hybrid (mixed
continuous-discrete) solution that fully charges a 5Ah 21700
NMC-811 cylindrical cell, 66% faster than the recommended
0.3C constant-current constant-voltage (CC-CV) strategy.
Furthermore, it maintained a temperature of 57°C (90% of
the 63°C maximum temperature) or lower while a compa-
rable 2C CC-CV strategy experienced higher temperatures
surpassing 63°C, which can lead to adverse effects on battery
health. Future work includes expanding our optimization
criteria to include minimizing damage to the cyclable life
of the battery quantified by capacity fade. Also, we plan on
improving the efficiency of our optimization approach by
substituting the complex electrochemical model with a high-
fidelity, data-driven, reduced-order model.
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Fig. 6: Comparison of Charging Strategies
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