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Abstract— The control of nonlinear large-scale dynamical
models such as the incompressible Navier-Stokes equations is
a challenging task. The computational challenges in the con-
troller design come from both the possibly large state space
and the nonlinear dynamics. A general purpose approach
certainly will resort to numerical linear algebra techniques
which can handle large system sizes or to model order
reduction. In this work we propose a two-folded model
reduction approach tailored to nonlinear controller design
for incompressible Navier-Stokes equations and similar PDE
models that come with quadratic nonlinearities. Firstly, we
approximate the nonlinear model within in the class of LPV
systems with a very low dimension in the parametrization.
Secondly, we reduce the system size to a moderate number of
states. This way, standard robust LPV theory for nonlinear
controller design becomes feasible. We illustrate the procedure
and its potentials by numerical simulations.

I. Introduction
We consider general nonlinear, control-affine systems

of type
ẋ(t) = f(x(t)) +Bu(t), (1)

where x is the system’s state with values in Rn with n
possibly large, where u is the input with values in Rp,
and where f : Rn → Rn.

The computer-aided controller design for (1) with n
large is a challenging problem with no generic approach
being established yet. Commonly used methods like
backstepping [1], feedback linearization [2, Ch. 5.3], or
sliding mode control [3] require structural assumptions
and, thus, may not be accessible to a general computa-
tional framework. The both holistic and general approach
via the HJB equations is only feasible for very moderate
system sizes or calls for model order reduction; see, e.g.,
[4] for a relevant discussion and an application in fluid
flow control. As an alternative to reducing the systems
size, one may consider approximations to the solution of
the HJB of lower complexity. For that, e.g., truncated
polynomial expansions [5] are considered or heuristic
approximative solutions via the so called state-dependent
Riccati equation; see, e.g., [6], [7].

In this work, we propose the embedding of (1) into
the class of linear parameter-varying (LPV) systems of
type

ẋ(t) = A(ρ(t))x(t) +Bu(t), (2)
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with A(ρ(t)) ∈ Rn×n for parameter values ρ(t) ∈ Rr

by implementing two layers of complexity reduction so
that established theory and algorithms ([8]) for robust
LPV controller design become available. This embedding
is possible for general nonlinear systems under mild
assumptions as we will illustrate it below.

As laid out in [9], the controller design techniques
for LPV systems can be classified into the categories
polytopic, LFT-based, and gridding.

A general assumption of all these approaches is that
the set of possible parameter values is bounded. If, in
addition, the parameter dependency of the coefficients is
affine-linear, then the theory and the related computa-
tions simplify significantly; see, e.g., [8], [10].

The polytopic approach is seen as the most developed
approach with the notable results from [8], [11] that
provide algorithms and theory for a scheduled H∞-
robust controller and that are the base of the hinfgs
routine in the MATLAB Robust Control Toolbox.

In a first approximation step, we seek for very low-
dimensional encodings of the states for replacing the
nonlinear source terms by a low-dimensional linear pa-
rameter varying (LPV) surrogate. In this step that is
directed to adapt the nonlinearity to a format that
is accessible to the LPV theory for computer-aided
controller design, we tailor the approximations for a
best representation of the source terms at very low-
dimensions.

We will show that this approach can lead to LPV
models that well approximate the actual dynamics with
as much as r dimensions in the parametrization, with r
well less than 10. Thus, application of standard linear
matrix inequalities (LMI) approaches already comes into
reach. Still, this would require the solution of at least r+1
but more likely of about 2r coupled LMIs of the size of
the original system. Therefore, we propose a second layer
of approximation that is tailored for the low-order LPV
representation to accurately follow the original dynamics
with a moderately sized state space.

This integrated approach to nonlinear controller design
via tailored approximations and established robust LPV
theory has not been considered so far.

Direct relations to the vast research on LPV systems
are given as follows. Although the typically considered
LPV systems are of moderate size (see [9, Tab. V] that
classifies state space dimensions larger than 10 as high
dimensional), the unfavourable increase of complexity
with the parameter dimension has triggered various work
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on reducing the so-called scheduling dimension; see, e.g.,
[12], [13], [14], or [15] that base on sparse optimization,
principal component analysis (PCA), auto encoders, or
general deep neural networks, respectively.

The idea of using model order reduction in combina-
tion with LPV controller design has been followed by [16]
where a PDE system is reduced as a whole before the
treatment as an LPV system. Recently, we have delivered
a proof of concept ([7]) that LPV approximations of
nonlinear systems can with low parameter dimensions
work well for nonlinear controller design.

II. POD for low-dimensional LPV approximations
Under mild conditions (see, e.g., [17]), the system

(1) can be brought into the so-called state-dependent
coefficient (SDC) form

ẋ(t) = A(x(t))x(t) +Bu(t), (3)

with A(x(t)) ∈ Rn×n. We will assume that, in particular,
the map x → A(x) ∈ Rn×n is (affine) linear, i.e. A(x)
can be realized as A(x) = A0 + L(x) with L linear.

