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Abstract— This work addresses the problem associated with
the variability of the parameters involved in irrigation control
systems for real crops. Factors such as soil compaction, climatic
variability or phenological state of the crops, among others,
significantly influence the dynamics of these systems, challeng-
ing the implementation of model-based controllers in real use
cases. In this context, an Adaptive Model Predictive Control
scheme is proposed, which makes it possible to update the model
by employing a recursive system identification. A comparison
with a conventional predictive controller employing a constant
model is made. The study is based on models identified from
data collected in a production farm in Seville, Spain. The
validation of the proposed strategy and the comparison between
the adaptive MPC and the conventional MPC are performed
by means of simulations. The results demonstrate the potential
applicability and effectiveness of Adaptive MPC in real farming
conditions.

I. INTRODUCTION

Agriculture stands as one of the most important productive
sectors in the world, serving as an indispensable pillar for the
global economy and food security and being responsible for
around 70% of the total fresh water consumption [1]. With
anticipated population growth and climate change effects,
water scarcity and competition for resources will become
more pronounced. This highlights the need for proper irriga-
tion control, not only for the significant consumption of this
resource, but also because over-irrigation can yield counter-
productive consequences, leading to an increase in energy
consumption, reduction of crop yields and contamination of
aquifers by fertilizers [2].

In response to these challenges, and with the recent
developments in the Internet of Things (IoT), a large number
of studies have been conducted to implement advanced
controllers into irrigation systems with the aim of reducing
water and energy consumption. Among the various strategies
for implementing these advanced control techniques, Model
Predictive Control (MPC) [3] has emerged as a particularly
successful choice, showing its effectiveness not only in
technologically advanced greenhouses [4] but also in conven-
tional farms. An example of the above can be found in [5],
where an MPC controller was successfully implemented in
an agricultural field in Ecuador, showcasing its practicality in
real-world farming scenarios. Additionally, another study [6]
underscores the effectiveness of model-based smart irrigation
control systems in improving water use efficiency in tomato
production. A comparison between manual and open-loop
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irrigation methods highlights the significant advantages of-
fered by the model-based controller approach.

However, despite notable progress in the application of
MPC in irrigation management, the dynamic nature of these
systems, influenced by factors such as soil compaction,
climate fluctuations, and crop phenological stages, introduces
a very significant variability, which in turn poses a substantial
challenge to the practical implementation of model-based
controllers, potentially constraining their performance and
compromising crop yields.

To overcome this problem, several MPC-based strategies
have been proposed. Notably, some studies (see for in-
stance [7] and [8]) have focused on robust MPC, which
shows adaptability when confronted with disturbances and
uncertainties in control the system. Alternatively, other au-
thors have explored stochastic MPC controllers, which are
capable of characterizing uncertainties in forecast errors
of evapotranspiration and precipitation, as observed in [9]
and [10]. Finally, to avoid the use of precomputed models
and to perform online learning from data, some researchers
have discharded MPC based controllers and have opted
instead for machine learning algorithms (see for instance [11]
or [12]).

This paper addresses the control problem associated to the
variability in the irrigation system dynamics by employing an
MPC based scheme designed to minimize water consumption
while adapting to dynamic system changes. While not a
novel concept, as this control strategy is a widely utilized
methodology in fields such as robotics [13] and process
industries [14], the primary contribution of this paper lies
in introducing Adaptive Model Predictive Control (Adaptive
MPC) to the domain of irrigation systems, an area where it
remains largely unexplored, as far as our current understand-
ing extends.The proposed controller continuously updates the
prediction model through a recursive system identification,
using data collected from the field.

Furthermore, its validation is performed in a simulation
case based on real data from a crop field owned by the com-
pany Bioalverde located in Seville (Spain). The simulation
analysis includes comparing the controller performance to
a conventional MPC, which employs a static linear model.
Consequently, the results obtained will offer evidence of the
practical suitability and efficiency of Adaptive MPC and its
applicability potential in real crops.

The paper is organized as follows: Section II describes
the control problem, including the involved system dynamics
and modeling. Section III introduces the formulation of the
proposed Adaptive MPC. Section IV describes the real farm
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where the data for the controller validation was collected,
including the deployed set of sensors, actuators and com-
munication network, and also the models associated to the
observed irrigation dynamics. Section V uses these models
to analyze the results of the proposed control strategy and
carry out a comparison with a conventional MPC. In Section
VI the results obtained from the simulations are shown and
analyzed. Finally, Section VII contains the main conclusions
and future work.

