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Abstract— Data annotation in autonomous vehicles is a crit-
ical step in the development of Deep Neural Network (DNN)
based models or the performance evaluation of the perception
system. This often takes the form of adding 3D bounding boxes
on time-sequential and registered series of point-sets captured
from active sensors like Light Detection and Ranging (LiDAR)
and Radio Detection and Ranging (RADAR). When annotating
multiple active sensors, there is a need to motion compensate
and translate the points to a consistent coordinate frame and
timestamp respectively. However, highly dynamic objects pose a
unique challenge, as they can appear at different timestamps in
each sensor’s data. Without knowing the speed of the objects,
their position appears to be different in different sensor outputs.
Thus, even after motion compensation, highly dynamic objects
are not matched from multiple sensors in the same frame,
and human annotators struggle to add unique bounding boxes
that capture all objects. This article focuses on addressing
this challenge, primarily within the context of Scania-collected
datasets. The proposed solution takes a track of an annotated
object as input and uses the Moving Horizon Estimation (MHE)
to robustly estimate its speed. The estimated speed profile is
utilized to correct the position of the annotated box and add
boxes to object clusters missed by the original annotation.

I. INTRODUCTION

The pursuit of autonomous vehicles, particularly in heavy
vehicle manufacturing, has gained momentum across var-
ious industries. At its core, the essential element driving
the progress is ground truth data, essential for evaluating
the Autonomous Vehicles (AV) software stack. To obtain
this invaluable data, several approaches have emerged. One
method involves equipping the ego and multiple non-ego
vehicles with Global Positioning System (GPS) sensors and
orchestrating staged scenarios, for instance, overtaking, U-
turns, roundabouts etc. While the GPS enables compre-
hensive state-awareness of the environment and provides
valuable insights, this approach can’t be extended to real-
world driving. As such, highly controlled scenarios also fall
short in emulating the complexities of real-world driving,
leaving gaps in the generalization ability of the system.

Deep Neural Networks (DNNs) have recently emerged as
the backbone of autonomous driving systems, with various
approaches proposed throughout the AV stack, including for
perception [1], [2], localization [3], motion prediction and
situational awareness [4], control and path planning [5],
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Fig. 1: Illustration of the Scania truck with different sensor
placement highlighted with red circles, while the ith sensor
and the vehicle coordinate frame are shown as Li and V
respectively.

vehichle-to-vehicle communication [6] as well as end-to-
end driving systems [7]. A majority of DNN approaches are
trained using supervised learning and require annotations.
Simulation systems offer another avenue for generating train-
ing data at scale. However, the challenge lies in bridging the
gap between simulated and real-world sensory output [8].
The successful integration of synthetic data into practical
experiments remains a persistent question in the journey
toward autonomous vehicles. The third approach, albeit
time-consuming and expensive, involves annotating datasets
collected from vehicles on the road. This method necessitates
rigorous quality checks.

The field of autonomous driving has seen an abundance
of datasets capturing challenging real driving scenarios.
The KITTI dataset, proposed by Geiger et. al. [9], was
a pioneering work in this regards, providing annotations
for 3D object detection, stereo matching and optical flow,
as well as high quality position labels to enable research
in Simulataneous Localization and Mapping (SLAM). The
NuScenes [10], Waymo [11] and Argoverse [12] datasets
are notable for their large scale and diversity, including
night-time driving and adverse weather scenarios. Many
datasets also provide access to High Definition (HD) maps to
enable advanced processing [12], [10]. The recently proposed
Argoverse2 [13], aiMotive [14] and Zenseact [15] datasets
provide annotations focusing on long range perception.

However most of the existing datasets are captured on-
board passenger cars, and their characteristics differ sig-
nificantly from the data captured onboard trucks. Due to
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Fig. 2: Point cloud from three sensors after compensating for
ego motion, (red, violet and blue points are from LiDARs L1,
L2 and L3 respectively). The dynamic object in the scene is
observed by different sensors in different time stances, with
displacement of 2 m within 100 ms. The manually annotated
3D bounding box is shown in green.

their larger size compared to passenger cars, trucks require
a greater number of sensors with increased spacing be-
tween them to provide comprehensive surround views, as
shown in Figure 1. This extended displacement between
the sensors leads to them capturing different, often non-
overlapping views of the same object. Moreover, the avail-
able datasets mostly consist of suburban scenarios with
low driving speeds, whereas long haulage trucks operate
on highways, with objects moving at high speeds. These
dynamic objects are captured at multiple positions by various
sensors, even after ego-motion compensation. To the best of
our knowledge, none of the existing datasets capture this
phenomenon.