Remark II.1. For some systems like the spatially-
discretized Navier-Stokes equations the SDC represen-
tation with affine dependencies is naturally induced by
its structure; see [18]. If the map x → A(x) is not linear,
one can seek to find an approximation that is linear; see,
e.g., [15].

We note that (3) is an LPV representation (2) of (1)
with the trivial parametrization ρ(t) = x(t) and with, in
particular, a large parameter dimension namely r = n.

Next we illustrate how a general model order reduction
scheme, can provide LPV approximations with possibly
low-dimensional, e.g., r ≪ n, parameter domains.

Let Vr ∈ Rn×r be a POD basis that encodes and
decodes the state x(t) as ρ(x(t)) = V T

r x(t) and

x(t) ≈ x̃(t) = Vrρ(x(t)) =

r∑
i=1

viρi(x(t)),

where vi ∈ Rn is the i-th POD mode.
With this encoding and decoding, the nonlinear term

in system (3) can be approximated as
A(x(t))x(t) ≈ A(x̃(t))x(t) =

A(

r∑
i=1

viρi(t))x(t) = [A0 +

r∑
i=1

ρi(t)L(vi)]x(t)

which defines an affine-linear low-dimensional LPV ap-
proximation

x̃(t) = [A0 +

r∑
i=1

ρi(x̃(t))L(vi)] x̃(t) +Bu(t) (4)

to (3) and (1). We set

Ai := L(vi), i = 1, . . . , r. (5)

In the second step, we now project the LPV approx-
imation to reduced order coordinates. For that let Vk

with k ≥ r be the POD basis that includes Vr and
ρ̄(t) = Vkx̃(t). Then an approximation to (4) with state
dimension k (as opposed to n) reads

˙̄ρ(t) = [Ā0 +
r∑

i=1

ρ̄i(t)Āi] ρ̄(t) + B̄u(t). (6)

with Āi := V T
k AiVk, for i = 0, 1, . . . , r and B̄ := V T

k B.
Note that r can be chosen independently of k. Thus,

a very low-dimensional approximation can be achieved
independently of a possibly larger state space that can
be tailored for the best compromise in terms of size and
accuracy.

III. Controller Design for LPV Systems
The polytopic approach is seen as the most developed

approach with the notable results from [8], [11] that
provide algorithms and theory for a scheduled robust
controller and that are the base of the hinfgs routine in
the MATLAB Robust Control Toolbox.

Remark III.1. We note that the underlying LPV theory
considers the parameter ρ as an exogenuous variable
with a predefined range. In the considered application
of embedding general nonlinear systems in LPV systems
(often referred to as quasi LPV systems), the range
of ρ has to be inferred from data and, thus, may be
inadequate for control applications. In particular it may
happen, that ρ leaves the estimated set so that the
controller is no more valid. On the other hand, as long as
the controller is valid, the range of ρ will be controlled
together with the state of the system.

IV. Implementation Issues
For the computation of the snapshots that are used

to extract the POD basis, a forward simulation for an
example input is performed.

A. Polytope or Bounding Box
The computed snapshots are then projected to the ρ-

coordinates in order to estimate the polytope W ⊂ Rr

that contains ρ(t).
The vertices wi of W are then used to define the

controller.
Intuitively, the performance of the controller will be

better if the volume |W | of W is smaller and if the
vortices wi are closer to extremal values of ρ(t). In this
respect, the optimal choice of W would be the convex
hull of the snapshots of ρ.

On the other hand, the convex hull is likely to have
a large number of vortices, which makes the application
of LPV controller design approaches costly as they, e.g.,
require the solution of n coupled LMIs where n is the
number of vertices of W .

Typically, W is chosen as a bounding box with,
accordingly, 2r vortices. In order to reduce the volume,
the box can be rotated and expressed in coordinates
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obtained of the principal components; see, e.g., [13]. In
our affine-linear case (4) with

ρ(t) = UpcU
T
pcρ(t) =: Upcρpc(t) (7)

and, accordingly,

x̃(t) = Vrρ(t) = VrUpcρpc(t) =:

r∑
i=1

vpc,iρpc,i(t) (8)

where Upc is the principal components coordinate trans-
formation, this reparametrization reads

r∑
i=1

ρi(t)Ai = L(x̃(t)) =

r∑
i=1

ρpc,i(t)Apc,i, (9)

where Apc,i := L(vpc,i) and vpc,i denoting the i-th column
of VrUpc, for i = 1, . . . , r. For a direct retransformation
of the system, we can also resort to the relation

Apc,i =

r∑
j=1

UjiAj , (10)

where Uji is the j-th row entry of the i-th column of
Upc.