II. PROBLEM FORMULATION

A. System dynamics and irrigation model

To successfully execute the implementation of a model-
based predictive control strategy, it is imperative to procure
an appropriate model of the irrigation. In these systems,
the most relevant dynamics are linked to evolution of the
soil moisture in cultivated plots, which can be characterized
through the Volumetric Water Content (VWC), that is, the
ratio of water volume to soil volume.

A commonly used dynamic model in this context consists
of different layers, predominantly three: the surface layer,
root zone, and drainage layer. One representative example
of this can be found in [15], where a model based on
Richards equations considering agro-hydrological interac-
tions between soil, crops, and the atmosphere, is developed
and carefully tested. Another possibility to enhance model
accuracy is the inclusion of sub-layers within the root (see
[16] or [17]), although this requires placing more soil mois-
ture sensors.

However, soil models based on physics and agro-
hydrological interactions require a large number of param-
eters, such as hydraulic conductivities, soil porosity, and
soil texture. While laboratory experiments can measure these
parameters, real cultivated soils are very often subjected to
changes due to factors such as crop growth, temperature,
rainfall, and machinery operations. These changes affect soil
parameters and consequently modify the system dynamics.
Proof of this is that the soil moisture data used in this
work were obtained from a real farm during two distinct
time periods, followed by the identification of their nonlinear
models. The resulting models exhibited significant differ-
ences, highlighting the necessity of implementing adaptive
MPC to continuously adjust the model in response to inherent
variations in system dynamics.

To reflect the previously mentioned time-varying nature
of the irrigation system dynamics, the following nonlinear,
unknown discrete-time model is introduced:

x(k + 1) = f(x(k), u(k), k), (1)

where x(·) ∈ Rnx represents the state, describing measure-
ments of the moisture levels of the different layers of the
soil, u(·) ∈ Bnu denotes the binary control input related
to pumps or solenoid valves in the irrigation system and
f : Rnx × Bnu × R → Rnx is an unknown, nonlinear,
time-varying function characterizing the irrigation dynamics.
Note that the time dependence of the model is due to
climatological, agrohydrological and soil parameters whose

variation is slow or neglectible compared to the dynamics
produced by changes in the state x(k) or the control inputs
u(t).

B. Prediction models inferred from data

Given the complexity of accurately obtaining or measuring
all the parameters that become time-varying the irrigation
system, a practical solution is to use past sequences of the
state and the control inputs to identify linear and nonlinear
models.

1) Linear model: state predictions are obtained with the
following linear discrete-time model:

x̂(k + 1) = A(k)x(k) +B(k)u(k), (2)

where A(k) ∈ Rnx×nx and B(k) ∈ Rnx×nu are the
time-varying state matrix and the time-varying input matrix
respectively. A recursive algorithm has been proposed for the
matrices identification, in order to priorize the recent data in
the identification process. Since the iterative identification
method can be a computationally exhaustive process and the
time-varying nature reflected in A(k) and B(k) is the slowest
dynamics of the system, Equation 2 can be modified with a
slight increment in the prediction error by:

x̂(k + 1) = Ak0x(k) +Bk0u(k), (3)

where Ak0
∈ Rnx×nx and Bk0

∈ Rnx×nu are the state
matrix and the input matrix respectively that were identified
by minimizing the prediction error (least square method) at
time k0 < k. Note that if k reaches values much higher
than k0, the prediction error may not be negligible. In these
cases, a new identification of the system would be necessary
to reduce the prediction error.

2) Nonlinear model: in order to obtain a more realistic
simulator of the system and considering the slowest dynam-
ics of the time varying nature applied to model presented in
Equation 1, a static nonlinear discrete-time model is defined
as follows:

x̂(k + 1) = fk0
(x(k), u(k)), (4)

where fk0(·, ·) = f(·, ·, k0) is a nonlinear function that was
identified at time k0.

III. PROPOSED CONTROLLER

Adaptive MPC is an advanced control strategy for dynamic
systems, particularly useful in scenarios where the system
dynamics is not fully known and can even change over time.

The block diagram of the proposed control scheme can
be observed in Figure 1, whose different components are
explained next 1.

1The absence of a reference input in the controller is due to the fact
that, in irrigation control, the objective of the controller is to maintain the
moisture levels withing an acceptable range, rather than following specific
references
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Fig. 1. Structure of the Adaptive MPC.