The aforementioned issues pose notable challenges for
human annotators when attempting to define accurate 3D
bounding boxes around objects. Firstly, the human-labelled
bounding boxes may not encompass the entirety of the point
clouds, leading to scenarios where portions of the objects,
as illustrated in Figure 2, remain outside the bounding box’s
scope. Secondly, the annotators might label different views
of an object at various time instances, leading to inaccurate
speed estimation of the vehicle. These annotations, if not
refined may lead to an incorrect evaluation of perception
algorithms, or be a source of error during training of DNN
models.

In this work, we address this problem by modelling the
annotated boxes as noisy measurements of the object state.
Consequently, state estimation algorithms can be used to
infer the object’s true state. Given an annotated object track
from a multi-LiDAR dataset as noisy positional inputs, this
article proposes using Moving Horizon Estimation (MHE)
as a state estimator to predict the position and speed of non-
ego objects. The estimates are subsequently used to refine
the positioning of bounding box annotations to cover all the
views of the object.

A. Background & Motivation

Kalman Filter (KF) [16] is widely used in applications
where the system dynamics and measurement models are
both linear and the noise is Gaussian, while Extended

Kalman Filter (EKF) can handle non-linear system and
measurement models. KF based estimators may have slow
convergence for rapid changes in state, and only consider
one measurement for each estimation iteration. Nonlinear
Moving Horizon Estimation (NMHE) methods are also
getting more attention [17], [18], [19] for their ability to
estimate complex nonlinear dynamic models, while they can
handle inequality constraints. MHE method uses a moving
time window to iteratively estimate the states of a nonlin-
ear dynamic system, providing real-time updates as new
measurements become available. The MHE, driven by its
optimization-based framework and its ability to utilize a
set of measurements, is a preferred choice for accurately
estimating the speed of non-ego vehicles in various scenarios,
with the added advantage of being able to handle constraints
such as bounds on vehicle speed, making it a versatile
solution.

B. Contributions

With the abovementioned state-of-the-art as the context,
the key contributions of the article are provided in this
section. The first and foremost contribution is to highlight the
problem of annotation for multiple active sensors in heavy
vehicles, which to the best of authors’ knowledge, has not
been discussed before. As the second contribution, a MHE
estimator with kinematic model is formulated to estimate
the non-ego vehicle speeds, which is used to further rectify
the bounding box annotations. The third contribution stems
from the experimental evaluation of the method on a LiDAR
dataset captured onboard trucks and buses containing diverse
scenarios of non-ego object motion.

C. Outline

The rest of the article is organized as follows: Section II
outlines the problem. The MHE formulation is described in
Section III. Section IV sets up the experiments and discusses
results on data captured onboard Scania platform. Lastly
Section V concludes the article by summarizing the findings
and discussing directions for future work.

II. PROBLEM STATEMENT

Let W, Vt and Li
t represent the world frame, the vehicle

frame at time t, and the ith sensor frame at time t respec-
tively. WTVt denotes the 4×4 homogeneous transformation
matrix representing the vehicle’s pose in the world frame at
time t. Let Li

tPi(t) denote a point cloud acquired by the
ith LiDAR sensor during the time period [t, t + ∆t]. The
jth point in this point cloud is represented by a 3D position
pi,j = (xi,j , yi,j , zi,j)

T in the sensor frame and timestamp
τi,j . Since the ego-vehicle is moving continuously while
the rotating LiDAR captures data, a transformation needs to
be applied to each point of the point cloud, to compensate
for the ego-motion to simplify processing by deskewing the
point cloud. Let t∗ denote the time to which the motion is
compensated. In our work t∗ = t +∆t/2, i.e. in the center
of the scan period of the point cloud. We denote by Vt∗P∗

i

the motion compensated point cloud where the position, pi,j ,
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Fig. 3: The annotation process for Scania collected dataset. Scans from multiple LiDARs are motion compensated and
accumulated in a superframe. Thereafter a time-series of superframes are post processed and sent for manual annotation.
A snapshot of a superframe before and after annotation is shown. The ego vehicle is marked in the center with vehicle
frame V, and sensor frames L1 to L4. The point clouds from multiple LiDARs are colored according to their offset from
motion compensated timestamp (chosen to be the middle of the superframe). Red and blue indicate beginning and end of
the superframe respectively. The annotated vehicle is shown with a green box.

of each point is transformed to the vehicle frame at time t∗.
The motion compensated points are denoted Vt∗p∗i,j , which
for brevity will be written as p∗i,j and are calculated as:

p∗i,j =
Vt∗TVτi,j

Vτi,jTLi
τi,j

pi,j (1a)
Vt∗TVτi,j

= (WTVt∗ )
−1WTVτi,j

(1b)

where Vτi,jTLi
τi,j

is given by the extrinsic calibration and is
here assumed constant V TLi . A constant linear and angular
velocity is assumed in the interval [t, t+∆t].