Adding on these standard ways on defining the pa-
rameter domains, in our examples we use optimization
to find a suitable polytope that gives a good compromise
of volume and number of vortices and that underbids the
bounding box in both variables. For this, the following
optimization setup was defined and solved using the
built-in methods of computing convex hulls and genetic
optimization in SciPy; see, e.g., [19].
(0.) Let V ∈ Rr be (the set of vertices of) the convex hull

of given measurements of ρ(x(tj)), for j = 1, . . . , N
and a given state trajectory x.

(i.) In the i-th iteration, extend V by nk vertices
v
(i)
k ∈ Rr and compute the convex hull V (i) of
V ∪ {v(i)1 , . . . , v

(i)
nk}

(ii.) Update v
(i)
k to minimize both the volume and the

number of vertices of V (i).
We report on efficiency (and feasibility) of the com-

putation of the LPV controller and on its performance
for the three approaches of considering

• the bounding box in the original ρ(t) coordinates,
• the bounding box in the PCA coordinates of ρ(t),

or
• an optimized polytope of fewer vertices

as the polytope for the parameter variation; see Figure 1
for an illustration of the bounding box and an optimized
polytope.

V. Numerical Example
We consider the two-dimensional cylinder wake with

control at moderate Reynolds numbers; see Figure 2.
The controls are designed as two outlets at the cylinder
periphery of size π/6 located at ±π/3 through which
fluid can be injected or sucked away. Mathematically, the
control is modelled by parabola-shaped spatial shaped

Fig. 1. An illustration of the first three components of ρ(t), of
the bounding box (with 8 vortices), and an optimized polytope
of less volume and with only 5 vortices). Each data object is in
three-dimensional space but projected along the coordinate axes
to planes in the two-dimensional space.

Fig. 2. Illustration of the computational domain and the developed
state of the uncontrolled flow field.

function that is scaled by the scalar control value. For
inclusion in the FEM scheme, these Dirichlet conditions
are relaxed towards Robin-type boundary conditions
with a relaxation parameter ϵ = 10−5; see [20] for
implementation details.

As the output y, we consider averaged velocities in
3 square domains of observations of size D2 located
at a distance of H behind the cylinder symmetrically
with respect to the channel middle. Here D denotes the
diameter of the cylinder and H the height of the channel.
With the two components of the velocity, overall, an
output y(t) ∈ R6 is obtained with the first 3 values
corresponding to the stream wise components and the
final 3 values to the lateral components of the velocities.

The corresponding PDE model is spatially discretized
by Taylor-Hood quadratic-linear mixed finite elements
on a nonuniform grid. From the FEM model of about
50 000 degrees of freedom, the low-dimensional LPV ap-
proximation is obtained through the following algorithm

1) Starting from the steady-state solution, the FEM
model is integrated in time from t = 0 to t = 5 with
a test input applied to trigger the instabilities.

2) From the FEM solution, 417 equispaced snapshots
are collected to define the POD basis.
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Fig. 3. Phase portraits y2 vs. y5 and y1 vs. y5 of the output y
for POD dimension k = 24 and parameter dimension r = 6, 10, 15
on the time interval (0, 12).

3) With the POD basis, the reduced order LPV
approximation as in (6) is computed.

In view of determining k and r, i.e., the size of the
POD reduced model and the size of the parameter in the
LPV approximation, we note that the system is chaotic
which makes a quantitative decision delicate (as small
perturbations have arbitrarily large effects). That’s why
we took the qualitative view of examining the resulting
limit cycles of selected components in the phase portraits
of y2 vs. y5 and y1 vs. y5, see Figures 3–4 for results
of different choices of k and r and Figure 5 for the
reference. These phase portraits show the data points,
say (y2(ti), y5(ti)), for 500 time equidistant instances ti
from the output y of the corresponding simulations with
zero inputs on the time interval (0, 12).

For the following numerical studies we chose the setup
k = 36 and r = 6 that, judging from Figure 4 (first line)
in comparison to Figure 5 (first line), seems to well cover
at least the range of values in the phase portraits for the
smaller values of r.

A. Computing the LPV Controller
For the computation of the LPV controller we used

the Matlab Robust Control Toolbox[21] in the release
2022b with built-in function hinfgs that computes an
LPV controller with a guaranteed quadratic robustness
performance γ∗. The computational costs of the un-
derlying optimization with coupled LMI constraints are
significant and make larger values of k and r quickly
infeasible for numerical studies.

As for the different approaches of defining the enclos-
ing polytope W ⊇ {ρ(t) : t > 0} we made the following
observations.

Fig. 4. Phase portraits y2 vs. y5 and y1 vs. y5 of the output y
for POD dimension k = 36 and parameter dimension r = 6, 10, 15
on the time interval (0, 12).