1) Parameter estimator: the variability of the system
dynamics over time, both due to its nonlinear nature and
to system changes, can be captured via a linear state-space
model with time-varying matrices A(k) and B(k), as in
Equation 2.

A recursive least squares (RLS) algorithm with a forgetting
factor has been chosen for the estimation of the elements of
the state-space matrices, as discussed in [18] and [19]. Its
recursive formulation allows an implementation with reduced
computational burden, and the inclusion of the forgetting
factor enables the algorithm to give less importance to old
data, which is crucial in the case of parameters that vary over
time.

To implement the RLS algorithm, the following vectors
and matrices are defined. The estimation of the parameters
vector θ̂(k) is defined as:

θ̂(k) = [vec(A(k)) vec(B(k))]T , (5)

where the components of θ̂(k) are the elements of the A(k)
and B(k) matrices stacked into a single vector, Φ(k) is a
matrix such that multiplied by the previous estimation of the
parameters vector, that is θ̂(k− 1), results in a prediction of
the output, denoted as ŷ(k), thus:

ŷ(k) = Φ(k)θ̂(k − 1). (6)

The iterative equations that conform the RLS algorithm
are:

K(k) = P (k − 1)Φ(k)T
(
δI +Φ(k)P (k − 1)Φ(k)T

)−1

(7)
θ̂(k) = θ̂(k − 1) +K(k)(y(k)− Φ(k)θ̂(k − 1)) (8)

P (k) = (I −K(k)Φ(k))P (k − 1)/δ (9)

In Equation 7, the weighting or gain matrix, defined as
K(k), is calculated from Φ(k), the error estimation covari-
ance matrix, denoted as P (k), and the forgetting factor δ.
The next step is to update θ̂(k) using its previous value and
the weighted output error, that is K(k) (y(k)− ŷ(k)), as can
be observed in Equation 8. Finally, in Equation 9 the matrix
P (k) is updated.

The forgetting factor δ is a constant between 0 and 1. To
estimate static parameters, it is set to δ = 1 and δ < 1 for
parameters that vary with time. Tipically δ is chosen between
0.985 and 0.995 [20].

2) MPC: this block represent the predictive controller.
Note that the time-varying model is provided by the pa-
rameter estimator block, thus both toguether constitute the
Adaptative MPC. The optimization problem to be iteratively
solved by the controller in a receding horizon manner is:

min
u

N−1∑
j=0

J(u, ϵ)

s.t. x(j + 1) = A(k)x(j) +B(k)u(j),

x(0) = x(k),

u(−1) = u(k − 1),

ϵ(j) ≥ 0,

xmin − ϵ(j) ≤ x(k) ≤ xmax + ϵ(j),

(10)

where J(u, ϵ) is the cost function, xmin and xmax are the
minimum and maximum moinsture constraints respectively,
ϵ(j) are the soft-constraint variables and N is the prediction
horizon. The simulation time k (time of day in case of a real
application) is constant for the optimization problem.

IV. TECHNICAL DESCRIPTION OF BIOALVERDE

The data used in the simulations come from a work-
ing farm located in the city of Dos Hermanas, Sevilla,
Andalusia, Spain. Geographically, the coordinates of the
farm are 37º19’51.065” North latitude and 5º56’14.166” East
longitude.

On this farm, a real-time measurement and control system
based on the Internet of Things has been installed. The
measurement system consists of low-cost devices equipped
with capacitive-type soil moisture, ambient temperature and
humidity sensors. These sensors are connected to a micro-
controller that transmits the data wirelessly to a gateway.
Additionally, flow meters have been installed in the pipes to
quantify the water consumption used during irrigation.

The data sets used to infer models were obtained from two
measuring devices, named node 4 and node 6. These devices
measure the soil moisture in two layers, that is nx = 2, with
x1 being the moisture measurement of an upper layer and
x2 the moisture measurement of a lower layer. Furthermore,
the binary control action affects to the solenoid valve, thus
nu = 1. The water pump is automtically activated when a
pressure drop is detected in the irrigation pipes. Two data sets
have been collected in periods of approximately one month
delay. The dates are May 12th and June 30th of the year
2023.

A comparative analysis using a dataset collected for node
4 and the open-loop predictions of the models is proposed.
For the sake of clarity, we will focus our partial comparison
on the output variable, specifically the humidity of the
lower layer x2. Figure 2 provides a visual representation
of this dataset, which has been partitioned into two distinct
segments.