The focus of our work is a multi-LiDAR setup. We define
a superframe Vt∗PS as a point cloud accumulating all motion
compensated points from M LiDARs within a time interval
[t, t+∆t],

Vt∗PS =

M⋃
i=1

Vt∗P∗
i . (2)

A time-series of motion compensated superframes is post-
processed and sent for annotation of 3D boxes, as shown in
Figure 3. Notably, Eq. (1) follows a static world assumption,
which does not hold in real-world driving applications. For
example, for ∆t = 100 ms, a non-ego vehicle driving at
30 m/sec on a highway could have a worst case displacement
of up to 3 meters captured by different sensors within the
superframe. A single bounding box is inadequate in capturing
this motion, as shown in Fig. 3. The problem then involves
modeling the motion of the non-ego object given noisy
measurements of the state provided by a time series (or a
track) of annotated 3D bounding boxes.

An agent’s 3D motion can be generally described by 12
states: x = [x, y, z, ẋ, ẏ, ż, ϕ, γ, θ, ϕ̇, γ̇, θ̇]T where the first
six states denote the positions and linear velocities, and the
last six states denote the roll, pitch and yaw angles and
their rates respectively. Particularly for driving scenarios, a
planar motion with holonomic constraints is considered. This

assumption removes the need to estimate the z position, the
roll and pitch angles, as well as their rates, reducing the state
space to six. Furthermore, assuming the measured heading
of an object remains constant within the superframe interval
∆t, and the heading is error-free, the problem can be further
simplified to a one-dimensional estimation containing two
states x = [d, s]T , where d and s are the distance and speed
along a specified trajectory.

III. METHODOLOGY

In this section, we will present our MHE approach. We
will begin by outlining the mathematical formulation that un-
derlies our method, offering an explanation of the equations
and principles. Subsequently, we will explain the estimation
of non-ego vehicle speeds in MHE. Finally, we will present
the architecture that rectifies annotations, providing a holistic
view of our approach’s practical implementation.

A. Kinematic Model

Given the state x = [d, s]T as described in the previous
section, the distance d is specified along a trajectory specified
by a set of error-free headings Θ = {θi : i = 1, ..., nl},
where nl is the length of an annotated track. The measure-
ments here come from human annotations. The speed s is
not measured. The state of a non-ego vehicle at time t is
assumed to be given by the constant acceleration model (3).

d(t) = d0 + s(t)t+
1

2
at2, (3a)

s(t) = s0 + at. (3b)

In this work we study short trajectories. A more general
solution would need to adopt a more complex motion model.
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B. Moving Horizon Estimation

The main objective of the MHE [20] is to obtain the state
estimate at time t, given a set of measurements collected
over a moving horizon of past time steps. The state and
measurement are modelled in discrete form as:

x̄k+1 = F(x̄k,uk) +wk, (4a)
yk = H(x̄k) +Λk, (4b)

where, x̄k+1 is the state estimate at time step k + 1, F :
Rns×Rnu → Rns is the state transition function and uk is the
control input at time step k. uk is the same as the acceleration
a. yk is the modelled measurement and H : Rns → Rnm is
the measurement function. Moreover ns, nu, and nm are
the number of states, inputs and measurements respectively,
Λk ∈ Rnm and wk ∈ Rns represent the measurement
noise and the process noise correspondingly. The initial state
estimate x̄0 is known. Furthermore, x̄k−j|k and yk−j|k are
the previous k− j state and measurements as observed from
the current time k.

The process noise wk, measurement noise Λk and the
initial state estimate noise are unknown and assumed to
follow a random distribution, characterized by the Gaussian
Probability Density Function (PDF) with the covariance Q ∈
Rns×ns , Ω ∈ Rnm×nm , and Ψ ∈ Rns×ns respectively [21].