Fig. 5. Phase portrait of selected components of the output y
for the full order FEM model on the time interval (0, 12). Because
of the symmetry of the overall setup, the phase portraits of the
remaining components bear no additional information and are not
shown here.

• The bounding box in the original coordinates with
26 = 64 achieves the best robustness performances
γ∗ though with rather high computational costs.

• The bounding box in the PCA coordinates comes
with the same number of vertices to consider. How-
ever, the observed convergence in γ∗ was tediously
slow which led to infeasible numerical costs for lower
target values of γ∗.

• Using an optimized polytope of 20 vertices, each
iteration in the hinfgs computation was sped up by
a factor of 3 which well compensated for an overall
slower convergence. However the slower convergence
even led to stagnation so that the best achievable
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Fig. 6. Achieved γ∗ versus CPU time (values of three consec-
utive simulations) for the bounding box, the PCA transformed
coordinates, and the optimized vertices setup. The left most values
correspond to the best achieved γ∗ for which the iteration stagnates.

values of γ∗ were larger than that of the bounding
box approach.

The results on the performance of hinfgs for the different
setups and for different levels of γ∗ are displayed in
the chart of Fig. 6. The conducted experiments suggest
that a compact representation of W (in the sense that
its vertices are evenly distributed in space or that the
ratio of surface over volume of W is rather small) is
beneficial for convergence in γ∗. Apparently, the vertices
of the optimized polytope are further apart (see Fig. 1)
which may explain the slower convergence and earlier
stagnation. An explanation for the minor performance
of the PCA coordinate transformation may call on the
interpretation of the PCA concentrating the variance of
the data in the leading principal components. This may
result in vertices that widely distributed in one dimension
and closely located in another. Nonetheless, the strong
(in this case negative) effect supports the idea that a
transformation of the ρ coordinates has the potential of
improving the performance of hinfgs.

B. Nonlinear Closed Loop Simulations

Since the robust control toolbox in Matlab does not
provide the functionality to evaluate the LPV controller
within a general polytope1, we considered closed loop
simulations with the controller obtained through the
bounding box approach. Also the built-in simulation
routines only support predefined parameter trajectories
so that the closed-loop system was set up manually and
simulated with the time integrator ode15s.

As the result, this nonlinear controller did well sta-
bilize the nonlinear system (with r = 6 that it was
built upon) as illustrated in Fig. 7. Also, this controller
proved a certain robustness by performing similarly well
for the model with parameter dimension r = 15 which is
similar but also shows different dynamical patterns; cp.
Fig. 4(first row vs. third row).

1Basically, Matlab has no built-in function to compute barycen-
tric coordinates in a convex polytope in dimensions higher than
r = 3.

Fig. 7. The open loop output of the model for r = 6 and the closed
loop for LPV controller designed for the r = 6 model applied to
this model and used in the larger (r = 15) model.

C. Remarks on Nonlinear Systems as LPV Systems

Although the embedding of a nonlinear system via
A(ρ(t)) = A(ρ(x(t)) into the class of LPV systems is
readily covered by the available LPV theory, it comes
with practical consequences in the controller definition.
Firstly, as the trajectory of ρ is not preset but defined
through the state trajectory x, the containing polytope
(or bounding box) has to be estimated from state
estimations or approximations.

Secondly, the effect of the feedback is ambivalent.
While a functioning controller will stabilize the system
around the working point and, thus, prevent x and ρ(x)
from attaining extreme values, short-term perturbations
may lead to overshoots which can drive the system out
of the estimated region.

While, practically, such an overshoot can often be
compensated, the computed controller will fail imme-
diately as the parameter update for the controller is
no more well-defined. In our experiments we observed
these critical overshoots when considering nonzero initial
values or discontinuous disturbance signals. Therefore, in
the presented simulations, we started from the zero initial
conditions and applied a disturbance that smoothly
faded out after t = 2.
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D. Code Availability
The LPV system data (ready for import in Matlab)

and the scripts that were used to obtain the presented
numerical results are available for immediate reproduc-
tion from doi:10.5281/zenodo.10073483 under a CC-BY
license.

VI. Conclusions and Outlook
In this work, we have employed a two-level model order

reduction approach so that, eventually, established LPV
theory and algorithms become available for nonlinear
controller design for general nonlinear systems like the
incompressible Navier-Stokes equations.

In a numerical experiment, we illustrated the potential
and feasibility of the combined approach and identified
pitfalls of the approach as well as limits in the existing
functionality of standard control systems software.

Notably, although the theory applies and although
favourable properties of tailored polytopes have been il-
lustrated, routines for LPV controller synthesis basically
only allow for bounding boxes as enclosing polytopes.
Thus, a future work will concern interpolation of con-
trollers in polytopes using, e.g., the formulas provided
in [22].

Another immediate future development could concern
the solution of large-scale linear matrix inequalities in
the context of LPV controller design.
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