In the graph at the top of the Figure 2 it can be seen that
both models provide humidity predictions with negligible
errors. Furthermore, as expected, the predictions from the
nonlinear model fit the data set better compared to those
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Fig. 2. In the upper part of the graph, the humidity data collected during
the month of May are presented, together with the linear and nonlinear
models generated from the data set of this period. In the lower part, the
humidity data collected in June are shown, together with the nonlinear

model identified from the data set of this particular month and the
nonlinear model identified from the May data set.

from the linear model. On the other hand, at the bottom
of the graph, as anticipated, given the dynamic nature of
the system, the model obtained from May fails at accurately
predicting the behavior of the June data.

Reference [21] provides details regarding the coefficients
of the nonlinear and linear models are found, and details
about the implementation, data processing, and acquisition
of these models have also been documented.

In this irrigation system, the output vector is equal to the
state vector, that is:

y(k) = [x1(k) x2(k)]
T , (11)

where x1(k) and x2(k) are the scaled and calibrated soil
moistures of the upper and lower layer, respectively. For this
farm, matrix Φ(k) in Equation 6 can be written as:

Φ(k)T =


x1(k − 1) 0
x2(k − 1) 0

0 x1(k − 1)
0 x2(k − 1)

u(k − 1) 0
0 u(k − 1)

 (12)

The value of the forgetting factor δ has been chosen at
0.9999 to get a slow variation of the model parameters, as
mentioned in section II.

In this paper, the following cost function has been consid-
ered:

J(u, ϵ) = λ(u(j)−u(j−1))2+β(k+j)·u(j)+0.5·σ·ϵ(j+1)2,

where λ is the cost that penalizes the variation of the
controller output, β is the weight associated with the use of
the water pump and σ is the weight of the soft-constraints.

Note that λ determines how frequently the pump and the
valve are activated, preventing deterioration. In addition,
manipulating β value over the prediction horizon, irrigation
can be avoided during specific times, as specified by the
farmer or by increasing the cost according to the energy plan
implemented on the farm. For the simulation, a time period
has been restricted where the cost of driving the pump is
very high.

V. SIMULATION

Simulations have been designed to compare the perfor-
mance of an Adaptive Model Predictive Controller against
a conventional Model Predictive Controller that relies on a
constant linear model. Each simulation is executed over a
span of 4 days, resulting in a total of 384 simulation steps
(N = 96 steps per day). The weights assigned to λ, σ and
β are 1, 10000 and 10 respectively. The scenarios proposed
are detailed below:

1) Scenario 1: The first scenario starts with a linear model
based on the data from node 6 gathered during the May
period. This linear model serves as the foundation for both
the Adaptive MPC and the conventional MPC.

The nonlinear model of node 6 obtained during the June
period acts as the real plant in this scenario. The aim is to
evaluate the adaptability of the Adaptive MPC when facing
model variations and to analyze the impact of these changes
on the performance of the conventional MPC.

2) Scenario 2: In this scenario, the linear model from
node 4 (collected during the June period) and the nonlinear
model of node 6 from the same period are employed.
This setup aims to investigate the feasibility of using a
standard linear model for all measurement devices while
simultaneously evaluating the adaptability of the Adaptive
MPC to a distinct original model.

For a detailed evaluation of the performance of the
controller, humidity predictions and control actions at two
specific simulation moments are analyzed: day 1 and day 3,
equivalent to iterations k = 1 and k = 289, respectively.
These predictions overlay the real plant in an open-loop
scheme. The purpose is to observe the adaptability of the
Adaptive MPC and compare it with the conventional MPC.
Specifically, the agreement between predictions made from
the linear model and those from the nonlinear model is
sought.

With these scenarios, insights into the robustness of the
Adaptive MPC against model variations and the advisability
of using a standard linear model for different measurement
devices are expected to be gained.

VI. RESULTS

This section will present the results of the simulations
described in section V.

1) Scenario 1: In Figures 3 and 4 the behavior of the MPC
and Adaptive MPC controllers can be observed, respectively
at k = 289. The curves resulting from these predictions
for layer 1 and 2 humidities are x1p and x2p respectively
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(painted red). The predicted control actions along the pre-
diction horizon are denoted by valvestatus. The result of
applying the predicted control actions on the actual plant can
be seen with the curves painted in blue, with x1r being the
humidity of layer 1 and x2r to the humidity of layer 2. The
moisture and time constraints are represented in black. It is
important to note that the color criteria and nomenclature
will be maintained in the other graphs that present results
associated with simulation times, that is, for different values
of k.
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Fig. 3. Humidities and control actions predicted for the MPC at K = 289

In the case of the MPC, significant differences can be
observed between the control applied to the non-linear and
linear plant, which was expected when using a constant linear
model. On the other hand, for the Adaptive MPC there is a
clear reduction of this error, which is quantified with the
calculation of the mean square error (MSE) presented in
the table I. It should be noted that the behavior of both
controllers at k = 1 is the same (also reflected in this table).
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Fig. 4. Humidities and control actions predicted for the AMPC at K =
289.