Given a set of noisy measurements Y = {yj : j = k −
Ne, ..., k− 1} in a fixed horizon window Ne , the estimated
states of the system X̄ = {x̄j : j = k −Ne, ..., k − 1} are
obtained by solving the optimization problem:

min
x̄(k−Ne|k),W

(k−1|k)

(k−Ne|k)

J(k) (5a)

s.t. x̄i+1|k = F(x̄i|k,ui|k) +wi|k (5b)
yi|k = H(x̄i|k) +Λi|k i = {k −Ne, . . . k − 1} (5c)
wk ∈ Wk, Λk ∈ Λk, x̄k ∈ Xk (5d)

where,

J(k) = (x̄k−Ne|k − x̃k−Ne|k)
TΨ−1(x̄k−Ne|k − x̃k−Ne|k)︸ ︷︷ ︸

arrival cost

+

i=k∑
i=k−Ne

(yi|k −H(x̄i|k))
TΩ−1(yi|k −H(x̄i|k))︸ ︷︷ ︸
stage cost

+

i=k−1∑
i=k−Ne

(x̄i+1|k −F(x̄i|k,ui|k))
TQ−1(x̄i+1|k −F(x̄i|k,ui|k))︸ ︷︷ ︸
stage cost

(6)
In (5) W

(k−1)
(k−Ne)

= col(w(k−Ne), . . . ,w(k−1)) is the esti-
mated process disturbance from time k − Ne up to k − 1,
estimated at the time k. The first term of the objective J
is referred to as the arrival cost. It measures the squared
difference between the current and the prior state estimate
at the beginning of the horizon window. In effect, the
arrival cost is a mechanism for incorporating historical state
information into the current estimation problem, ensuring a
smooth transition from past estimates to current estimates.

The remaining terms are denoted as stage cost or incremen-
tal cost. They compute the sum of the squared difference
between the predicted and modelled measurement, and the
predicted and modelled state respectively. The predictions
come from the measurement function and the state transition
function. Additionally, the terms are weighted by covariances
of the inverse of initial state estimate, measurement and the
process noise respectively. A smaller covariance indicates
higher confidence in the previous estimate, leading to a larger
penalty for deviations. A finite-horizon optimal problem with
horizon window of Ne is solved at every time step k, to
obtain the corresponding state estimates x̄⋆

k−Ne|k, . . . x̄
⋆
Ne|k.

C. Refining Multi-LiDAR Annotations

The goal of our work is to refine the manual annotations
for each non-ego vehicle. We do this by generating boxes
corresponding to each individual LiDAR, given a single
annotation per non-ego object for each superframe. Solving
for Equation (5) traversing along the horizon window Ne

provides the optimal state estimate for the entire track,
denoted as X̄⋆

1:nm
. These estimates, in conjunction with the

human-annotated bounding boxes, are utilized as the input
for box refinement, as shown in Figure 4. The first step in
this approach involves clustering along the box heading to get
G different views of the object captured by various sensors
within a superframe. As the second step, the estimated speed
s⋆k is used alongside the box heading θk to compensate all
points classified as being part of the non-ego vehicle for
its speed. Concretely, for all LiDAR’s i and points j that
correspond to the non-ego vehicle we calculate the change
in position as:

∆pi,j =

∆xi,j

∆yi,j
∆zi,j

 =

(τi,j − t⋆)s⋆k cos θk
(τi,j − t⋆)s⋆k sin θk

0

 (7a)

(7b)

Where τi,j is the timestamp of point pi,j , and t∗ is the motion
compensation time. ∆pi,j is added to pi,j to obtain speed-
compensated points for the non-ego vehicle. Thereafter the
front or rear of the vehicle are inferred using the highest
density region [22] along the heading. If the high density
region lies behind the euclidean mean, the region represents
the back of the object, else the front. This knowledge allows
the algorithm to position the bounding box by anchoring
the edges to the extreme points of the vehicle along the
direction of travel. Next, G copies of the bounding box are
produced, one for each cluster. These are denoted as pseudo
bounding boxes. Lastly, these copies are each shifted back
by the inverse of ∆pi,j , leading to the pseudo boxes fitting
precisely with the original clusters.

IV. EXPERIMENTS

In this section, we present our experimental setup, as well
as discuss results of the state estimation using MHE and
the annotation refinement. In this article, we focus on highly
dynamic vehicles as the problem is more pronounced for
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Fig. 4: Proposed approach for refining multi-LiDAR annotations. The input is time-sequential track of human labelled
annotation (shown with green box) alongside it’s speed estimate obtained using MHE. Clustering along heading captures red
points, which represent a view of the vehicle missed by the human annotated box. Next, the MHE speed estimate is used
to shift the points according to the difference between τi,j and t∗. The red points move forward, whereas the blue points
move back. Thirdly, the annotated box is moved to align with the shifted points. Lastly, the green box is duplicated for each
cluster, and both the points and pseudo bounding boxes are shifted back according to the reverse cluster displacement. The
pseudo bounding boxes are colored according to their best fitting clusters.

such cases. But our approach could be extended to cover
other classes eg. articulated vehicles, pedestrians etc. as well.