TABLE I
MSE OF THE CONTROLLERS IN SCENARIO 1

k=1
Controller MSE (x1) MSE (x2)

AMPC 0.02734 0.06089
MPC 0.02734 0.06089

k=289
AMPC 0.00553 0.00007
MPC 0.01884 0.07621

Finally, the closed-loop curves throughout the 4-day sim-
ulation are presented in Figure 5, in blue you can observe
the humidities and control actions resulting from the MPC
and in red the humidities and control actions of the Adaptive
MPC.
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Fig. 5. Closed-loop curves throughout the 4-day simulation (MPC vs
AMPC).

Table II shows the differences between both controllers,
in the first column the number of outputs in one (Valve
status=1) that the controller had throughout the simulation
horizon is quantified, taking into account the nominal flow
rate of the water pump (8 liters per minute) the volume of
water used throughout the simulation is calculated and finally
the last column shows the number of starts of the water
pump, this value is important because a higher number of
starts of the pump favors its deterioration.

TABLE II
COMPARISON OF WATER CONSUMPTION AND NUMBER OF PUMP STARTS

BETWEEN MPC AND AMPC IN SCENARIO 1

Controller Total Water Daily average Number of
consumption (L) (L) water pump starts

AMPC 1920 480 7
MPC 2880 720 11

2) Scenario 2: The resulting graphs of scenario 2 have
been similar to those of scenario 1. The closed-loop curves
of the 4 days of simulation for this scenario are presented in
Figure 6. The quantitative results in tables III and IV support
this affirmation.

TABLE III
MSE OF THE CONTROLLERS IN SCENARIO 2

k=1
Controller MSE (x1) MSE (x2)

AMPC 0.01336 0.04176
MPC 0.01336 0.04176

k=289
AMPC 0.00499 0.01120
MPC 0.00622 0.05084

In both scenarios, there are considerable savings in water
consumption (although this is not the main objective of the
controller), there is also a significant reduction in the number
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Fig. 6. Closed-loop curves throughout the 4-day simulation (MPC vs
AMPC).

TABLE IV
COMPARISON OF WATER CONSUMPTION AND NUMBER OF PUMP STARTS

BETWEEN MPC AND AMPC IN SCENARIO 2

Controller Total Water Daily average Number of
consumption (L) (L) water pump starts

AMPC 1920 480 6
MPC 2640 660 14

of starts of the water pump which not only helps to delay
the deterioration of the pump, but can also save electricity
consumption due to the current peaks that an electric motor
consumes at starts.

VII. CONCLUSIONS

This comparative study between model-based predictive
control and model-based adaptive predictive control has
yielded significant results in the proposed simulation sce-
narios. The robustness of Adaptive MPC to adapt to models
whose parameters vary over time and its ability to adjust
from an initial model obtained from another measurement
device has been observed. This opens the possibility of
employing a single controller for all devices that have been
deployed in the field, which is one of the objectives of this
study.

The considerable savings in water consumption and the
reduction in the number of water pump starts, although
not the primary objectives of the controller, underline the
benefits of having an adaptive model in a model-based
predictive control strategy. These benefits not only translate
into more efficient operation and reduced operating costs, but
also promote sustainability by minimizing the environmental
impact of water and electrical energy use.

Analysis of the results has shown that the proposed con-
troller, by adapting and correcting its control parameters in
real time, can compensate for process deviations and respond
more effectively to system changes compared to a traditional
MPC.

In conclusion, the findings of this work highlight the fea-
sibility and advantages of using Adaptive MPC in irrigation
automation in agriculture.

For future work, it is proposed to evaluate other recursive
estimation methods (such as the Kalman filter) and their

implementation in the field, in order to validate and refine
the performance in a real production environment.
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[16] G. Cáceres, P. Millán, M. Pereira, and D. Lozano, “Smart farm
irrigation: Model predictive control for economic optimal irrigation
in agriculture,” Agronomy, vol. 11, no. 9, p. 1810, 2021.
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