A. Experimental Setup

Sequences of multi-LiDAR data was collected and anno-
tated on Scania platforms consisting of trucks and buses.
The dataset encompasses a wide range of scenarios, in-
cluding urban and highway driving, as well as challenging
adverse weather conditions. The annotated sequences have
a duration of 10 s and include motion-compensated LiDAR
points captured at 10 FPS, 3D bounding boxes, class labels,
and tracking IDs for each object. The annotators utilized
keyframes to extract essential parameters, such as class and
size. Keyframes are selected based on the time sequence,
specifically focusing on the frames that capture the highest
quality representation of the objects in that sequence. It’s
important to note that this selection may vary for different
objects. It’s worth mentioning that, for the sake of generality,
we did not account for this variability in our work.

For state estimation using MHE, the kinematic model
described in Section III-A is utilized as the state transition
model F . Since the problem at hand is solved offline, we
chose the horizon window Ne to be the same as entire length
of measurements, i.e. length of an annotated track. The state
estimates of the entire track are thus optimized in a single
iteration. The MHE parameters are indicated as ns = 2 and
nm = 1, as only the distance is measured. Ψ−1 = I2×2,
Q = I2×2, and Ω = I1×1 where I is identity matrix.

B. Results

A comparison between MHE, a Kalman Filter [16] based
estimation, and a basic speed estimation approach is depicted
in Figure 5. Four non-ego vehicle tracks are sampled at

random across various logs. For convenience, the tracks are
chosen such that they are visible for the major duration of
the sequence. The KF estimate, denoted by dotted black,
maintains the same state space and the state transition model
as MHE. The basic, or naive speed estimate shown in blue, is
obtained by simply dividing the distances and times between
the annotation intervals. The MHE estimate, shown in red,
follows a smooth trajectory due to the stage cost in Eq. (6)
being constrained by the kinematic model. On the other
hand, the naive estimate follows an irregular speed curve,
which is due to the human annotator labelling differing and
inconsistent views of the object at different time instances.
MHE also helps in removing outliers in naive speed estimate
in extreme cases (Figs. 5c and 5d). The recusrive KF
estimate is observed to be less smooth compared to MHE.
Although a detailed comparison is challenging due to lack
of precise ground truth, the smoother motion produced by
MHE estimates makes it a more appropriate method.

The results of annotation refinement for the selected ve-
hicles, as mentioned in the previous paragraph, are depicted
in Figure 6. The human-annotated box, colored in green,
clearly misses various views, as indicated by the presence
of red and black points in rows one to three and orange and
violet points in row four. These discrepancies are effectively
addressed by the refined annotations or pseudo bounding
boxes, which are color-coded based on the point clusters
they encompass, allowing them to accurately represent these
perspectives. Of particular interest, rows 1-3 depict partially
observed vehicles. The process of identifying high-density
regions plays a pivotal role in classifying the rear side of the
vehicle, facilitating the precise fitting of bounding boxes on
speed-compensated clusters. This step was observed to be
crucial for obtaining accurate pseudo bounding boxes.
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Fig. 5: Estimation of speed for four different non-ego vehicles across various logs. The blue plot represents the MHE
estimates, whereas the orange plot denotes the naive speed estimate, obtained by dividing the distances and times in between
the annotation intervals.

V. CONCLUSIONS AND FUTURE WORK

This article has presented a solution to the data annotation
challenges associated with heavy vehicles equipped with
multiple active sensors. We have utilized MHE estimators to
estimate the speed of non-ego objects and rectify bounding
boxes. The effectiveness of the proposed solution is demon-
strated through an evaluation using real-life data gathered
and annotated by Scania. Looking ahead, there are several
avenues for further research and development. One such
direction involves tailoring the modeling approach based on
the specific class of objects, such as bicycle models, articu-
lated vehicles, pedestrians, and so on. This customization can
potentially enhance the accuracy of MHE speed estimation.
Moreover, the current framework operates on 10 s frames.
Future research can focus on extending its application to
longer time sequences without annotations, providing a cost-
effective means to expand annotated datasets. A prior step for
this would involve using the refined annotations to train DNN
algorithms for object detection, tracking etc. In summary,

the proposed solution represents a significant step forward
in addressing data annotation challenges in heavy vehicle
sensor systems. With ongoing research and innovation, we
can anticipate further advancements in this field, contributing
to the evolution of safer and more efficient transportation
technologies and addressing a common bottleneck in devel-
oping machine learning models for autonomous vehicles and
other applications.
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